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Insect visuomotor delay 
adjustments in group flight support 
swarm cohesion
Md. Saiful Islam * & Imraan A. Faruque 

Flying insects routinely demonstrate coordinated flight in crowded assemblies despite strict 
communication and processing constraints. This study experimentally records multiple flying insects 
tracking a moving visual stimulus. System identification techniques are used to robustly identify the 
tracking dynamics, including a visuomotor delay. The population delay distributions are quantified for 
solo and group behaviors. An interconnected visual swarm model incorporating heterogeneous delays 
is developed, and bifurcation analysis and swarm simulation are applied to assess swarm stability 
under the delays. The experiment recorded 450 insect trajectories and quantified visual tracking delay 
variation. Solitary tasks showed a 30ms average delay and standard deviation of 50ms, while group 
behaviors show a 15ms average and 8ms standard deviation. Analysis and simulation indicate that the 
delay adjustments during group flight support swarm formation and center stability, and are robust to 
measurement noise. These results quantify the role of visuomotor delay heterogeneity in flying insects 
and their role in supporting swarm cohesion through implicit communication.

Nomenclature
Hi,t  Insects’ positions in camera-i
Nc  Number of measurement cameras
D1..j  Re-projected 2D points
h
m
i
(t)  2D coordinates of insect m in camera-i

Pxy(s)  Cross power spectral density of signal x and y
Px(s)  Power spectral density of signal x
γ 2(s)  Coherence signal
Ĥ(s)  Measured frequency domain data
Ge(s)  Estimated transfer function
τi  Measured time delay of agent i
S1  Stimulus trajectory
S2  Insect trajectory
MSE  Mean square error
FPE  Final prediction error
φ  Regression matrix
θ∗  Estimated parameter
J(θ)  Cost function of time domain estimation
f   FIT error criterion
Dr  Applied distance of repulsive potential
Br  Amplitude of the repulsive potential
Ar(xij ,Br ,Dr)  Repulsive potential
Aa(xij , τij)  Attractive potential
N  Number of agents
α  Egocentric influence weight
β  Neighbor influence weight
τij  Delay from agent i to agent j
C(t)  Center of the swarm
gτ  Probability density function of distribution
Ge(s)  Estimated transfer function
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SNR  Signal to noise ratio
ǫ  Standard deviation of measurement noise in Kalman filter

A significant barrier to creating adaptive swarms of small scale unmanned aerial systems and other challeng-
ing robotic swarms remains the provision of fast, computationally-lightweight sensing and feedback structures 
to support relative navigation in dynamic  groups1–3. Insects flying in groups can serve as model systems for 
resource-constrained feedback on these swarming micro air  vehicles4. Despite tight constraints on sensory and 
neural feedback mechanisms and the lack of a conventional communication network, insects in naturalistic 
swarms coordinate flying movements in close proximity to dynamically changing numbers of neighbors in 
unstructured environments. Visual control may be a critical tool for implicit communication, given the large 
fraction of insect neural resources dedicated to visual processing. Vision is one of the few insect sensor modali-
ties with quantifiable bandwidth, range, and sensitivity that could provide real-time data to adjust  trajectories5,6, 
yet the specific processes supporting inflight feedback in insect group behaviors remain unknown. Many theo-
retical swarm models and numerical studies have not yet been integrated with experimental investigations on 
naturalistic swarms, limiting the ability of theory and experiment to inform each other. Group behavior implies 
that complex interactions may be used to make individual and aggregate  decisions7–9. Direct application of 
stimuli to swarm can result in deviations from their usual biological to adaptive  behaviors10–12. The effects of 
environmental stimuli examining insect flight behavior and motions during visually-dominated behaviors like 
obstacle avoidance, landing on a wall or proboscis, and flower tracking have previously focused most on the role 
of ambient and external illumination  levels13–15. Insect flight trajectories can be tracked and recorded through 
several existing software  tools16–20. For studies involving precise timing of an insect or collection of insects track-
ing a visual stimulus, the recording of visual stimulus in the background is also necessary for accurate analysis. 
Midge swarms regulate themselves relative to a dynamic moving stimulus which reveals possible interactions 
present in their common  activity21. Swarm markers and light intensity experiments with Chironomus riparius 
in a laboratory environment indicated that pheromones can be a important role in swarm cohesion, and these 
midge swarms suggest that relatively small numbers of agents (e.g., 10 agents) are sufficient to saturate statistical 
measures of swarm  behavior22,23. When flying in wind, the unsteady flight of a hawkmoth in the wake of a 3D 
printed robotic flower displays larger tracking overshoot and a reduced order dynamic  system24 and a flower 
tracking experiment was used to quantify the change in their flight behavior under various light conditions, 
with average flower tracking behavior represented by a simple temporal delay at various light  intensities25. By 
adjusting light intensity, a system identification approach was utilized to find a brightness-dependent delay term 
in the transfer function, resulting in a dynamic model for each Hawkmoth variant that included a combination 
of species-dependent scaling parameters and processing  delays26. Neuronal networks with delays in biological 
examples can have a significant role on observed biological behaviors, including generating oscillatory motions 
and periodic  signals27–29. Despite the rich history of experimental study, measurements of how processing delays 
are distributed among swarming individuals are not yet available.

Mathematical descriptions of collective motions of multi-agent biological systems, including bacterial colo-
nies, slime molds, locusts, and fish, have become available in the last few  decades30–32. These models range from 
continuous approximations and kinetic theory structures to models at the individual  level33–36, with interaction 
mechanisms often consisting of attractive and repulsive  forces37,38 affecting particle motion. Swarm characteristics 
such as cohesion, velocity alignment, and predator avoidance can be achieved in swarms of dynamic models 
via bifurcation parameters located in the attractive and repulsive  potentials39–41. An individual agent’s influence 
on swarms is posed using zone based models and communication topological analysis indicates that the attrac-
tion and alignment weights affects the group behavior and  structure42. The swarm’s collective behavior can also 
be described by elastic or thermodynamic analogies where external stimulus can represent the midge swarm 
 behavior43. Despite the availability of rigorous proofs for sufficiency of velocity alignment (e.g.44), theoretical 
models have often relied on a high level of instantaneous connectivity that may be impractical in nature or robotic 
implementations. While experimental research is beginning to understand the need to quantify internal delays 
due to insect sensing and feedback, these previous studies are limited to reporting a single average delay across all 
animals and do not yet account for the heterogeneity of delays across the population or the effect of such delays on 
neighbor-coordinated behaviors. Delay differential equations (DDE) have been used to explore biological delay 
models with homogenous delays or delays belonging to discrete or continuous  distributions45–48. Recently, rigor-
ous mathematical analysis and role of delays such as auto regulations, feedback loops, etc. in biological models 
have been used to describe the quantitative and qualitative behavior of such systems  analytically49. Lyapunov 
analysis has recently been used for time delays on swarms composed of first and second order systems to find 
conditions for swarm stability under homogeneous  delays50. The theoretical effects of delay in such a network 
of interaction rules has previously been investigated primarily numerically by distributing delays among agents 
and applying a mean field  analysis51,52. The delays across the agents were modeled as heterogeneous, drawn from 
a Gaussian distribution.

A critical need is understanding the way in which these animals manage individual sensing and feedback 
processing delays, which may be dynamic or show population-wide diversity. Many animals (and aerial robotic 
implementations) show a nonzero latency or a reaction delay due to sensory processing. The effect of individual 
agent latency heterogeneity in swarming experiments has not been adequately related to theoretical findings, 
with experimental studies reporting average delays rather than quantifying the distributions of individual delays. 
We previously quantified the visual reaction time seen in flying insects tracking a moving light in a solitary 
 task53. This laboratory experiment found that honeybees’ reaction times were diverse, varying from 4 to 115ms. 
The identified reaction times were measured at the individual insect level, and probability distributions were 
experimentally quantified for the measured delays. We used theoretical swarm communications analysis and 
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simulations of a swarm responding to neighboring animals including these delays, which indicated that the 
swarm level effect of the varying reaction time is to damage the cohesion of swarm motions. This experiment 
was conducted in a laboratory environment using captured bees, which might influence them not to perform 
their normal behavior. Would a more naturalistic outdoor experiment give the same reaction time variation?

To test the Hypothesis (H1) that the distribution of insect in-flight reaction times may be different outdoors, we 
designed a more naturalistic outdoor flight experiment to record visual tracking trajectories outdoors as seen in 
Fig. 1. The tool divides into two parts: visual stimulus (Fig. 1c) and tracking system (Fig. 1b). Horizontal stimulus 
movement design is covered in section “Stimulus design”. This experiment expanded to multiple insect tracking 
(section “Imaging system”). With three or more cameras placed in front of the experimental setup, VISIONS 
system can measure multiple insects’ 3D positions at 60–120 Hz. We segmented insects’ trajectories while they 
approached and entered the moving entrance. We identified systems in both the time and frequency domains 
between the moving stimulus and the insect position. Frequency domain identification is accomplished when 
record lengths are sufficient (>1.5 s) and time domain when records are shorter. The identified dynamics are then 
compared between solitary and group flight. This system identification methodology also performed well under 
noisy data. The experimental results indicate that the insects have heterogeneous processing delays, and both the 
heterogeneity and magnitude of the delay are reduced in group tasks, with two different gamma distributions 
fitting the data. Experimental work on delay quantification and theoretical work on delay modeling have largely 
remained distinct, and there is a need to understand how measured delays affect swarm behavior. To fulfill the 
need, an attractive and repulsive potential-based swarm model incorporating processing delays was introduced. 
Two weights (egocentric and neighbor influence) and a processing delay parameterize individuals in the visual 
swarm. The model integrates the measured delay distributions to predict regions of stable and unstable swarm 

Figure 1.  (a) Experimental design consists of three camera based tracking system which record the trajectories 
of insects approaching to the entrance. Two types of bees’ data were segmented: solitary flight (light blue 
shading) and group flight (light green shading). X coordinates of entrance (blue) and insect from their 3D 
trajectories are considered as input and output for system identification approach, respectively. A three 
camera-based tracking system (b) was used to record flight paths of multiple insects (and stimulus) tracking a 
moving hive entrance actuated by an Arduino micro-controller and stepper motors (c), mounted in an outdoor 
environment (d).
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behaviors by mean field and bifurcation analysis, and a simulation of the modeling framework verifies that the 
swarm behavior stability results persist with experimental delays and for relative position stability.

The main contribution of this paper is to use experimental and theoretical tools to investigate the influence 
of visual delays on insect swarm behavior. This study connects these areas to address several questions: (a) what 
is the population-wide distribution of insect in flight processing delays, (b) does this distribution change in 
solo vs group behaviors, and (c) if so, how does it affect visually-guided multi-agent (e.g., group and swarming) 
behaviors?

Results
We analysed 450 trajectories, segmented into 225 solitary insect trajectories and 225 group behavior trajectories. 
As seen in Table 1, a similar percentage of solo and group trajectories met length requirements for frequency 
domain identification (51% solo vs 48% group), while the remainder (49% and 52% of trials) were completed in 
time domain. Average fit percentages remained above 80% with standard deviations from 8-16%.

Before discussing overall properties of the identified models, examples of individual identifications in each 
category are shown.

Solitary dynamics identification. We conducted individual dynamics identification by adapting our 
previous experimental work, which incorporates both time and frequency domain approaches. The strength of 
these results rely on an ability to inject input stimulus that are tailored to excite the internal dynamics, and input 
stimulus design was a major methods consideration.

Example: frequency domain identification. When length criteria were met, frequency domain identification 
was applied because of its noise robustness and ability to reduce large numbers of trials into a single frequency 
response. 115 solo insect frequency domain identifications were conducted. A representative example is shown 
in camera and 3D views in Fig. 2a–c and in the Supplementary S1 Video. 3D position coordinates shown in 
Fig. 2b illustrate the x coordinate tracking behavior.

Frequency transformed stimulus and output signals S1 and S2 (respectively) are used to construct a frequency 
response function, shown in magnitude and phase components for both FFT and CZT transforms in Fig. 3a. 
A coherent region of response below 1.8Hz is visible, indicating that the input and output have a strong linear 
relationship (as quantified by γ 2 > 0.6 ) in this range. Some deviation from ideal tracking (0dB magnitude, 0 ◦ 
phase) is visible in Fig. 3a, with gain showing some overshoot and a negative phase (lag) indicating a reaction 
time that quantifies the combined effect of airframe dynamic response due to physics and visuomotor delay. 
The CZT transform was used to improve resolution in the strongly coherent range (Fig. 3b) below 1.15Hz and 
the CZT-derived frequency response function Ĥ(s) used to identify the equivalent transfer function (refer to 
“Methods: System identification”).

The fit error statistics in Table 2 indicate the transfer function structure that best models the example trajec-
tory; in this case, a 3 pole, 3 zero transfer function with 15 ms processing latency (transport delay) best models 
this example trajectory. After the VISIONS tracking algorithm records the 3D insect flight trajectories, the system 

Table 1.  Overall identification statistics.

Role

Frequency domain Time domain

Trials Avg. Std. Trials Avg. Std.

Solo 115 84% 13% 110 79% 12%

Group 106 80% 11% 119 81% 8%

(a) Camera-1 view
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Figure 2.  (a) A solitary insect’s trajectory (length 4 s) entering the moving entrance is captured by camera-1; 
(b,c): reconstructed position coordinates and 3D trajectory for both input stimulus and insect (blue color 
indicates Kalman filter).
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identification method determines the dynamic model best describing those trajectories. Thus the transfer func-
tion characterization (3 pole and 3 zero in this example) is an identification result (rather than being a structure 
prescribed a priori or a tracking algorithm outcome). The identified model is

and a comparison of this identified model and experimental response functions in Fig. 3c show the strong 
agreement indicated by Table 2. Measured and frequency domain modeled outputs S2(ω) show good agreement 
in Fig. 3c.

Example: Time domain identification. For short trajectories ( ≤ 1.5 s), time domain system identification was 
performed (see “Methods: System identification”). Fig. 4 shows an example time domain system identification 
that identified a model
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Figure 3.  Frequency domain system identification example. (a) Magnitude, phase, and coherence γ 2 plots 
of the input stimulus S1 and output (insect) position S2 . A linear relationship between stimulus and insect 
position is indicated in the shaded region below 1.5 Hz where γ 2 > 0.6 , (b) Comparison of Fourier and Chirp 
Z-transform magnitudes for stimulus S1 and insect S2 in the region of highest coherence, (c) The identified 
transfer function Ge(s) (dashed red) shows strong agreement with the measured frequency response Ĥ(s) (blue) 
in both magnitude and phase, as do true and identified model output |S2|.

Table 2.  Model candidates and performance for an example insect.

Model struct. Fit FPE MSE Delay

2 pole, 1 zero 33.47% 7.77×10−3 7.09×10−3 50ms

3 pole, 3 zero 95.06% 4.56×10−5 3.90×10−5 15ms

4 pole, 3 zero 42.21% 6.44×10−3 5.31×10−3 2ms
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Figure 4.  Example of time domain identifications used for trials ≤ 1.5 sec show tracking performance.
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with a fit percentage of 88.13% and FPE of 1.12× 10−3.

Group dynamics identification. We also identified individual insect dynamics during group approaches 
to the entrance. An example of group behavior is shown in Fig. 5 and in the S2 video. In this example, insect-1 
and insect-2 are identified as a group due to their high coherence ( γ > 0.6 up to 5 Hz). The same frequency and 
time domain identification tools were applied to extract each individual insect’s dynamic model and correspond-
ing time delay.

Full dataset and delay distributions. We used the stimulus and insect trajectories to find the delay by 
considering model structures that included a delay in both system identification paths. Individual delay identi-
fication was an outcome of Eq. (5) (for frequency domain) and Eq. (10) (for time domain). When the identifica-
tion process was applied to the full dataset of 450 trials, some variation in identified model structure was seen, 
as in shown in Fig. 6a. As with the solitary insect example (Table 2), the identification proved insensitive to 

(2)Ge(s) = e−.04s −5.462s + 39.42

s2 + 4.471s + 75.86

(a) Camera-1 view (b) Measured trajectories
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Figure 5.  Segmentation of group insects by coherence. (a) Three insect flight trajectories in entrance approach 
as seen by camera-1, (b) Reconstructed 3D flight paths and stimulus, (c) Insect flight trajectories and coherence. 
Insect1 and Insect2 are identified as group insects due to coherence γ 2 > 0.6 (shaded area). Insect3’s coherence 
is below 0.6 as it was not entering into the entrance and it was not considered as a group insect.

Table 3.  Comparison of pure delay and linear approximation.

Delay model Trials Mean FIT Standard deviation

Pure delay 77% 86.07 13.54

Linear approximation 23% 83.21 11.17
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Figure 6.  (a) Distribution of identified model structures, as indicated by number of poles and zeros, (b) 
histogram of solo insect delays vary from 0 to 120 ms and normalized gamma distribution, (c) histogram and 
fitted distribution curve in group bees, containing a narrower band of delays from 0 to 45 ms.
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fit criteria choice (ie, max(FIT), min(MSE), min(FPE) ) across insects measured in this study. When a transfer 
function model was fit to the frequency range of the experimental frequency responses having high coherence, 
best-fit model for all insects in terms of pure tracking delay and linear approximation was seen in Table. 3. The 
pure delay model outperformed the linear delay model and was used in the subsequent analysis.

The relative frequency of the identified delays shown in Fig. 6b,c show the discovery of two clear effects. 
First, the insects’ visuomotor tracking delays are heterogeneous, varying from 7ms to 120 ms. Second, insects 
operating in group settings show a different distribution of delays than those in solitary environments, in par-
ticular a significantly narrower distribution. The solitary delay distribution shows a mean of 30 ms and standard 
deviation of 50 ms, while the group delay distribution has an 18 ms mean with a significantly narrower 8ms 
standard deviation.

We also verified the robustness of the identification method against measurement noise in the recorded data. 
For this, we used simulated trajectories (see Supplementary Fig. 1a) generated by a similar known transfer func-
tion and added Gaussian noise of varying magnitude (refer to Supplementary Fig. 1b). The system identification 
performance for different signal to noise ratios (SNR) is shown in Supplementary Fig. 1c. The results show that 
the system identification technique fit quality exceeds 95% for signal-to-noise ratios above 10, an effect that is 
predicted by the theoretical noise robustness of frequency domain identification  methods54. We also investigated 
the sensitivity of the results to process and measurement noise filter parameters. As seen in Supplementary Fig. 2, 
the filter parameters do not meaningfully affect the results.

The combination of both frequency and time domain system identification methods allowed us to both 
increase the size of datasets considered beyond those meeting the requirements of each approach, and to also 
verify that the results were insensitive to the choice of time or frequency domain. Strong system identification 
results require attention to provide input stimulus design that injects sufficiently strong signals diverse enough 
to excite the internal dynamics, motivating the novel experimental stimulus introduced in this work. The result-
ing insect flight trajectories and associated frequency components richness helped provide strong identification 
results.

Discussion
This study quantified for the first time that the presence of neighbors is associated with in-flight synchroniza-
tion in honeybee visual reaction time. Based on the theoretical analysis, an emerging hypothesis (H2) could 
be that the insects respond to the presence of other agents by adjusting their reaction times to support cohesion. 
Such a hypothesis requires a two-part test, that of neighbor awareness and establishing a connection to cohesive 
behavior. Numerous studies demonstrate that insects are influenced by group size and structure. Rooke 2020’s 
behavioral assays in walking Drosophila indicated that flies can sense both group size and density, and that olfac-
tion may be important for determining group size (when compared to previous visuo-acoustic sensory studies)55. 
Drosophila show that behaviors including sleep habits, movement, social spacing, and pairwise interactions are 
affected by the presence of neighbors (largely by olfaction), with some authors labeling these outcomes as “peer 
pressure”55–57. Previous literature, while limited to walking and confined insects, thus supports the neighbor 
presence awareness component of hypothesis H2. The mechanism test is more involved, as observation of two 
coupled effects is not sufficient to establish causation. In the following section, we develop the necessary swarm 
theory to establish a plausible hypothesis for adjustment (refer to Method:  section “Swarm model”).

To understand the effect of these changing delay distributions in the swarm context, it is helpful to describe 
the measured distributions functionally. To provide sufficient generality to cover common distributions (e.g., 
Gaussian or Poisson), we used a Gamma distribution representation having shape parameters m = 3.5 , a = 12 , 
τm = 1.85 ms in the solo case and m = 4 , a = 5.1 , τm = 4.1 ms in the group case, as illustrated in Fig. 6. For these 
distribution parameters, we applied mean field and parametric bifurcation analysis to find the swarm model’s 
stability regions (refer to Method: “Mean field analysis” and “Hopf bifurcation”). The result (Method Eqs. (32) 
and (33)) was a parametric description of the stability contour as a function of egocentric influence α , neighbor 
influence β , and swarm center oscillation frequency ω as

The stability regions in Fig. 7 (additional views in Supplementary Fig. 3) show that for low values of both ego-
centric and neighbor influence α and β , the swarm remains stable regardless of delay distribution, and high 
values of neighbor influence are similarly destabilizing. However, the boundary of swarm stability when using 
the group delays (red curve) shows a higher tolerance for neighbor influence than the solitary delay distribution 
(blue curve). This finding suggests that one function of the delay distribution adjustment seen in group interact-
ing insects is to support cohesion by improving the margin of destabilization. ω indicates the swarm center’s 
oscillation frequency at the stability boundary, and shows that the delay adjustment also affects the oscillation 
frequency. In both cases, oscillation frequency on the stability boundary increases with egocentric influence. 
Group delays show higher oscillation frequencies, indicating that group delays support a higher frequency motion 
before destabilizing. In many of the recorded experiments, individual trajectory oscillations were observable; 
current work quantifying the trajectories indicate they are below the limit frequencies in Fig. 7, again suggesting 
the insects remain below the stability boundary. This approach to assessing the impact of delays in swarms by 
weighing insect individuality against neighbor reaction strength incorporates the shape of delay distribution. 
While this portion of the theoretical outcome may be intuitive, previous theoretical models often do not consider 
heterogeneous delays, and rigorously showing the outcome holds for a relevant model did require developing 

α(ω) =−
ω

tan (ωτm −m tan−1(ω/a))
,

β(ω) =−
ω

cosm (tan−1(ω/a)) sin (ωτm +m tan−1 ω
a )

.
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a new approach, particularly to achieve the generality needed to account for gain variation (ie, to show that the 
result persists regardless of the insects’ strength of ego vs neighbor reaction). (The theoretical development scope 
resulted in the theoretical method spanning seven blocks in Fig. 10). Our study indicates that the solitary reac-
tion time distribution leads to a less coherent swarm, providing some agreement with purely theoretical  work50.

Some approximation could be introduced by the swarm model and the gamma distribution fit process, and 
while the theoretical analysis can assess barycenter stability, it cannot yet predict relative positions or formation. 
To explore the validity of the swarm model and examine the effects of the experimental delays, we simulated 
an interconnected visual swarm with both experimentally-quantified delays and those drawn from the gamma 
distribution fits, each of which began from randomly distributed initial positions in Fig. 8a. Simulations using 
the heterogeneous delays measured in both solo and group delays (ie, the measurements in Fig. 6) are shown 
in Fig. 8 for 100 agents. For theoretical delays the solo swarm used the gamma distribution fit parameters as 
α = 7 , β = 6 and ma = .3 , while group used the same α,β and ma = 0.78 . The repulsive potential’s amplitude and 
applied distance were taken as Br = 0.5 and Dr = 1 . The time history of swarm center position in Fig. 8d shows 
that the swarm center stability failure seen in theoretical analysis is replicated for simulations using the discov-
ered delays. Additionally, the simulations show that the instability extends to formation, with group-measured 
delays stabilizing to a formation in Fig. 8c and solo-measured delays leading to a motion having no observable 
formation in Fig. 8b.

While a rigorous theoretical analysis shows that the measured adjustment stabilizes a swarm position bar-
ycenter, there are other reasons that could underlie the adjustment, such as peer pressure, collision avoidance, 
or inter-agent competition. We observed in our dataset that the presence of neighbors reduced the amplitude of 
in-flight lateral oscillations relative to solo flyers, suggesting that collision avoidance may be a  consideration55,58. 
Conversely, in-flight midge interactions showed effective forces were  attractive23, lending support for the choice 
of an attraction (repulsion) swarm model used in this study.

An related hypothesis (H2a) could be that the insects possess an internal clock (oscillator) and in flight social 
communication (such as implicit visual communication) regulates their behavior to that of the group. Hypothesis 
H2a again requires a two part test. The presence of oscillators in insects is well-established, including discrete 
(binary) oscillators in firefly light  outputs59. The finding of “selective attention” mechanisms that provide phase 
locking of central complex to flickering visual stimuli suggests that the visual stimuli provided by other agents, 
including those tracking the hive entrance stimulus in this experiment, could serve to provide a reference signal 
for  synchronization60. Finally, an alternate hypothesis (H3) may be constructed that posits no insect adjustment 
is occurring (i.e., their behavior is maintained), and that the presence of other neighbors tracking the stimulus 
provides a richer visual stimulus. H3 could be stated as the insect’s core tracking is maintained, and a richer input 
stimulus of neighbor motion improves individual tracking latency. While contemporary work suggests that the 
presence of neighbors may modify individual performance without direct adaptation, these studies have generally 
focused on how hydrodynamic interactions enable  metabolic61 or  formation62,63 phenomena. A theoretical and 
experimental basis to verify an analogous effect on tracking performance via information interactions in flying 
insect groups is comparatively less mature.

Contribution of this paper Previous work quantifying three-dimensional position, velocity, and accelera-
tion of group flight has documented the complexity of coordination, including low polarization and correlation 
 levels64, and significant work remains to provide theoretical interpretation of these observations. Larger scale 
measurements including external group stimulus analyzed these at the macro (swarm-level) scale rather than 
developing individual dynamics models at the agent scale. Examples of macro-scale experiments include those 

5 10 15
Egocentric influence,  ( )

0

5

10

15

N
ei

gb
ou

r 
in

fl
ue

nc
e,

 
 (

) Group distribution
Solo distribution

2 =3.62

2 =1.92

1 =1.51

1 =3.37

Both stable

Both unstable

Solo distribution unstable
Group distribution stable
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distribution provides a larger range of response weights (gains) that lead to a stable swarm. As the egocentric 
weight α grows on the stability boundary, the transition oscillation frequency ω rises.
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using acoustic stimulus to support linear and spectral  analysis65 and visual stimulus to analyze the group’s effec-
tive material  properties21,66. A step forward was found in Kasper  201921, which creates a parallel simulation from 
stochastic differential equations, although the study does not yet analyze the experimental data at the individual 
scale or provide a theoretical interpretation. Previous system identification of insect individual visual processing 
delays reported population average delays, connecting them to environmental change (luminance level) rather 
than analyzing how the delays affect inter-agent interactions or flight  performance25,67.

This study discovers a new neighbor-induced reaction time adjustment, testing hypothesis H1, and develops 
theory to demonstrate its value to swarm coordination as a plausible explanation and function. The study is the 
first to analyze flying insect digitized group trajectories at the individual scale by coordinating experimental 
system identification, theoretical development and computational simulation to yield the most comprehensive 
picture to date of how delays are modified in group flight and their role in coordination. Conversely, current 
knowledge retains some ambiguity in the mechanism underlying the experimental effect. Having established this 
new effect and the plausibility of hypotheses (H2 and its alternate H3), this study places differentiating between 
mechanistic hypotheses within experimental reach.

Summary
In summary, this study measured flying insects tracking a moving stimulus in solo and group behaviors and 
quantified the visuomotor delay (reaction time) in their closed loop tracking. We used a real-time camera-based 
tracking system that quantified both moving target and insect position in three dimensions. System identification 
tools were applied to 450 recordings to identify the closed loop tracking dynamics between stimulus motion and 
insect body motion, separating the effects of open loop plant (locomotion) physics from visuomotor feedback 
delay and quantify the visuomotor delay as a transport delay. The measured insect sensorimotor delays were 
used to find a delay distribution across population, showing that insect visual sensorimotor feedback delays 
in a tracking task are heterogeneous across population, consistent with indoor  experiments53, and disproving 
hypothesis H1 that an indoor/outdoor environmental change would impact the solitary distribution. Instead, 
significantly more variation (50ms standard deviation) was found when an insect was the only animal tracking 
the target, relative to group behaviors in which multiple insects tracked the target (8ms standard deviation). To 
develop a hypothesis (H2) incorporating the implications of the measured delays on visually-guided swarms, we 
then integrated the measured delays into a visually interacting swarm model. Analysis on this model indicates 
conditions needed for the center of mass’s position and allows us to map the stable and unstable regions as a 
function of behavior. Simulations were conducted using theoretical fits to the delays (gamma distribution) and 
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the experimental delays. The analysis and simulation indicate that the processing delays measured in solitary 
conditions yield an unstable swarm behavior and that the group delays provide a stable center of mass and cluster 
shape, and predict the speed of swarm center oscillations at transition. An alternate hypotheses (H3) regarding 
an increase in visual information has mild literature support.

Overall, this study quantifies response delays in solo and group tasks and connects these measurements to 
theoretical limits on the allowable delays for insects in visually guided swarms. The results of the delay identifica-
tion suggest the insects operating in group contexts could adjust their delays to support swarm cohesion (H2). 
The finding that delay is reduced in group flight also raises questions about how implicit communication transfer 
in groups can improve individual performance (H3). This consistency between experimental measurements of 
solo and group tasks in flying insects with theoretical and simulated frameworks quantifying constraints is an 
important outcome for understanding how flying insects support swarming motions despite tight constraints on 
sensing and feedback. The results provide a foundation for swarming aerial robotics with limited computational 
resources. For these systems, in which processing delays are significant, knowledge of what delay distributions 
support stable motions will guide engineers in distributing processing tasks appropriately.

Methods
Figure 10 depicts the overall study, including experimental work, theoretical analysis, and simulations. The 
stimulus is a horizontally moving beehive entrance as shown in Fig. 1a. The measurement system consists of 
three cameras with angular separations from 50 to 90 degrees as seen in Fig. 1b. Honeybees were recorded 
entering and exiting the hive entrance as in Fig. 1d. Insects were recorded while approaching the entrance in 
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frame, resulting in rich frequency components.

Figure 10.  Overall study incorporates three components: a multi agent tracking experiment, theoretical 
analysis, and simulated performance.
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both solitary and multi-agent conditions. The experimental apparatus consists of a moving entrance stimulus 
design and an imaging system.

Stimulus design. The entrance stimulus was a 2-inch square hole (tunnel entrance) that oscillates hori-
zontally along the world frame’s X axis. This setup included two stepper motors (Nema 23) and a motor driver 
(a4988), which was controlled by a micro-controller (Arduino Uno). The circuit diagram is depicted in Fig. 1c 
which directs the motors according to triangular frequencies as seen in Fig. 9. Previous confined indoor experi-
ments used a sum of sinusoids stimulus movement to identify solitary tracking  dynamics53. In preliminary work, 
we tested a sum of sinusoids signal that provided results similar to those reported in this study, but restricted 
the number of datapoints as hive tracking behaviors in outdoor conditions were shorter. The lack of confine-
ment and clear behavioral exit strategy (entering the hive) limits the tracking duration. Triangular waves are a 
sum of multiple sine waves restricted to only odd harmonics, and taking advantage of the shorter rise time of 
the triangular waves was helpful to provide good frequency content in this limited time. The inflection point in 
the triangular wave motion contains the frequency content diversity and signal strength considerations then 
required limiting our analysis to recordings that included the reversal.

Imaging system. The  VISIONS53 tracking system was used to record insect trajectories during solitary and 
group flight conditions. This study updates the tracker to track multiple insects. The functions in the tracking 
system are shown in Fig. 11a. To expand tracking from prior single agent tracking with VISIONS to multiple 
insects, we incorporated data association. The functions in the association algorithm are shown in Fig. 11b. Vis-
ual occlusions or imperfect image segmentation may transiently impact visually tracked data, and a mechanism 
to recover during transient data dropouts is helpful. As in Islam  202253, VISIONS applies a Kalman filter during 
transient dropouts. To ensure the Kalman filter’s Gaussian model of process and measurement did not affect the 
identification results, the robustness of the results to filter parameter variation was also verified.

The intrinsic and extrinsic parameters of the cameras were calibrated via bundle  adjustment68. For each insect, 
we calculate reconstructed 3D points from all possible combinations of 2D points and then reproject them from 
3D to 2D. We use the intended match from this error list if the re-projection error (difference between observed 
and re-projected 2D points) is less than the desired accuracy. A set of m insects’ 2D positions of camera-1 at time 
t is described as H1,t = {h11(t), h

2
1(t), h

3
1(t), ...h

m
1 (t)} , where h1...m1 (t) represents their positions. Between camera-2 

and camera-Nc , the possible combinations for each insect in H1,t is c = mNc−1 . Here, Nc is the total number of 
cameras. The re-projected 2D points vector is D1..j = {d1, d2, d3, ....., dj} , where dj is the re-projected 2D point 
for j = 1, ..., c . The associated agent is taken to be

where σ is the desired accuracy and ‖.‖ is the 2 norm (Euclidean distance).

System identification. We identify systems in both the time and frequency domains between the move-
ment stimulus and the insect position. Frequency domain identification is accomplished when record lengths 
are sufficient (>1.5sec) and time domain when records are shorter.

Frequency domain identification. When the trajectory had sufficient frequency content (trial length), we 
applied the identification approach for the transfer function G(s) of the insect’s position response to stimulus 
motion via Chirp Z transform (CZT) developed in our prior  work53 and illustrated in Fig. 12.

In the frequency domain, frequency response of target tracking is described by gain, phase, and coherence. 
Coherence γ 2(s) is calculated from the spectral and cross-spectral densities of input and output signals as

(3)associate
(

hm1 (t)
)

= min
j =1,2....c

�hm1 (t)− D1..j� < σ ,

Figure 11.  Flowchart of tracking (a) and association algorithms (b) for VISIONS multi-agent tracker.
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where |Pxy(s)| denotes the magnitude of the cross spectral power density and Px(s) and Py(s) represent the auto 
power spectral density of the stimulus (input) and bee (output) coordinates, respectively. The coherence between 
the stimulus and insect trajectories was used to determine the linear connection throughout the frequency range. 
We use the frequency response function obtained from the CZT transform by reference to a transfer function 
with an internal delay time τ to examine the flight dynamics and visuomotor delay of the tracking behavior. Fre-
quency domain analysis prescribes a minimum record length Trec as a function of target identification frequency; 
Trec >

2π
ωmin

 is normally sufficient to resolve a model having minimum frequency ωmin
54.

We conduct the system identification technique across several possible estimated transfer functions Ge(s) and 
varying time delays τi ∈ [0, 200] ms. A processing delay τi could be modeled as a pure tracking delays (eτi s) or 
linear approximation 

(

1
1+τi s

)

 in the transfer function. We included both delay structures in the system identifica-
tion framework to compare the results. The identified transfer function model is found from the minimum 
absolute difference between true and model transfer functions over region of coherence, which is presented as

with delay model structure M(s, τi) = {e−sτi , 1
1+τi s

} . Here, Ĥ(s) represents the measured frequency domain 
data that was derived by dividing the frequency domain versions of the bee and stimulus trajectories, denoted 
by Ĥ(s) = D2(s)

D1(s)
 . Three fit criteria FIT, MSE (mean square error) and FPE (final prediction error) are used to 

determine the best dynamics  model53.

Time domain identification. For the time domain system identification, normalized least square estimation is 
used to find the dynamic  system69. The discrete time domain representation of the stimulus and insect are x1(k) 
and x2(k) , and by considering a unknown transfer function it can be written as

where the unknown coefficients are ai , bi; i = 1...n . The time domain solution can be written as

Then we construct a parametric model, x2(k) = φT (k)θ∗ where

The cost function is written as

where k = 0....M . The solution θ̂ = argmin
θ

J(θ) is

(4)γ 2(s) =
|Pxy(s)|

2

Px(s)Py(s)
,

(5)min
τi ,Ge

|Ĥ(s)− Ge(s)M(s, τi)|s=jω, ω=arg{γ 2(s)>0.6},

(6)
x2(z)

x1(z)
=

b1z
−1 + b2z

−2 + ...bnz
−n

1+ a1z−1 + ....+ anz−n
,

(7)
x2(k) = −a1x2(k − 1)....− anx2(k − n)

+ b1x1(k − 1)+ ...+ bnx1(k − n).

(8)θ∗ = [a1 a2 ..... an b1 b2....... bn]
T ,

(9)
φ(k) = [−x2(k − 1) .... − x2(k − n)

x1(k − 1) .... x1(k − n)]T .

(10)J =

M−1
∑

k=0

(x2(k)− φ(k)Tθ),

Figure 12.  Frequency-domain system identification flowchart.
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The fit criterion is defined as

where x̂2 is the predicted output.

Robustness of identification strategy to noise and filter parameters. We conducted two tests to 
verify the robustness properties of the identification method. First, noisy data was produced by adding Gauss-
ian noise to simulated trajectories. We generated an example simulated trajectory by three poles and three zeros 
transfer function with an arbitrary input signal, and added white Gaussian noise to the signal. For an input signal 
U(t) and simulated output Y(t), the noisy output was generated via Yn(t) = Y(t)+ w(t) , where w(t) is the addi-
tive white Gaussian noise. The signal-to-noise ratio |Y|/|w|, abbreviated SNR, was used to quantify the noise size.

Secondly, the Kalman filter’s process and noise design parameters were adjusted to verify they did not affect 
the results. Measurement noise and process noise covariances in the Kalman filter can be found from the standard 
deviation of the position ǫ = (ǫx , ǫy ) and acceleration ( ǫa)53 . The primary result showed in Fig. 6 used ǫ = 0.2 and 
ǫa = 0.8 . Identification robustness to assumed noise levels was tested by increasing ǫ while holding ǫa constant.

Swarm model. We can construct a visually interconnected swarm with agents experiencing visual process-
ing delays by applying a first order dynamic system model with N number of agents and postulating that the 
agents experience delayed interconnections with each. We build upon previous models with constant  delays50 to 
develop a swarm model with heterogeneous delays and weighting factors. The swarm model is

where xi is (vector) position of the agent i, ∇iA
a(xij , τij) and ∇iA

r(xij ,Br ,Dr) are attractive and repulsive potentials 
respectively, specified as

and

Here, τij is the delay from agent i to agent j, α is the egocentric influence weight and β is the neighbor influence 
weight. Br and Dr are the amplitude and applied distance of repulsive potential. At long range, stability may be 
determined by only the attractive potential and conversely at short range, stability may be determined by con-
sidering only the repulsive  potential41,53. So, for the mean field analysis we consider only the attraction potential. 
The center of mass of the swarm can be defined as a vector C(t) as

To find the position stability of the swarm, the norm of swarm center is found as �C(t)� =
√

C2
x(t)+ C2

y (t) , 
where Cx ,Cy are the X and Y coordinates of the swarm center respectively. Swarm center stability is then 
�C(t)� → constant as time t → ∞.

Mean field analysis. Each agent is updated as

The position of each agent xi(t) = C(t)+ δxi(t) and δxi is the deviation from the center of mass C(t). The 
position derivative ẋi is written as

(11)θ̂ =

M−1
∑

k=0

(φ(k)φ(k)T )−1
M−1
∑

k=0

φ(k)x2(k).

(12)f = 100×
|x2 − x̂2|

|x2 −mean(x2)|

(13)
dxi

dt
(t) =− ∇iA

a(xij , τij)−∇iA
r(xij ,Br ,Dr) ,

(14)Aa(xij , τij) =
1

2





N
�

i=1,i �=j

(αxi(t)− βxj(t − τij))





2

(15)Ar(xij ,Br ,Dr) =

N
∑

i=1,i �=j

Bre
−1
Dr

�αxi(t)−βxj(t−τij)�.

(16)C(t) =
1

N

N
∑

i=1

xi(t).

(17)ẋi(t) = −
1

N

N
∑

j=1,i �=j

(αxi(t)− βxj(t − τij)).
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Summing over i and taking 
∑N

i δxi(t) = 0,

We can obtain the center of mass by approximation considering a double  sum51. The discrete terms can be 
approximated by a distributed density function gτ (τ ) . We can extend the discrete delays towards a distributed 
density function such as

with the same approximation made for the center of mass C(t). For large number of agents, N−1
N ≈ 1 (0.97 in this 

study’s simulations). Finally, we can write the swarm center dynamics as

which is now a general differential equation in the form

where C̄(t) is a delay weighted state given by

Here, τm is the minimal delay and gτ is the probability density function of the distribution, such that 
∫∞
0 gτdτ = 1.

Hopf bifurcation. We want to examine the sensitivity of the swarm’s local stability to changes in distribu-
tion shape. The Gamma distribution was chosen because of its generality. One can find an equivalent Gamma 
distribution that represents many of the common distributions, such as Gaussian, Poisson, and is closely related 
to exponential, Erlang, Maxwell-Boltzman, and Wishart distributions. Thus, choosing the gamma distribution 
framework avoided the need to unfairly constrain the results to a more specialized distribution. The Gamma 
distribution has a relation between its mean with the shape. To examine local stability we need to linearize the 
system at a steady state solution. By taking C(t) = ce�t in Eq. (21) we obtain the characteristic solution

We want to examine how delay affects stability, and apply the fact that the stable/unstable transition takes 
place when the characteristic equation has a root with zero real part. The density of the gamma distribution is

The unshifted density of the distribution can be written as E =
∫∞
0 τgτdτ = m

a  , where parameters (a, m) 
specify the shape of the gamma distribution. The gamma distribution’s variance is V = m

a2
 , and its Laplace trans-

form is Gτ (�) :=
∫∞
0 e−�τ gτ (τ )dτ = am

(a+�)m
. Equation (24) may then be expressed as

(18)

ẋi(t) = Ċ(t)+ δẋi(t)

= −
α(N − 1)

N
[C(t)+ δxi(t)]

+
β

N

N
∑

j=1

C(t − τij)+ δxj(t − τij)].

(19)

Ċ(t) = −
α(N − 1)

N
[C(t)+ δxi(t)]

+
β

N2

N
∑

i=1

N
∑

j=1

C(t − τij)+ δxj(t − τij)].

(20)

β

N2

N
∑

i

N
∑

j

δxj(t − τij)

=
β

N2
(N − 1)

∫ ∞

0

N
∑

j

δxi(t − τ)gτ (τ )dτ = 0,

(21)Ċ(t) = −αC(t)+ β

∫ ∞

0
C(t − τ)gτdτ ,

(22)
d(C(t))

dt
= F(C(t), C̄(t)),

(23)C̄(t) =

∫ ∞

τm

C(t − τ)gτdτ ≡

∫ t−τm

−∞

C(t)gτ (t − τ)dτ .

(24)∇� =�+ α − β

∫ ∞

0
e−�τmgτ (τ )dτ = 0.

(25)gτ (τ ) =

{

0, 0 ≤ τ < τm
am

(m−1)! (τ − τm)
m−1e−a(τ−τm), τm ≤ τ

.

(26)�+ α − βe−�τm
am

(a+ �)m
= 0.
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Linear systems lose stability when the roots of the characteristic equation cross the imaginary axis from left to 
right. To study the Hopf bifurcation, we take � = iω and tan θ = ω

a  to get

Applying de Moivre’s  theorem70 and splitting the real and imaginary parts we obtain

Finally, coupling the above two equations we may describe the stability contour as a function of egocentric influ-
ence α and neighbor influence β as

Equations (32) and (33) allow one to map the stability transition contour for a given distribution (e.g., specified 
E and τm parameters), as a function of egocentric weight α and neighbour influence weight β curves as a func-
tion of frequency ω.

Data availability
The data used in this experiment is available at https:// figsh are. com/s/ d507b da754 9cfd3 2f5d2.
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