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Computational methods of EEG 
signals analysis for Alzheimer’s 
disease classification
Mário L. Vicchietti 1, Fernando M. Ramos 2, Luiz E. Betting 3 & 
Andriana S. L. O. Campanharo 1*

Computational analysis of electroencephalographic (EEG) signals have shown promising results in 
detecting brain disorders, such as Alzheimer’s disease (AD). AD is a progressive neurological illness 
that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for 
AD, early diagnosis is critical to improving the quality of life of affected individuals. Here, we apply 
six computational time-series analysis methods (wavelet coherence, fractal dimension, quadratic 
entropy, wavelet energy, quantile graphs and visibility graphs) to EEG records from 160 AD patients 
and 24 healthy controls. Results from raw and wavelet-filtered (alpha, beta, theta and delta bands) 
EEG signals show that some of the time-series analysis methods tested here, such as wavelet 
coherence and quantile graphs, can robustly discriminate between AD patients from elderly healthy 
subjects. They represent a promising non-invasive and low-cost approach to the AD detection in 
elderly patients.

Alzheimer’s disease (AD) is a neurological disorder of the brain that causes neuronal cells degeneration. Despite 
the fact that AD still does not have a clear established origin, it is known that patients with AD suffer from cog-
nitive loss, including memory and space-time perception. Currently, AD is considered the most common form 
of dementia, affecting nearly 50% of people over age 851,2. Since AD is a progressive disease, its symptoms range 
from mild ones, that do not significantly affect patients’ daily lives, to severe ones, that lead patients to complete 
cognitive deterioration, dependence, and finally death3,4.

AD may be divided into three stages. In the initial stage, the AD phenotype follows a pattern of a Mild Cog-
nitive Impairment (MCI)5, usually characterized by loss of recent memory, indicating the compromising of the 
medial temporal lobe structures, including the hippocampus. Annually, 10–15% of patients diagnosed with MCI 
progress to AD dementia6. MCI occurs during the translational period between healthy and pathological brain, 
but not all MCI patients will evolve to AD. That’s why it is important to identify biomarkers capable of predicting 
the transition from MCI to AD5,7. In the intermediary stage, the neurodegenerative process spreads outside the 
temporal lobe, causing diffuse cognitive dysfunction and affecting daily living activities. In the advanced stage, 
the individuals are totally dependent on caregivers and are usually restricted to bed8,9.

While there is no cure for AD, early diagnosis is critical to improve the selection and management of therapies 
(pharmacological and non-pharmacological), which leads to a better quality of life for the affected individuals, 
their relatives, and caregivers10; see ref.6 for a recent review on AD early diagnosis. In the initial stage, a distinction 
between AD symptoms and normal aging may be challenging. For that reason, examination of the brain tissue 
removed by biopsy or necropsy is still the gold standard for a definitive and precise AD diagnosis, and non-
invasive techniques that can be used in clinical practice are still under investigation10. Psychological tests, brain 
imaging, and neuronal signal recording are examples of tests used for that purpose, which may help specialists 
discard other causes of dementia and diagnose AD11–13. Although recent works have proposed to combine two or 
more of the mentioned diagnosis tests, it is not clear how biomarkers can be correlated and, as in so many cases, 
these tests are unfeasible by their cost14,15. In this context, electroencephalography (EEG) has gained attention 
from the scientific community, since it is an inexpensive, widely available, non-invasive, and mobile technique16,17.

Basically, an EEG records the electrical potential generated by the physiological activities of the neurons18,19. 
The electric currents generated by depolarization of the cells’ membranes can create waves that are detected by 
scalp electrodes, originating signals that represent the neurons’ firing activity20,21. EEG signals cannot capture 
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the activities of a single neuron, but a summation of synchronous firing of a group of cortical cells is usually 
recorded. Visual inspection of an EEG signal is often done by a trained neurologist, and even in this case, its 
analysis can be a difficult task due to the artifacts and noise contained in the signal22,23. Moreover, the multiple 
neural activities show complex and non-linear dynamics, which requires the use of sophisticated methods for 
measuring such behavior to reach higher sensitivity than in visual analysis6,24.

Many research groups have attempted to use computational analysis of EEG signals, and many different meth-
ods have shown promising results in detecting brain diseases25–29. Methods derived from information theory, 
time-frequency decomposition, and graph theory are examples of computational tools used in distinguishing 
healthy from unhealthy subjects30–36. Several studies in the literature have shown that AD causes slowing of the 
EEG rhythms, reduction in EEG complexity, and changes in synchrony among brain regions (see22 and references 
there in). In this sense, the aim of this study is to apply different methods of detecting AD through EEG signals 
and investigate the properties of the signals that distinguish the groups of patients. In particular, the sensitivity 
for discriminating AD patients from healthy elderly subjects was evaluated in terms of the area under the ROC 
curve and the ANOVA test. In a previous study, it was reported that a high accuracy in detecting AD through 
EEG was achieved using a small compilation of signals of 24 AD patients and 24 healthy controls37. The database 
in this paper was extended to 160 AD patients, and different computational methods were applied in order to 
compare their performances and their computational cost.

Algorithm complexity is a topic that scientists, mostly in computer science, have been recently investigating. 
This term means the amount of time and the computational storage needed to execute an algorithm, and it is 
related to the number of steps and operations involved in its calculations. In this sense, several research groups 
have developed new algorithms for EEG analysis that are faster and less complex38,39. Since the processing time 
of an algorithm increases with the input size of data, the search for efficient algorithms is an important research 
topic concerning the use of large data sets. In terms of EEG exams, the signals can last minutes or even hours, 
resulting in a large amount of data and, thus, making the use of high-complexity algorithms not practical. There-
fore, algorithms with lower complexity can be more efficient in clinical and scientific practice when investigating 
AD. This aspect, not addressed in our previous work37, is also investigated here.

Data
The EEG database used in this study was provided by researchers at Florida State University. The EEG signals are 
divided into four groups: (A) 12 healthy elderly with eyes open by visually fixating; (B) 12 healthy elderly with 
eyes closed; (C) 80 probable AD patients with eyes open by visually fixating; and (D) 80 probable AD patients 
with eyes closed. The 160 probable AD patients were diagnosed through the National Institute of Neurologi-
cal and Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and Related Disorders 
Association (ADRDA), and Diagnostic and Statistical Manual of Mental Disorders (DSM)-III-R criteria40. Due 
to a lack of information regarding the severity of the disease, the patients in the study were not sub-grouped 
according to their level of cognitive impairment.

EEG segments of 8-s duration were recorded at a sampling frequency of 128 Hz from the 19 scalp electrodes 
(Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, P3, P4, Pz, T3, T4, T5, T6, O1, O2), according to the international 
10–20 system of electrode placement. The signals were previously band-limited to the range of 0.5–30 Hz and 
the movement artifacts were removed from all the recordings by an EEG technician41. The database was provided 
by Dr. Dennis Duke and made freely available by Vicchietti et al.42.

Methods
Data preprocessing.  EEG signals contain electrical activities from the brain as well as artefacts from other 
sources such as muscles movements and physical interference from the equipment43,44. Therefore, the need for 
preprocessing those signals before analyzing them is crucial. Digital filtering has become the most popular 
method of rejecting unwanted information in certain EEG frequencies45. Discrete Fourier Transform (DFT) has 
showed itself as a powerful tool in developing digital filters, once it generates the spectrum of a given signal. The 
spectrum represents the original signal in the frequency domain and denotes the power of each frequency band 
present in it. Thus, it is possible to attenuate the effect of a given frequency band in the spectra and, through the 
Inverse Fourier Transform, to return to the time domain without that band46. Nevertheless, DFT has limitations 
when it is applied to non-stationary (e.g. EEG) signals47. Stationary signals are those whose statistical measures, 
such as mean, variance and covariance remain constant over time in any sample of the input data48. Many of the 
DFT limitations were overcome by the use of wavelets, which consist of mathematical functions that are able to 
decompose a signal into various time-frequency scales by convolution operations49. The employment of wavelets 
in a given signal decomposition generates coefficients that keep the signal information; therefore, these coeffi-
cients can be used to reconstruct the signal through the inverse operation50.

The partition of given EEG components is useful for many specialists since each known EEG rhythm is 
related to specific brain stages and can be used to investigate the action of drugs, stimuli, and diseases on neu-
ronal dynamics12. In this sense, previous studies have shown the decrease of high-frequency and the increase of 
low-frequency components activity in AD patients’ signals51. Therefore, the Daubechies-4 wavelet52 was used 
to extract the four most used EEG frequency bands, i.e., beta (15–30 Hz), alpha (8–15 Hz), theta (4–8 Hz) and 
delta (0–4 Hz). It is important to emphasize that, in this study, Wavelet Transform was the only tool used in the 
preprocessing step.

Feature extraction.  We present six of the more well-known techniques used in the literature for the dis-
tinction of AD from healthy elderly patients through EEG signals. Each technique was evaluated in terms of 
its capacity to discriminate between the groups of subjects. For this purpose, the area under the ROC curve 



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8184  | https://doi.org/10.1038/s41598-023-32664-8

www.nature.com/scientificreports/

(AUC) and the p value from the ANOVA test were calculated. AUC is a largely used measure that represents the 
effectiveness of a given diagnostic marker. The estimation of the AUC value is done through the probabilities of 
reaching true positive and true negative rates in a two-group classification. In this sense, AUC assumes values 
from 0.5 (no apparent distinction) to 1.0 (perfect distinction) between the two groups53. On the other hand, 
ANOVA is a powerful statistical test that is posed by the null hypothesis that two or more samples come from 
the same population. In this sense, the p value from ANOVA measures the probability of not rejecting the null 
hypothesis in such a manner that the probability of there existing more than one population increases as the p 
value comes closer to 054. Moreover, from the point of view of computational cost, the execution time as a func-
tion of the signal input size was calculated for each technique.

Wavelet coherence ( C ) Wavelets are special functions that satisfy certain mathematical requirements and are 
used to represent data or other functions by decomposing them into a series of coefficients. Wavelet algorithms 
process data at different scales or resolutions55. The Wavelet Transform (WT) is used to calculate the coefficients 
C(a, b) in the scale a and time b as follows:

where f(t) is a time series or a function and � is the wavelet function.
The coherence C between two time series X and Y can be calculated using the coefficients generated by a WT. 

This measure represents the agreement between X and Y in different frequency levels through the time domain56. 
It can be calculated as follows:

Fractal dimension ( F ) In recent years, the study of nonlinear systems has made possible the creation of metrics 
capable of quantifying random properties in time series57. One of these metrics is the Fractal Dimension (FD), 
which measures the complexity and the similarity of a given signal with itself58. A fractal can be defined as a 
geometric structure in which its parts repeat the spatial patterns of its whole body. In this matter, the FD of a 
signal represents its degree of randomness, whereas totally random series present no pattern repetition and, as 
a consequence, the signal becomes more complex. Different algorithms were proposed to estimate the fractality 
of a signal59,60. In this paper, we applied the one proposed by Katz60. First, the total length D of a signal X with T 
points, defined as the sum of the distances between any two adjacent points, is computed as follows:

After, the greatest distance between the first point of X and all the other successive points, defined by d, is 
computed as follows:

Finally, the fractal dimension F defined by Katz can be obtained by:

Quadratic entropy ( Q ) The physical concept of entropy represents the degree of freedom in a dynamic system. 
In other words, entropy measures the degree of disorder of that system, following the idea that totally random 
systems are completely disordered61. For a given signal, the entropy quantifies its regularity, so that signals with 
high freedom degrees also have high entropy and become less regular62. The entropy of a signal X is calculated 
by finding matches between its T −m+ 1 partitions that have m adjacent points in each one. The difference 
between the scalar components of the partitions Xi and Xj , with i, j = 1, 2, . . . ,N −m+ 1 , is defined as the 
distance d between them63,64:

Then, Bm(r) is calculated as the probability that two partitions match for m points with tolerance r65:

where r denotes the tolerance level and Bi denotes the sum of the quantities of j that satisfy 1 ≤ j ≤ T −m with 
j  = i for any Xm(i) . In other words, j is the number of times d

[

Xm(i), Xm(j)
]

≤ r occurs. The same steps are 
repeated with the increment to m+ 1 , originating the combinations Ai and Am(r):

(1)C(a, b) =
1
√
a

∫ ∞

−∞
f (t)�

(

t − b

a

)

dt,

(2)C =
CXC

∗
Y

√

C2
X

√

C2
Y

.

(3)D =
T−1
∑

i=1

√

1+ [x(i)− x(i + 1)]2.

(4)d = max

{

√

(1− i)2 + [x(1)− x(i)]2 � i = 1, 2, . . . , T

}

.

(5)F =
ln[T − 1]

ln
[

(dT − d)D−1
] .

(6)d
[

Xi, Xj

]

= max{|x(i + k)− x(j+ k)|}, k = 0, . . . , m− 1.

(7)Bm(r) =
1

T −m

T−m
∑

i=1

1

T −m− 1
Bi ,



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8184  | https://doi.org/10.1038/s41598-023-32664-8

www.nature.com/scientificreports/

The entropy E is obtained by:

When calculated for short time series, the entropy is limited66. Furthermore, studies have shown that the varia-
tion of the parameter r is increased when the entropy is calculated in terms of the Quadratic Entropy (QE). This 
measure can be obtained by:

Wavelet energy ( E ) The energy of a frequency band represents the importance of that component to com-
posing the time series67. The coefficients generated through Eq. 1 can be used to calculate the energy of their 
components56. The use of wavelets in decomposing a time series requires the number of levels J, which is chosen 
based on the frequency range to be analyzed68. When a time series is decomposed, it generates J + 1 sets of coef-
ficients, which correspond to J detail coefficients sets and 1 approximation coefficients set69. The relative Wavelet 
Energy (WE) Ej of band j is defined as follows:

where mj is the number of coefficients associated to the band j.
Quantiles graphs ( � ) A time series analysis method, which converts a time series into a Quantile Graph 

(QG), has emerged recently from the concepts of complex networks39,70. A complex network g = {N , L} is defined 
as a group of N nodes connected by L edges. In this method, a time series is coarse-grained into Q quantiles 
q1, . . . , qQ . Each quantile qi represents a network node ni , and each weight akij in the weighted directed adjacency 
matrix, denoted as Ak , is equal to the number of times a value in quantile qi at time t is followed by a point in 
quantile qj at time t + k . This method can create directed weighted networks with NQG = Q vertices.

Based on the adjacency matrix Ak and the Markov transition matrix Wk , mathematical metrics can be used in 
order to quantify different features of the corresponding network’s topology. In previous studies, the mean jump 
length, �k , was successfully used to characterize quantile graphs23,30,37,39,71. It is defined as follows:

where WT
k  is the transpose of Wk , P is a Q × Q matrix with elements pi,j = |i − j| , and tr is the trace operation.

Visibility graphs ( I ) Another time series analysis method based on the complex network theory that con-
verts a time series into a Visibility Graph (VG)72 has recently emerged from complex networks concepts. In this 
method, each point of a time series X is represented by a node in the corresponding network. Two nodes, ni and 
nj , are connected if their corresponding points (i, x(i)) and (j, x(j)) in the time series are “visible” to each other. 
In other words, if any existing point (k, x(k)) between them satisfies the relationship:

The VG method can produce undirected unweighted networks with NVG = T vertices each. In previous stud-
ies, the complexity index I was successfully used to characterize visibility graphs52,73. It is defined as follows:

with:

where �max is the largest eigenvalue of the corresponding adjacency matrix.

Results
We applied the previously described methods to the problem of discriminating normal controls from patients 
with AD, based on the 19 EEG channels available. For all channels, we calculated C , F , Q , E , � , and I for the 
groups A, B, C, and D.

C was calculated for all the possible combinations of a given electrode with the others. F and Q were calcu-
lated using T = 1, 024 . Q was calculated using r = 0.05, 0.10, 0.15, . . . , 1.00 with m = 1 and m = 263. � was cal-
culated using NQG = Q = 2(1, 024)1/3 ≈ 20 and k = 1, 2, 3, . . . , 2537. I was calculated using NVG = T = 1, 024 . 
For all the methods, the parameters were chosen in such a way to obtain the lowest p value of the ANOVA test.

The Daubechies wavelet filter was used to decompose all the EEG signals in the well-known frequency-bands 
of the Alzheimer’s neural rhythmic activity74–79, i.e., delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), and beta 
(15–30 Hz). The comparisons were made between the groups A vs C and B vs. D to avoid mixing of eye condition. 
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Figures 1, 2, 3, 4 and -5 show the location of the scalp electrodes for the 19 EEG channels, represented by circles 
and colored based on the p value for C , F , Q , E , � , and I measures, respectively. For a given measure, the 
average p value over all the electrodes is also displayed in each figure. Darker-colored circles indicate a better 
distinction between aging and AD.

For the original, non-filtered signals (Fig. 1), � and C produce the best results in distinguishing groups A 
and C. The worst results were produced by the WE method, with E = 1 . As for the filtered signals, C shows 
the best discrimination power, when the beta, alpha, and theta frequency bands are considered (Figs. 2, 3, 4), 
specially in the temporal and occipital lobes. Also, regardless of the feature extraction method, the use of delta 
waves produces the best differentiation results (Fig. 5). In this case, � followed by C produce the best results, 
independently of the electrode placement. This result is typically found in AD patients at a later stage of the 
disease, and corroborates preliminary findings37.

Figure 1.   The location on the scalp of the 19 EEG original signal channels (groups A vs. C), represented by 
circles and colored according to the p value for C , F , Q , E , � , and I , respectively.

Figure 2.   The location on the scalp of the 19 EEG beta band signals (groups A vs. C), represented by circles and 
colored according to the p value for C , F , Q , E , � , and I , respectively.
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The same analysis was also performed considering the groups B and D (eyes closed). Figures 6, 7, 8, 9 and 10 
depict the location of the scalp electrodes for the 19 EEG channels, which are represented by circles and colored 
according to the p value for the C , F , Q , E , � , and I measures, respectively. For a given measure, the average p 
value over all the electrodes is also displayed in each figure. Darker-colored circles indicate a better distinction 
between aging and AD. For the original, non-filtered signals (Fig. 6), � followed by C produce the best results for 
distinguishing groups B and D. Again, since E is equal to 1.0, this technique is insensitive to the the original EEG 
signal. As for the frequency bands, C followed by � produce the best results, for all bands, specially delta (Figs. 7, 
8, 9, 10). Overall, the best differentiation between healthy and probable AD patients is obtained using delta waves, 
for all feature extraction methods, regardless whether the subject’s eyes are open or closed.

Figure 11 presents the boxplots for C , F , Q , E , � , and I , taking into account the electrode placement, the 
frequency band and the eye condition that best distinguishes healthy from AD patients in each case. Note that 
Q and � show excellent performance in discriminating patients with different health conditions, with an AUC 
= 1.0 in both cases. According to some studies52,56, the collapse of functional connectivity caused by the loss of 
neuronal synapses slows the brain’s oscillatory activity, and, thus, the neural activity tends to be less complex. For 

Figure 3.   The location on the scalp of the 19 EEG alpha band signals (groups A vs. C), represented by circles 
and colored according to the p value for C , F , Q , E , � , and I , respectively.

Figure 4.   The location on the scalp of the 19 EEG theta band signals (groups A vs. C), represented by circles 
and colored according to the p value for C , F , Q , E , � , and I , respectively.
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C , E , and I this behavior translates into lower values for unhealthy patients; see, respectively, electrodes T3-O2, 
F7, and F3, in Fig. 11a, d, and f. The opposite trend (unhealthy values higher than healthy ones) is found in F , 
Q , and � ; see, respectively, electrodes F1, T6, and F3, in Fig. 11b, c, and e. Note that our results for F and Q do 
not agree with63,80. In particular, ref.80 used the same database of the current study, but a much smaller sample.

Table 1 summarizes the best performance of each technique for the measures C , F , Q , E , � , and I , based 
on the corresponding p values and AUC’s. In each case, the electrode displacement, the frequency band, and 
the eyes condition were chosen in such a way to best discriminate patients under different health conditions. 
Although all measures were able to differentiate healthy from AD patients, � displays the best results, regardless 
the eyes condition (closed or open). Based on the values of the measures C , F , Q , E , � , and I , a support vec-
tor machine method was used to individually differentiate healthy elderly subjects from patients with AD. The 
accuracy (Acc), the sensitivity (Sen), and the specificity (Spe) were calculated (Table 2) using the k-fold cross-
validation technique for K = 10 and the EEG signals under the same conditions established for the previous 
analysis (Table 1). Although all measures were able to properly classify patients in different health conditions, 

Figure 5.   The location on the scalp of the 19 EEG delta band signals (groups A vs. C), represented by circles 
and colored according to the p value for C , F , Q , E , � , and I , respectively.

Figure 6.   The location on the scalp of the 19 EEG original signal channels (groups B vs. D), represented by 
circles and colored according to the p value for C , F , Q , E , � , and I , respectively.
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the values of Acc (100%), Sen (100%) and Spe (100%) reached by � , show that this measure is the most efficient 
one for the classification, regardless of the eye condition. Finally, the computational cost for computing the 
measures C , F , Q , E , � , and I was calculated as a function of a random time series (white noise) of length T. 
In each case, the initial and the final time series lengths were T = 500 and T = 10, 000 points, respectively. In 
each step, the time series length had an increment of 100 time points, and the computational cost was normal-
ized by the one spent in the initial time step (Fig. 12). Overall, F (FD) followed by E (WE) and � (QG) required 
the lowest computational effort, while the time spent by the I (VG) method was the highest. This is due to the 
increasing size of the matrix required to be computed by this method, which reaches 10, 000× 10, 000 elements 
in the final step of the simulations.

Figure 8.   The location on the scalp of the 19 EEG alpha band signals (groups B vs. D), represented by circles 
and colored according to the p value for C , F , Q , E , � , and I , respectively.

Figure 7.   The location on the scalp of the 19 EEG beta band signals (groups B vs. D), represented by circles and 
colored according to the p value for C , F , Q , E , � , and I , respectively.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8184  | https://doi.org/10.1038/s41598-023-32664-8

www.nature.com/scientificreports/

Discussion
In this paper, the automatic detection of Alzheimer’s disease was performed based on six methods commonly 
used in the literature. More specifically, for the measures C , F , Q , E , � , and I , according to the corresponding 
p values and AUC’s. Although most of the measures could distinguish between healthy and AD patients (with 
the exception of E ), � , followed by C display the best results for the original signals, regardless the electrode 
displacement or the eye condition. In terms of the frequency-bands effect, regardless the method employed, 
delta waves provide the best differentiation. This finding confirms the prior knowledge that all patients under 
study may have the disease in its late stage. The values of Acc (100%), Sen (100%) and Spe (100%), obtained by 
the measure � in combination with the k-fold cross-validation technique, demonstrate that this measure is the 
most efficient for the classification of individual patients, regardless of their eye condition.

Many research groups have attempted to use computational EEG signal analysis, and many different meth-
ods have shown promising results in detecting brain diseases25–29. Methods derived from information theory, 
time-frequency decomposition, and graph theory are examples of computational tools used in distinguishing 

Figure 9.   The location on the scalp of the 19 EEG theta band signals (groups B vs. D), represented by circles 
and colored according to the p value for C , F , Q , E , � , and I , respectively.

Figure 10.   The location on the scalp of the 19 EEG delta band signals (groups B vs. D), represented by circles 
and colored according to the p value for C , F , Q , E , � , and I , respectively.
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healthy from unhealthy subjects30–36. Several studies in the literature have shown that AD causes slowing in EEG 
rhythms, reduction in EEG complexity, and changes in synchrony among brain regions22. In this sense, the aim 
of this study was to apply different methods of detecting AD through EEG and investigate the properties of the 
signals that distinguish the groups of patients. In particular, the capacity for distinguishing AD from healthy 
elderly subjects was evaluated in terms of the area under the ROC curve and the ANOVA test. In a previous 
study, it was reported that a high accuracy in detecting AD through EEG was achieved using a small compila-
tion of signals of 24 AD patients and 24 healthy controls37. The database in this paper was extended to 160 AD 
patients, and different computational methods were applied in order to compare their performances in terms of 
distinguishing groups under different health conditions and in terms of computational cost.

Figure 11.   Boxplots for the best electrodes and frequency bands for C , F , Q , E , � , and I , respectively.
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Table 1.   The performance of the measures C , F , Q , E , � , and I that best distinguish healthy from AD 
patients when electrode displacement, frequency band and eye condition are taken into account.

Measure Electrode Band Groups p value AUC​

C T3-O2 Original A vs. C 1.50×10
−22 0.999

C T3-C4 Original B vs. D 3.14×10
−24 0.995

F F1 Theta A vs. C 3.72×10
−7 0.944

F T6 Theta B vs. D 4.70×10
−14 0.906

Q T6 Delta A vs. C 1.08×10
−20 1.000

Q F7 Delta B vs. D 3.71×10
−20 0.980

E T6 Delta A vs. C 2.51×10
−6 0.865

E F7 Delta B vs. D 3.86×10
−7 0.938

� O2 Delta A vs. C 3.51×10
−31 1.000

� F3 Delta B vs. D 8.35×10
−30 1.000

I T6 Delta A vs. C 1.06×10
−12 0.958

I F3 Delta B vs. D 1.22×10
−13 0.960

Table 2.   Acc, Sen and Spevalues for the classification of healthy elderly subjects and patients with AD, based 
on the measures C , F , Q , E , � , and I , and the K-fold cross-validation technique.

Measure Electrode Band Groups Acc (%) Sen (%) Spe (%)

C T3-O2 Original A vs. C 97.8 98.7 91.7

C T3-C4 Original B vs. D 97.8 98.7 91.7

F F1 Theta A vs C 95.6 98.7 75.0

F T6 Theta B vs. D 94.6 100.0 58.3

Q T6 Delta A vs. C 97.8 100.0 83.3

Q F7 Delta B vs. D 94.6 98.7 66.7

E T6 Delta A vs. C 88.0 100.0 83.0

E F7 Delta B vs. D 91.3 98.7 41.7

� O2 Delta A vs. C 98.9 100.0 91.7

� F3 Delta B vs. D 100.0 100.0 100.0

I T6 Delta A vs. C 90.2 97.5 41.7

I F3 Delta B vs. D 90.2 96.2 50.0

1000 10000
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Figure 12.   The computational cost for the methods under consideration to computing the measures C (WC), 
F (FD), Q (QE), E (WE), � (QG), and I (VG) as a function of a random time series (white noite) of length T.
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The main goal of the current investigation was to explore the best algorithms capable of differentiating well 
established AD from normal subjects. Furthermore, our special interest was to evaluate the performance of a 
new approach known as quantile graphs. It is worth mentioning that according to Rossini6, early Alzheimer 
disease detection can be performed with the used of quantitative EEG with an accuracy of up to 98% percent. 
In the future, the methodology proposed by Rossini may be used in association with the one described here in 
order to improve the early diagnosis of this disease through EEG signals.

Limitations of the study.  Most of the computational methods presented here were able to distinguish 
between healthy individuals and AD patients. However, it is worth mentioning that the subjects under study 
were not submitted to a definitive pathological diagnosis of AD as well as health controls. As a result, some 
clinical features of the disease are missing from the database, making it difficult to estimate the efficacy of the 
methods in providing an early diagnosis for AD patients with only mild cognitive impairment.

Conclusion
Although early detection is critical to improving the quality of life of AD patients, most of the presently available 
diagnostic tools, from volumetric magnetic resonance imaging (MRI) to lumbar puncture, are invasive, expen-
sive, and poorly available on community health facilities6. In this paper, we applied six non-linear time-series 
analysis methods to EEG records from 160 AD patients and 24 healthy controls. Our goal was to evaluate the sen-
sibility and robustness of each of the six methods on the task of discriminating AD patients from healthy subjects.

With the exception of the wavelet energy ( E ) method, all the other five computational measures were able to 
distinguish between healthy and AD patients. More specifically, quantile graphs ( � ) followed by wavelet coher-
ence ( C ) generated the best results using the original, non-filtered signals, regardless the electrode placement 
or the eye condition (open or closed). As for the wavelet-filtered signals, the use of delta wave signals improved 
the discriminating power of all methods, which indicates that the AD patients under study may have the disease 
in its late stage. Finally, taking into account the electrode placement, the frequency band and the eye condition, 
and considering only the best results obtained by each method, � showed the best performance in discriminating 
patients with different health conditions, with Acc = 100% , Sen = 100% and Spe = 100% (see Table 2). Finally, 
taking into account the discrimination performance and the computational cost altogether, � followed by C are 
the most recommended methods for the AD diagnosis problem.

As for topics for future research, it is necessary to re-evaluate the performance of the methods used in this 
study when they are applied to a data set that includes patients at different stages of AD, including MCI that later 
evolves to AD. In addition, the use of low resolution electromagnetic tomography (LORETA), in order to detect 
the onset of MCI and AD81, should also be considered.

Data availability
All data used in this study are publicly available at Ref42.
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