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Application of wrapper based 
hybrid system for classification 
of risk tolerance in the Indian 
mining industry
Deepak Kumar 1,2* & Ram Madhab Bhattacharjee 1

The degree to which an individual is willing to take risks i.e., risk tolerance is often cited as a significant 
causal element in the majority of workplace accidents. It is essential to determine the risk tolerance 
level of miners and utilise their risk profiles to design improved training modules, safety, recruitment, 
and deployment policies. This paper aims to identify the most critical factors (or features) influencing 
miners’ risk tolerance in the Indian coal industry and develop a robust prediction model to learn 
their risk tolerance levels. To do end, we first conducted a questionnaire survey representing the 
complete feature set (with 36 features) among 360 miners and divided their responses into five classes 
of risk tolerance. Next, we propose a wrapper based hybrid system that combines particle swarm 
optimization (PSO) and random forest (RF) to train a multi-class classifier with a subset of features. 
In general, the proposed system selects the best feature subset by iteratively generating different 
feature combinations using the PSO and training an RF classifier model to assess the effectiveness of 
the generated feature subsets for the F1-score. At last, we compared the PSO-RF with four traditional 
classification methods to evaluate its effectiveness in terms of precision, recall, F1-score, accuracy, 
goodness-of-fit, and area under the curve.

Even with automation, better working conditions, strict and thorough safety laws, mining is one of the most 
hazardous occupations in the world1,2, and the Indian mining industry is no exception. Overall risk in the Indian 
mining industry is still beyond the desired levels3–8. In general, multiple factors contribute to accidents in the 
workplace and are typically categorized into two broad categories: unsafe conditions and unsafe behaviors9–12. 
Researchers have proven that unsafe acts are caused by two factors: (1) internal factors such as risk tolerance, risk 
perception, and self-efficacy13,14, and (2) external factors like safety culture, work environment and conditions15,16. 
Most of the existing studies13,17–25 are limited to only risk perception in non-mining fields but did not consider the 
risk tolerance. However, risk tolerance substantially influences decision-making at the workplace when dealing 
with hazardous conditions. With these motivations, we conducted a comprehensive study on risk tolerance in 
the Indian coal mine industry context.

Risk tolerance is defined as an individual’s capacity or willingness to accept a certain amount of risk to pursue 
some goal26,27. The term ’risk tolerance’ was first conceived for financial risk decision-making and was defined 
as the level of risk an individual is willing to take to achieve the desired outcomes28. Individuals’ risk tolerance 
depend on their beliefs, values, and personal goals, which overlap with their feelings of confidence29. An individu-
al’s risk tolerance is one of the primary reasons leading to unsafe acts at the workplace, causing various accidents.

Many studies14,26,33–35 have confirmed that an individual with a higher tolerance to risk takes more risks than 
a less risk-tolerant individual. Lehmann et al.33 have demonstrated that the risk tolerance levels in the mining 
industry significantly influence the risky behavior of male miners. Hunter et al.26 have shown that a pilot’s deci-
sion-making is substantially influenced by their risk tolerance levels in the aviation industry. Similar conclusions 
have also been drawn by Bhandari et al.34 for the construction sector. Besides, safety professionals associated 
with inherently hazardous sectors like mining, aviation, construction, chemical, nuclear power, etc., consider 
risk tolerance as an important factor at the workplace as employees frequently engage in various hazardous 
activities14,35. In particular, they are more concerned about an individual’s risk tolerance level as the consequences 
of risky decisions can result in catastrophic accidents. Therefore, an objective assessment of risk tolerance among 
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individuals is crucial to persuade them to engage in safer workplace behavior. Hence, it is essential to evaluate 
and minimize miners’ risk tolerance to improve an organization’s safety framework and overall performance.

To evaluate and reduce risk tolerance, we need to understand why two different individuals under similar 
workplace conditions and environments behave differently. In particular, we have to comprehensively identify 
the factors influencing miners’ risk tolerance and select the most critical factors among all the identified factors 
for objectively assessing miners’ risk tolerance levels. Since the number of factors influencing an individual’s 
risk tolerance level is large and complex, determining their combined effect on risk tolerance is challenging and 
time-consuming, especially using conventional methods.

On the other hand, machine learning7,36 and soft computing23 paradigms can efficiently predict outcomes 
when complex multi-factor situations are involved. In addition, these paradigms are very helpful in analyzing 
multivariate data sets in reasonably less time than the traditional statistical methods. Many machine learning 
and soft computing methods have been widely used for objective assessments and predictions by identifying and 
analyzing patterns in data. These paradigms have also been used to solve various complex engineering problems 
and other problems in almost every field of science and life. For example, Guo et al.37 used an artificial neural 
network (ANN) to forecast the capital cost of open cast mining projects, Yang et al.22 predicted the ground 
vibration levels using an adaptive neuro-fuzzy inference system (ANFIS), genetic algorithm (GA) and particle 
swarm optimization (PSO). Likewise, various other studies, such as Koopialipoor et al.38, Jothi et al.39, and Zhou 
et al.40 have also utilized different machine learning and soft computing techniques for the prediction purpose. 
We summarize some recent related papers in Table 1.

In this paper, we aim to predict the risk-tolerance level of miners in the Indian mining industry using a multi-
class classifier. In this context, we first identify the exhaustive set of factors (or features) affecting an individual’s 
risk tolerance. Based on the identified factors, we then conducted one-to-one interviews with 360 employees from 
three categories, i.e., non-executive, supervisor, and executive of Bharat Coking Coal Limited (BCCL), a major 
coal-producing company in India, for primary data collection. Next, we propose a wrapper based hybrid system 
in which we combine particle swarm optimization (PSO)41 and random forest (RF)42 classifier for training a 
multi-class classification model using a subset of features. Herein, our objective is to maximize the F1-score of the 
trained model. In this view, we first divide the primary data into two sets: the training set and the testing set. We 
then feed the training set into the proposed hybrid PSO-RF system to select a subset of features and fine-tune the 
classification model using k-fold cross validation. We then use the testing set to compare the experimental results 
of the PSO-RF with support vector machine (SVM)43, k-nearest neighbor (kNN)44, decision tree (DT)45, and RF42 
algorithms in terms of precision, recall, F1-score, accuracy, goodness-of-fit46, and area under the curve (AUC).

The final classification model could be used for categorizing new/existing miners into different groups based 
on their risk profiling and to guide mine management in order to deploy them in suitable workplace environ-
ments. Also, it can be used by the organizations to form safety policies and to design safety training modules 
based on miners’ risk profiles to reduce risk tolerance and improve the overall safety of an organization.

Table 1.   Summary of recent related papers.

Author Year Research focus

Calisa et al.17 2019 Occupational health and safety management systems depend on a country’s economic, social, cultural, political, 
and technological basis. Thus, each nation should create its own management system based on its dynamics

Hossam et al.18 2016 This research presented a very effective technique for spam filtering by combining the particle swarm optimiza-
tion and random forest algorithms

Mohamad et al.19 2015 This study investigated the application of a hybrid approach by combining the particle swarm optimization and 
artificial neural network algorithms for predicting the rock unconfined compressive strength

Bi et al.20 2022 Safety and reliability analysis of the solid propellant casting molding process based on fuzzy fault tree analysis, 
particle swarm optimization and back propagation neural network algorithms

Dong et al.21 2019 This research studied the sensor network security defense strategy based on attack graph and improved binary 
particle swarm optimization

Yang et al.22 2019 This study presented an intelligent prediction strategy for blasting-induced ground vibration using adaptive 
neuro-fuzzy inference system optimized by genetic algorithm and particle swarm optimization

Gong et al.23 2022 The authors proposed a multi-period portfolio selection method under the coherent fuzzy environment with 
dynamic risk-tolerance and expected-return levels

Wang et al.24 2016 The research focused on identifying the critical factors and paths that influence workers’ safety risk tolerance 
and to explore how they contribute to accident causal model from a system thinking perceptive

Bhandari et al.13 2022
This study leveraged survey data from 11811 construction workers from 19 countries to empirically validate 
the associations between safety climate, risk tolerance, and risk-taking decisions in the workplace using linear-
mixed effects model analysis

Vinnem J.25 2021 This work delivered a summarized case study for a fictitious normally unmanned facility, and presented risk 
results for three different cases with varying extents of safety systems

Reddy et al.30 2020 This paper suggests ML algorithms incorporating PCA perform better with high-dimensional datasets. How-
ever, ML techniques without dimensionality reduction perform better with low-dimensional datasets

Pei et al.31 2022
This work proposes scene graph semantic inference for cross-modal image and text matching. Using visual and 
textual scene graphs and graph convolutional networks, the technique analyses the local semantic correlations 
of inter-modal object relationships

Jiang et al.32 2021
This paper proposes visual dialogue for establishing semantic relationships between visual and written content. 
Aligning visual and textual knowledge reduce the gap between modalities. Graph structure connects textual-
semantic visual objects
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The rest of the paper is arranged as follows. Section “Preliminaries” provides an overview of PSO, RF classifier, 
and k-fold cross validation. Section “Identification of factors influencing risk tolerance and data collection” first 
identifies the exhaustive set of factors influencing miners’ risk tolerance and then describes the dataset along 
with how we have collected the primary data. The proposed hybrid PSO-RF system and the experimental results 
are presented in Sections “Proposed hybrid PSO-RF system” and “Experimental results”, respectively. Finally, we 
conclude the paper in Section “Conclusions”.

Preliminaries
In this section, we provide overviews of PSO, RF classifier, and k−fold cross validation as the proposed hybrid 
system is based on them.

An overview of particle swarm optimization (PSO).  Particle swarm optimization (PSO) is a nature-
inspired evolutionary optimization technique introduced by Kennedy et al.41. PSO solves a given optimization 
problem by having a set of candidate solutions, known as particles, and iteratively moving particles around the 
search space based on their position and velocity and a fitness function47.

In PSO usually all the particles have same dimension and can produce a complete solution to a given optimiza-
tion problem. Let the position and velocity of a particle in dimension d be denoted by xi,d and vi,d , respectively, 
then the position and velocity vectors of a particle at iteration t are denoted as:

In general, the solution obtained by the particles of the swarm is given by their position vectors and the veloc-
ity vectors help in updating the position vectors of the particles. The movement of each particle is influenced by 
both its best-known position and the best-known position among the particles of the swarm, which is expected 
to drive the particles towards an optimal solution. In each iteration, the velocity and position vectors of each 
particle are updated using Eqs. 3 and 4, respectively.

where vi(t + 1) and xi(t + 1) are the velocity and position of a particle at iteration (t + 1) , respectively. xpi  and xgi  
are the personal and global best solutions, respectively. c1 and c2 are constant acceleration coefficients. r1 and r2 
are random variables in range [0, 1]. w is the inertial weight. After the last iteration, the PSO returns the global 
best particle, i.e., the best solution obtained with reference to the given optimization problem and its fitness 
function. The flow chart of the PSO is depicted in Fig. 1.

An overview of random forest (RF) classifier.  Random forest (RF) or random decision forest classifier42 
is a popular machine learning algorithm based on supervised learning. To better understand the RF model, we 

(1)xi(t) = [xi,1, xi,2, . . . , xi,d]

(2)vi(t) = [vi,1, vi,2, . . . , vi,d]

(3)vi(t + 1) = w × vi(t)+ c1 × r1 × (x
p
i − xi(t))+ c2 × r2 × (x

g
i − xi(t))

(4)xi(t + 1) = xi(t)+ vi(t + 1)

Figure 1.   Flowchart of particle swarm optimization (PSO).
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first need to understand the decision tree (DT)45, which is the building block of an RF model. In particular, a DT 
is a flowchart-like arrangement in which the classification rules are defined from root to leaf nodes. Typically, 
each internal node of the tree depicts attributes (e.g., sunny or rainy weather), each branch depicts all possible 
values of the attributes, and each leaf node describes the class label. Let us illustrate with this an example. Let us 
assume that we want to play football on a given day, then we can decide whether to play or not based on the DT 
as shown in Fig. 2.

Herein, if the given day is sunny and has humidity greater than 75%, then the above shown DT will classify 
not to play football. Similarly, if the humidity on a sunny day is less than or equal to 75%, then it will be classi-
fied as yes, i.e., can play football.

The RF creates an ensemble of many individual DTs at training time; each DT in the ensemble predicts a class 
label, and the class label predicted by the most trees becomes the output of the prediction model. A sample RF 
classifier with three DTs is shown in Fig. 3 for deciding whether to play football or not on a given day. Herein, 
the first and third trees predict “No” as the class label, whereas the second tree predicts “Yes” as the class label. 
Since majority (2 of 3) of trees classify “No” as the class label, the final class label is also “No”, i.e., not to play. 
Note that RF mitigates the over fitting problem of the DTs by combining prediction of a large number of DTs. 
Hence, RF generally outperforms the DTs.

k−Fold cross validation.  Cross validation48,49 is a process of resampling the data sets employed to assess 
the machine learning models. There are three cross validation techniques: random sub-sampling, leave-one-out 
validation, and k-fold cross validation. In this paper, we adapt k−fold cross validation as it generally uses all 
the observations for both training and validation and has a lower bias than other procedures. In k−fold cross 
validation, we randomly split the training data into k approximately equal-sized groups (or folds) and repeat the 
following operations k times. Each time use the (k − 1) folds to train the machine learning model and the one 
fold to validate the trained model. Finally, we average the results of these k machine learning models to produce 
a single estimation. An example of 5-fold cross validation is as shown in Fig. 4.

Internal node

Leaf node

Weather
Sunny Rainy

No

Humidity
> 75% ≤ 75%

Yes No

Wind
> 20 ≤ 20

Yes

Figure 2.   Pictorial illustration of decision tree.
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Figure 3.   Pictorial illustration of random forest.
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Identification of factors influencing risk tolerance and data collection
Many factors influence an individual’s risk tolerance capacity at the workplace. Some factors have a higher influ-
ence on an individual’s risk tolerance capacity than others, whereas others have little to no impact. There are 
two classes of factors; some increase an individual’s risk tolerance capacity, while others decrease it depending 
on the situation and the individuals.

According to the Ongoing Professional Practice Evaluation (OPPE)50, risk tolerance may depend on a large 
number of factors. Yin et al.51. showed that demographic variables like age, working experience, accident exposure 
have correlations with coal miners’ safety attitudes. Paul et al.52 established that risk-taking behavior is prominent 
among miners, and production pressure, illiteracy, unawareness of consequences of risky behavior, lack of skills, 
and trying to save time and efforts make the workers take more risk. Mirzaei et al.53 indicated that personal 
and environmental factors have a higher influence on unsafe practices by miners using the Bayesian network. 
Similarly, Wang et al.24 demonstrated that a worker’s risk tolerance could also be affected by working experiences 
and knowledge, work characteristics, personal subjective perception, and safety management. Khosravi et al.54 
concluded that individual attributes like site condition, society, organization, supervision, contractor, project 
management, and work group factors are some of the causes of unsafe behavior at a construction site.

Manjula et al.1 claimed that personal and organizational factors influence the safety behavior of construc-
tion workers. In contrast, Man et al.55 asserted that behavioral and environmental factors also affect risk-taking 
behavior apart from personal factors. Tchiehe et al.56 identified economic, personal, cultural, political, social, 
ethical, psychological, and characteristics of the risk as the primary parameters contributing to individuals’ risk 
tolerance. Inouye57 categorized the factors affecting risk tolerance into three levels, i.e., structural or institutional 
level, community level and psychological level. The author also discussed seven factors that increase the risk 
tolerance capacity of an employee in an organization and three factors that decrease the tendency to take the risk.

Based on the above-discussed findings, we identify and compile a total of thirty-six factors that influence 
an individual’s risk tolerance with respect to the mining industry and divide them into four major groups: (1) 
organizational factors, (2) human factors, (3) task condition and task environment factors, and (4) social factors.

We provide brief descriptions of each identified factor in Table 2. Based on these factors, we next generate a 
questionnaire with forty two (42) questions to perform a survey among miners (or respondents) for data col-
lection. The questions require respondents to answer them based on discrete categories or levels. In general, 
we divide the questionnaire into three parts. The first part includes three (4) questions to collect the personal 
information of respondents, i.e., designation, age, gender, and work experience. The second part contains one 
(1) question to know the type of risks miners usually take and one question to categorize the miners into five 
classes of risk tolerance:

•	 Class 1: Very less risk-tolerant.
•	 Class 2: Less risk-tolerant.
•	 Class 3: Moderate risk-tolerant.
•	 Class 4: High risk-tolerant.
•	 Class 5: Very high risk-tolerant.

Herein, the very less risk-tolerant class represents respondents who take the risk at the workplace once a year, 
the less risk-tolerant class signifies individuals who take a risk once a month, moderate risk-tolerant class means 
miners who take risk twice a week, high risk-tolerant class denotes respondents who take the risk every other 
day, and very high risk-tolerant class indicates individuals who take risk daily.

The third part includes thirty-six (36) closed-ended questions to capture how much each factor (or feature) 
influences an individual to take the risk on a Likert scale ranging from one to five, with one meaning minimum 
influence and five denoting maximum influence.

In this paper, we utilized the stratified random sampling method to conduct the survey and reduce skewness 
and biasness in the collected data. The stratified random sampling method divides the members of a population 
into smaller sub-groups known as strata before sampling such that each individual of the population is allotted to 
only a single stratum. In particular, we conducted the survey among 360 employees of BCCL from three classes: 
non-executive, supervisor and executive, using simple random sampling. The non-executive class comprises 
non-executive employees other than the supervisory staff, and the supervisor class consists of mining sardars, 
overmen, and foremen. In contrast to these, the executive class includes all the officers and mine managers. 
Among the selected 360 respondents, 352 were males (i.e., 97.77% ), and only 8 were females (i.e., 2.23% ). The 
mean age of selected miners was 36 years, and the mean duration of their work experience was 14 years.

Model 5 

Model 4 

Model 3 

Model 2 

Model 1 

Training 

Validation 

Figure 4.   An example of 5-fold cross validation.
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ID Factors Brief description

Organizational factors

 F1 Management commitment If management is committed to safety, then risk tolerance among 
employees of such organization is comparatively reduced

 F2 Structure and responsibility within the organization
Poor organizational structure, lack of defined roles and reporting 
mechanism creates a sense of carelessness among employee which 
ultimately increases their risk tolerance level

 F3
Communication and information management within the organi-
zation

Two-way communications within the organization, effective 
feedback mechanism and minimal communication barrier results 
in increased safety behavior at the workplace thereby decreasing the 
risk tolerance level of individuals

 F4 Safety culture
A positive safety culture within an organization and top priority 
on overall safety of employees results in a general reduction of risk 
tolerance levels among employees, leading to improved organiza-
tional safety parameters

 F5 Supervision
Effective supervision is an important tool for reducing workplace 
safety violations and accidents which eventually reduces risk toler-
ance level among employees

 F6 Safety regulations and SOPs

Clear and detailed safety regulations and SOPs based on an 
accurate assessment of risks associated with mining activities helps 
individual to identify the hazards associated with it and outlines 
the risk control processes while decreasing the risk tolerance level 
of employees

 F7 Training and competency
Lack of proper training, absence of regular and unbiased assessment 
of competency results in less than adequate hazard perception 
among workers leading to higher risk tolerance level and increased 
involvement in workplace accidents

 F8 Welfare
Mining companies providing comprehensive welfare amenities have 
a better safety record and workers tend to take less risks at the work-
place because of better risk perception which eventually reduces the 
risk tolerance level of individuals

 F9 Contract management
Lack of comprehensive contract management, absence of clarity on 
safety obligations of contractors and the least cost criteria for award-
ing contracts results in higher risk tolerance level among operators, 
supervisors and managers

 F10 Outcome of noncompliance
Violations of safety norms are common and repetitive in the min-
ing industry as the provisions of penalty in safety regulations are 
outdated and obsolete

 F11 Allocation of resource
Inadequate allocation of resources in an organization can eventually 
increase the risk tolerance level among employees and thereby cause 
unsafe behavior at workplace

 F12 Acceptance of wrong practices

Repeating a particular type of unsafe practice at the workplace 
over a long period of time leads to acceptance of such practices as 
a usual, safe and normal process. Sometime it becomes the most 
accepted way of performing any particular activity, which ultimately 
increases the level of risk tolerance level among employees

 F13 Acceptance of LTA safety in design of equipment and processes
Accepting less than adequate safety parameters in designing equip-
ment and processes leads to high risk tolerance levels, which in turn 
creates unsafe conditions at the workplace

 F14 Availability of PPE and other safety equipment
Non-availability of sufficient and suitable Personal Protective Equip-
ment (PPE) compels workers to take more risks than necessary and 
over a period of time they start ignoring the importance of PPE due 
to an increase in their risk tolerance level

 F15 Culture of denial

Culture of denial is about beliefs or misconception that everything 
is fine and nothing will happen. Due to a culture of denial that exists 
in organizations, the management tends to ignore the abnormalities 
reported to it which increases the exposure of workers to higher risk 
activities thereby increasing the risk tolerance of an organization 
as a whole

 F16 Decision motivation
Motivational measure like safety incentives as cash rewards 
enhances positive attitude of workers towards safety which eventu-
ally lowers the risk tolerance level among employees

Human factors

 F17 Age
In general, knowledge, experience and job skill of a worker varies in 
proportion to their age, whereas physical strength, reflex action or 
response etc. varies inversely with age of individuals

 F18 Gender
It is evident that significant biological differences exist between 
male and female workers which results in variation in their attitudes 
and behavior towards risk inherent activities

 F19 Physical health and condition
Health problems like high blood pressure, lack of sleep and other 
health problems or diseases severely affect an individual’s risk 
tolerance which affects working quality and safety performance of 
individuals

 F20 Educational background
Educated employees of any organization possess a positive outlook 
towards safety and health programs. Hence, it has been observed 
that educated employees have low risk tolerance levels

Continued
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This paper considers the responses to the third and second parts of the questionnaire as the complete feature 
set and the class labels, respectively, to model the risk-tolerance prediction problem as a multi-class classification 
problem. In other words, the data set has 606 instances, each with 36 features and a class label among five classes 
of risk tolerance discussed above. The complete set of features and class labels are denoted as F = {F1, F2, . . . , F36} 
and C = {C1,C2,C3,C4,C5} , respectively.

Proposed hybrid PSO‑RF system
As mentioned earlier, we intend to predict the risk-tolerance level of coal miners in the Indian mining industry. 
In this paper, we train a multi-class classifier using the wrapper based feature selection58 method to reduce the 
dimension of the dataset and optimize the trained model for maximizing the F1-score. There exist two basic 
requirements for a wrapper based feature selection strategy, i.e., a search algorithm and an objective function. 

ID Factors Brief description

 F21 Marital status
Family responsibility of married workers motivate them to take less 
risks at the workplace and hence married workers have lower risk 
tolerance levels than unmarried workers with comparatively less 
responsibility

 F22 Professional knowledge and working experience Knowledgeable professionals act more rationally and have a lower 
tolerance for risk at workplace

 F23 Alcoholism

Alcoholism or drinking habits not only have an adverse effect on 
the health and well-being of workers, but also cause deterioration 
in their overall performance. Alcohol influences an individual’s 
moods, emotions, actions, reactions and decision-making ability 
which impacts their risk tolerance capacity

 F23 Previous exposure to accidents Employees with previous exposure to accident or near miss inci-
dents or any other similar incidents have lower risk tolerance levels

 F25 Overconfidence
Over confident individuals may take higher risk without proper 
assessment of a risky situation or identification of hazards and 
consequently make irrational decisions

 F26 Job satisfaction
If employees in an organization are satisfied with their jobs, then it 
will make them highly focused on their tasks. Such employees make 
fewer mistakes at the workplace

 F27 Personality

Personality traits primarily influence an individual’s attitude, 
behavior and decisions. Individuals with different personality traits 
have different attitude and behavior regarding their safety. Some 
personality traits positively influence risk tolerance levels while oth-
ers influence it negatively

 F28 Risk perception
Individuals with higher risk perception are likely to become more 
conscious about risks and subsequently develop lower risk tolerance 
levels. Risk tolerance is inversely proportional to risk perception

 F29 Judgement ability

Judgment ability is the process by which individuals evaluate evi-
dence to assess the likelihood of different outcomes. At a workplace, 
judgment ability helps workers to analyze and comprehends prob-
lems or situations according to their knowledge and experience. 
Judgment ability acts as an important parameter of risk tolerance

 F30 Familiarity with a task

Familiarity with a task grows with successful execution of a par-
ticular task several times. However, such unconscious competencies 
sometimes lead to growing complacency resulting in blind spots to 
perceive potential hazards, which eventually increases the risk toler-
ance level of individuals or the organization as a whole

 F31 Over-trust on the equipment
Over-trust on any equipment or system grows over a period of time 
if frequency of failure is less. However, such over-trust sometimes 
influences the risk tolerance level of the operator or supervisor

Task condition and environment factors

 F32 Site layout and housekeeping
Workers of mines where the working sites are well planned and 
designed after considering the health, and safety of workers, become 
less risk tolerant over a period of time, as they become used to 
working in a safe working environment

 F33 Workload and time constraints
Higher production target or too much work load may pressurize 
employee to ignore and circumvent safety standards and guidelines 
at the workplace to achieve set targets

 F34 Lack of adequate safety provision

Due to defective design or lack of ergonomic design, the workers, 
particularly operators of heavy equipment include wrong practices 
in their processes of operating heavy machinery. Adopting such 
inefficient practices without any negative outcome creates a false 
sense of security which eventually increase their risk tolerance levels

Social factors

 F35 Peer pressure
A person’s decisions and actions are significantly influenced by the 
people around them. Peer pressure can affect an individual in both 
positive or negative direction with respect to their safety

 F36 Socioeconomic condition It is a well-established fact that overall attitudes of the society influ-
ence an individual towards every aspect of life

Table 2.   Brief description of all identified 36 factors.
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In particular, wrapper methods select the best feature subset by iteratively generating different combinations of 
the features using the search algorithm and training a specific machine learning model to evaluate the usefulness 
of the generated feature subsets with respect to an objective function, as shown in Fig. 5.

This paper utilizes the particle swarm optimization (PSO) as the search algorithm, random forest (RF) as the 
classifier, F1-score as the objective function, and propose a hybrid PSO-RF system to classify the miners. To this 
end, we first divide the complete dataset into two parts: training data and testing data. Next, we feed the training 
set to the proposed hybrid PSO-RF system which runs for a given number of iterations. In each iteration, the 
proposed system generates several feature subsets using the PSO, trains an RF classifier for each subset using k−
fold cross validation to avoid over fitting, evaluates the RF model based on the F1-score, and stores the model 
yielding the maximum F1-score so far. Once the specified number of iterations are elapsed, it outputs the final 
optimized RF classifier with the selected subset of features. Finally, we evaluate the obtained RF model using the 
testing data and various performance metrics. Now, we present the particle representation scheme, the derivation 
of the objective function, i.e., F1-score, and a case study to illustrate the overall working of the proposed system.

Particle representation scheme.  In this section, we explain the particle encoding and decoding schemes 
to generate various feature subsets in proposed hybrid PSO-RF system. In particular, we encode a particle as a 2−
dimensional array in which each column corresponds to a feature, for example, the first column stands for first 
feature ( F1 ), the second column stands for second feature ( F2 ) and so on. We initialize each element of a particle 
with a random number p | −5 ≤ p ≤ 5 , following the uniform distribution.

Let us consider an illustrative example to understand the encoding and decoding scheme in detail. Suppose 
there exist 13 features in the complete dataset, then a particle is encoded as follows.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

2.2 1.0 − 3.0 − 5.0 − 2.3 2.9 − 1.5 − 2.9 − 1.6 − 3.6 1.0 1.4 3.3

Next, let us understand how we decode this particle to know which features to retain and discard, respectively. 
To decode the particle, we check value corresponding to each feature, and if it is less than or equal to zero, then 
we convert it into a binary zero, i.e., we discard the feature. On the other hand, if the particle value of a feature is 
greater than zero, then we interpret it as a binary one and retain the feature. The decoded particle is shown below.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

1 1 0 0 0 1 0 0 0 0 1 1 1

Notice that the values of features F1 , F2 , F6 , F11 , F12 , and F13 are transformed into binary one and the val-
ues of features F3 , F4 , F5 , F7 , F8 , F9 , and F10 are inferred as binary zero. This implies that the feature subset 
Fr = {F1, F2, F6, F11, F12, F13} is retained while the feature subset Fd = {F3, F4, F5, F7, F8, F9, F10} is discarded.

Derivation of objective function.  In this section, we define the objective function that we use to evaluate 
the worth of the feature subsets. To derive the objective function, we first depict the confusion metric58 for two 
class (or binary) classification problem as Table 3.

Let us first describe the meanings of true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN).

•	 TP: it denotes to the number of predictions where class 1 is classified as class 1.
•	 TN: it denotes the number of predictions where class 2 is classified as class 2.
•	 FP: it denotes the number of predictions where class 2 is classified as class 1.
•	 FN: it denotes number of predictions where class 1 is classified as class 2.

We now briefly describe the precision, recall, accuracy, and F1-score using above mentioned confusion 
matrix as follows.

Accuracy.  It provides the overall accuracy of the classification model and is defined as the fraction of the total 
number of predictions that were correct.

Complete Feature Set

Training

Generate Feature Subset

Classifier - Random Forest Prediction Measure

Search Method - PSO

est
Evaluate

t S
Selection

Feedback

Training Data

Trained Random Forest 
Model with Selected 

Feature Subset
Testing Data

Wrapper Method

Figure 5.   Proposed wrapper based hybrid system based on PSO and RF classifier.
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Table 3.   Confusion matrix for binary classification with respect to Class 1, where “Class 1 (C1 )” and “Class 2 
(C2)”.

Predicted class

Actual class

C1 C2

C1 TP FN

C2 FP TN

Precision.  It quantifies the fraction of predictions as class 1 were actually class 1. In other words,

Recall.  It computes the fraction of predictions of all class 1 samples were correctly predicted as class 1, i.e.,

F1‑score.  It combines the precision and recall by taking their harmonic mean. In other words,

Usually, a classification model with higher accuracy, precision, recall, and F1-score is considered better than 
one with lower accuracy, precision, recall, and F1-score.

However, in this paper, we deal with a multi-class classification problem for which the confusion matrix59 
interpretation is shown in Fig. 6. Herein, each row represents an actual class, i.e., the first row depicts C1 , the 
second row denotes C2 , and so third. Likewise, each column represents a predicted class, i.e., the first column 
denotes C1 , the second column depicts C2 , and so third. Now, we explain the process of calculating the TP,FN, 
FP, and TN as follows.

In general, for a given class Ck , the number of TPk is the value of the cell on the kth row and column, i.e.,

The number of FNk is the sum of the values of all the cells on kth row, except the value of the cell on kth col-
umn, i.e.,

The number of FPk is sum of the values of all the cells on kth column, excluding the value of the cell on kth 
row, i.e.,

The number of TNk is the sum of the values of all the cells, except the values of the cells on kth row and col-
umn, i.e.,

In this paper, we want to examine the trained classification model with respect to all the classes using a single 
parameter. Hence, we consider the micro F1-score as the objective function, i.e.,

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F1-score =
2× Precision× Recall

Precision+ Recall

(9)F1-score =
2× TP

2× TP + FP + FN

(10)TPk = Mkk

(11)FNk =

|C|∑

i=1∧i �=k

Mki

(12)FPk =

|C|∑

i=1∧i �=k

Mki

(13)TNk =

|C|∑

i=1∧i �=k

|C|∑

j=1∧j �=k

Mij
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This may be noted that the Micro F1-score will be referred as F1-score in the rest of the paper.

Experimental results
We implemented both pure RF and the proposed hybrid PSO-RF on a system with a Windows 10 Standard 64 
bits operating system with Intel(R) Core TM i7-8550U CPU @1.80 GHz 2.00GHz and 8.00 GB of RAM using 
Python 3.8. As mentioned before, the raw dataset has 360 instances with 36 features and 5 classes, which was 
divided into two subsets: training set (270 instances) and testing set (90 instances). We use the training set for 
selecting features and training the classifiers, whereas the testing set is used for the final evaluation of the trained 
models. During the feature selection phase, we considered 100 particles, 200 iterations, 100 trees, and 5-fold 
cross-validation for the proposed PSO-RF algorithm. In PSO, we kept the same parameters as used in41. The 
convergence curves of the PSO-RF algorithm for precision, recall, F1-score, and accuracy are shown in Fig. 7. 
Herein, the values of precision, recall, F1-score, and accuracy increase till 60 iterations. After that, there is a slight 
variation in their values, signifying that the PSO-RF converges.

After that, we compare the experimental results of PSO-RF algorithm with four traditional classification 
algorithms, namely SVM with RBF kernel, kNN wih k = 5 , DT with J48 implantation, and RF model. To begin 
with, we depict the precision of all the algorithms in Fig. 8a. It is easy to observe that the PSO-RF attains superior 
performance as compared to other four algorithms, i.e., it attains maximum precision. In particular, it has 12.44% , 
19.96% , 15.01% , and 10.42% more precision than that of SVM, kNN, DT, and RF, respectively. Next, we assess 
all the algorithms in terms of recall as shown in Fig. 8b. Notice that the recall of the PSO-RF is 8.07% , 16.63% , 
14.24% , and 10.57% more than that of SVM, kNN, DT, and RF, respectively. In Fig. 8c, we depict the experimental 
results of all algorithms in terms of the F1-score. The PSO-RF has 10.26% , 18.29% , 14.64% , and 10.57% more 
F1-score than the SVM, kNN, DT, and RF, respectively. In similar fashion, the accuracy achieved by the all the 
algorithms is presented in Fig. 8d. In particular, the PSO-RF achieves 12.16% , 20.06, 14.57% , and 10.67% higher 
accuracy than SVM, kNN, DT, and RF, respectively.

(14)Micro F1-score =
2×

∑|C|
k=1

TPk

2×
∑|C|

k=1
TPk +

∑|C|
k=1

FPk +
∑|C|

k=1
FNk
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Figure 6.   Confusion matrix for (a) Generic Interpretation, (b) Class 1, (c) Class 2, (d) Class 3, (e) Class 4, and 
(f) Class 5.
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Figure 7.   Convergence curves of PSO-RF algorithm for (a) Precision, (b) Recall, (c) F1-score, and (d) 
Accuracy.
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Finally, we compare the algorithms in terms of goodness-of-fit and the AUC. The goodness-of-fit enables us 
to assess the steepness of the learning curve of a classification algorithm. It is defined as the region between the 
highest accuracy and learning curve. Note that the lesser the area under goodness-of-fit, the better the algorithm 
is. Fig. 9a shows the normalized (between 0 and 1) area under goodness-of-fit of the algorithms under considera-
tion. It is clear that the PSO-RF has the minimum area among all the algorithms. In Fig. 9b, we show the AUC 
of different algorithms using box plot. The more the AUC, the better the classification method is. Notice that the 
AUC of the PSO-RF is maximum among all the algorithms. This is because the PSO-RF is enabled with a feature 
selection method, whereas the SVM, kNN, DT, and RF algorithms do not employ any feature selection strategy.

Conclusions
The coal mining industry has an inherent risk of workplace accidents and hazards. It is the unsafe act which 
accounts majority of the accidents at workplace. The unsafe act of miners is mainly dependent on their risk 
perception and risk tolerance level. In this study, we first conducted one-on-one interviews with 360 miners of 
BCCL and divided them into five classes of risk tolerance. We then presented a wrapper based hybrid PSO-RF 
system to select a subset of features and train a multi-class classifier with the aim of maximizing the F1-score. 
We then compared the experimental results of PSO-RF with SVM, kNN, DT, and RF algorithms to assess its 
efficacy in terms of precision, recall, F1-score, accuracy, area of the learning curve, and AUC. The results revealed 
that compared to the conventional algorithms, the PSO-RF has up to 19.96% , 16.63% , 18.29% , and 20.06% more 
precision, recall, F1-score, and accuracy, respectively. In addition, the PSO-RF has the minimum area under the 
goodness-of-fit and maximum AUC among all the compared algorithms.

The outcome of the study will help organizations or safety professionals engaged in risk intensive industries 
as follows. The recruitment process of an organization can include a provision to determine the risk tolerance 
level of each employee using the presented model. Based on outcome of the prediction model, the deployment 
of employees according to their risk tolerance profiles can be done. If organizations periodically evaluate the risk 
tolerance profile of its employees, they can utilize this information to design robust safety policies and reporting 
measures for its employees to follow during operations. Once an individual’s or group’s risk profile have been 
determined, their training needs and modules can be tailored to inculcate appropriate safety behavior at the 
workplace, with the objective of reducing risk tolerance levels across the organization.

This may be noted that this study was a pilot scale project in which the data was collected from a limited 
number of employees belonging to a particular workplace. So, it may not be applicable for other workplaces, 
if there is significant variance in the nature of work, manpower or work environment. In the future, we will 
extend this study by including a large number of miners from various coal producing companies in India. We 
will also explore different machine learning and artificial intelligence techniques to improve and generalize the 
prediction model.
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Figure 8.   Comparison of different algorithms for (a) Precision, (b) Recall, (c) F1-score, and (d) Accuracy.
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