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Estimating infection fatality 
risk and ascertainment bias 
of COVID‑19 in Osaka, Japan 
from February 2020 to January 
2022
Tong Zhang  & Hiroshi Nishiura *

The present study aimed to estimate the infection fatality risk (IFR) and ascertainment bias of 
SARS‑CoV‑2 for six epidemic waves in Japan from February 2020 to January 2022. We used two 
types of datasets: (i) surveillance‑based datasets containing the cumulative numbers of confirmed 
cases and deaths in each epidemic wave and (ii) seroepidemiological datasets conducted in a serial 
cross‑sectional manner. Smoothing spline function was employed to reconstruct the age‑specific 
cumulative incidence of infection. We found that IFR was highest during the first wave, and the second 
highest during the fourth wave, caused by the Alpha variant. Once vaccination became widespread, 
IFR decreased considerably among adults aged 40 years plus during the fifth wave caused by the 
Delta variant, although the epidemic size of fifth wave was the largest before the Omicron variant 
emerged. We also found that ascertainment bias was relatively high during the first and second 
waves and, notably, RT‑PCR testing capacity during these early periods was limited. Improvements 
in the ascertainment were seen during the third and fourth waves. Once the Omicron variant began 
spreading, IFR diminished while ascertainment bias was considerably elevated.

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), first appeared in Wuhan, China, in late 2019, leading to a pandemic that lasted for more than 2 years. 
According to the World Health Organization, more than 664 million confirmed cases and 6.7 million deaths have 
been reported worldwide as of January 22,  20231. Accumulated mutations have led the virus to evolve variants, 
including Alpha (B.1.1.7), Delta (B.1.617), and Omicron (B.1.1.529)2,3.

The epidemiology of COVID-19 in Japan involved a total of seven distinct waves by July 2022, with each wave 
eventually suppressed by public health and social measures and vaccination, while new waves were repeatedly 
induced by the recommencement of social activities and the appearance of novel variants. Of the seven waves, 
six were fully observed and were divided up in relation to the calendar time: (i) the first wave from February 1, 
2020, to June 15, 2020; (ii) the second wave from June 16, 2020, to October 15, 2020; (iii) the third wave from 
October 16, 2020, to February 28, 2021; (iv) the fourth wave from March 1, 2021, to June 15, 2021; (v) the fifth 
wave from June 16, 2021, to December 15, 2021; and (vi) the sixth wave from December 16, 2021, to June 30, 
 20224. The Alpha, Delta, and Omicron variants were the dominant viruses during the fourth, fifth, and sixth 
waves,  respectively5.

A certain fraction of infected individuals remains asymptomatic throughout the course of their illness. Ma 
et al.6 conducted a systematic review, indicating that at least 40% of people infected with COVID-19 are asymp-
tomatic, and the proportion of people asymptomatic during an infection with the Omicron variant was estimated 
to be as high as 80–90%. Thus, a considerable number of infected individuals may not have been diagnosed and 
reported. A published study estimated that 3.39 billion people (95% CI 3.08–3.63 billion), or 43.9% of the global 
population, were infected at least once before the spread of Omicron from November  20217. When analysing 
the risk of death and characterizing virulence, we should not just refer to the case fatality risk (CFR), obtained 
using the confirmed case count, as the denominator but also pay attention to the infection fatality risk (IFR); 
that is, the probability of death in the total number of infected  individuals8–12. Streeck et al. conducted a 7-day 
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seroepidemiological observational study in a small town in Germany after a festival and calculated the  IFR13. 
O’Driscoll et al.14 and Sorensen et al.15 estimated the actual numbers of infected individuals worldwide based on 
seroepidemiological datasets, and then calculated the age-specific IFRs for different regions. Another research 
group focused on analysing the relationships between IFR and factors such as age distribution, mean body-mass 
index, and smoking rate using linear a regression  model16. Brazeau et al.17 estimated the IFR while consider-
ing other serological factors, such as delays in seroconversion and seroreversion (i.e., waning of the antibody 
titer). The estimation of IFR provides key information, but we are also granted an opportunity to estimate the 
ascertainment bias; that is, the extent of case underestimation caused by a limited ascertainment of infected 
individuals. During the first wave in China, Nishiura et al.18 analysed cases among airline travellers from China 
to estimate the actual number of infected individuals in the country. However, ascertainment bias has not been 
consistently monitored thereafter.

In Japan, we have been granted an opportunity to estimate the pandemic ascertainment bias, owing to the 
existence of reports on a series of cross-sectional seroepidemiological surveys, some of which were conducted 
independently. Serial cross-sectional data enabled us to estimate the IFR and ascertainment bias over the course 
of the pandemic. Furthermore, from February 17, 2021, Japan started prioritising a vaccination program using a 
messenger RNA (mRNA) vaccine. The vaccine stimulates anti-spike antibodies but is believed not to trigger the 
production of anti-nucleocapsid  antibodies19–21. Using seroprevalence data for anti-nucleocapsid antibodies, it 
is possible to grasp the overall magnitude of the respective epidemic waves in Japan.

The purpose of the present study was to estimate the age-dependent IFR and ascertainment bias for each 
epidemic wave in Japan, using the cross-sectional seroepidemiological data and surveillance-based datasets 
containing cumulative numbers of confirmed cases and deaths. We aimed to understand variations in the age-
specific fatality risk and ascertainment patterns to elucidate the magnitude of different epidemic waves over the 
course of the pandemic from 2020 to 2022.

Results
Table 1 shows the estimated incidence of infections for each wave. A trend of increasing incidence in each epi-
demic wave was commonly seen for all three age groups. Of the five epidemic waves before Omicron, the fifth 
wave, which was caused by the Delta variant, involved the largest number of cases in each age group. The fitted 
spline function is shown in Supplementary Fig. S1. The incidence of each epidemic wave was taken to be the 
difference in the cumulative risks of infection, and the estimates are shown in Supplementary Table S2. Before 
Omicron, a total of 349,053 people were estimated to have experienced infection in Osaka, and the cumulative 
risk of infection among adults by the end of fifth wave was 4.7%.

Table 2 shows the CFR for each wave based on empirically observed case and death data. The CFR among 
adults aged 20–39 years was the smallest and close to zero, and it was the highest, estimated at 0.04%, during the 
fourth wave. The CFRs among adults aged 40–59 years were high during the first and fourth waves, calculated 

Table 1.  Cumulative risk of infection and estimated incidence of COVID-19 in Osaka, Japan, 2020–2022. 
CI confidence interval (based on bootstrap method). † The variant of concern that occupied the largest quota 
in the genome survey during the corresponding wave. ‡ Qualitative description of the progress of vaccination 
program.

Wave 
(calendar 
time)

Dominated 
 variant† Vaccination‡

20–39 years 40–59 years 60 years and older

Infection 
rate (%) 95% CI

Infection 
number 95% CI

Infection 
rate (%) 95% CI

Infection 
number 95% CI

Infection 
rate (%) 95%CI

Infection 
number 95% CI

1st (1 Feb 
2020–15 
Jun 2020)

Wild type – 0.14 [0.03, 
0.58] 2780 [676, 

11523] 0.04 [0.01, 
0.05] 997 [124, 

1158] 0.02 [0.02, 
0.42] 513 [495, 

12232]

2nd 
(16 Jun 
2020–15 
Oct 2020)

Wild type – 0.89 [0.37, 
1.20] 17,605 [7310, 

23678] 0.80 [0.62, 
1.06] 20,175 [15664, 

26756] 0.86 [0.27, 
0.90] 25,042 [7707, 

26224]

3rd (16 
Oct 
2020–28 
Feb 2021)

Wild type – 1.17 [0.30, 
1.44] 23,008 [5831, 

28437] 1.02 [0.79, 
1.28] 25,753 [20023, 

32204] 0.97 [0.69, 
1.04] 28,265 [19999, 

30160]

4th (1 
Mar 
2021–15 
Jun 2021)

Alpha 
(B.1.1.7) Partly 1.09 [0.33, 

1.29] 21,415 [6418, 
25501] 0.87 [0.57, 

1.10] 21,912 [14386, 
27674] 0.76 [0.66, 

1.05] 22,070 [19045, 
30228]

5th (16 
Jun 
2021–15 
Dec 
2021)

Delta 
(B.1.617.2) Mostly 2.25 [2.15, 

3.00] 44,397 [42527, 
59155] 2.27 [1.70, 

2.73] 57,168 [42796, 
68713] 1.310 [1.13, 

1.78] 37,952 [32809, 
51554]

6th (16 
Dec 
2021–31 
Jan 2022)

Omicron 
(B.1.1.529)  + 0.64 [0.58, 

1.46] 12,602 [11515, 
28864] 0.81 [0.44, 

1.20] 20,264 [11141, 
30204] 0.33 [0.19, 

0.45] 9501 [5648, 
13114]
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at 0.87% and 0.51%, respectively. The CFR among the elderly was always higher than that of the other two age 
groups and was as large as 16.4% during the first wave and 11.0% in the fourth wave.

On analysing these datasets, the IFR was estimated for each wave (Table 3), and it varied considerably by 
epidemic wave and age. The IFR during the first wave was the highest among adults aged 40 years and older. 
Regardless of the epidemic wave, the IFR among the elderly was always higher than that of the other two age 
groups, consistent with published  results22. The first wave yielded the highest estimate, 15.8% (95% CI 0.7, 16.4), 
for IFR among the elderly. When the Delta variant became widespread in the summer of 2021, the elderly was 
prioritised for vaccination and were fully vaccinated before the end of July 2021, and the IFR was shown to be 
as low as 0.9% (95% CI 0.7, 1.1). During the sixth wave, caused by the Omicron variant, fatalities among adults 
aged 20–59 years became extremely rare, and the IFR among the elderly was estimated at 1 3% (95% CI 0.9, 2.5).

Table 2.  Observed cases and deaths with the estimated case fatality risk (CFR) of COVID-19 in Osaka, Japan, 
2020–2022. CI confidence interval (using score confidence interval). † The variant of concern that occupied the 
largest quota in the genome survey during the corresponding wave. ‡ Qualitative description of the progress of 
vaccination program.

Wave
Dominated 
 variant† Vaccination‡

Reported confirmed cases Reported deaths CFR (%)

20–
39 years

40–
59 years

60 years 
and older

20–
39 years

40–
59 years

60 years 
and older

20–
39 years 95% CI

40–
59 years 95% CI

60 years 
and older 95% CI

1st (1 Feb 
2020–15 
Jun 2020)

Wild type – 663 572 495 0 5 81 0 [0, 0.58] 0.87 [0.37, 
2.03] 16.36 [13.37, 

19.88]

2nd 
(16 Jun 
2020–15 
Oct 2020)

Wild type – 4560 2318 1861 0 5 135 0 [0, 0.08] 0.22 [0.09, 
0.50] 7.25 [6.16, 

8.52]

3rd (16 
Oct 
2020–28 
Feb 2021)

Wild type – 11,595 9734 10,735 1 17 881 0.01 [0, 0.05] 0.18 [0.11, 
0.28] 8.21 [7.70, 

8.74]

4th (1 
Mar 
2021–15 
Jun 2021)

Alpha 
(B.1.1.7) Partly 19,603 15,684 12,851 7 80 1417 0.04 [0.02, 

0.07] 0.51 [0.41, 
0.63] 11.03 [10.50, 

11.58]

5th (16 
Jun 
2021–15 
Dec 2021)

Delta 
(B.1.617.2) Mostly 44,265 26,636 7922 4 70 360 0.01 [0, 0.02] 0.26 [0.21, 

0.33] 4.54 [4.11, 
5.03]

6th (16 
Dec 
2021–31 
Jan 2022)

Omicron 
(B.1.1.529)  + 49,395 29,265 13,776 0 4 120 0 [0, 0.01] 0.01 [0.01, 

0.04] 0.870 [0.73, 
1.04]

Table 3.  Estimated infection fatality risk (IFR) of COVID-19 in Osaka, Japan, 2020–2022. CI confidence 
interval (using bootstrap method). † The variant of concern that occupied the largest quota in the genome 
survey during the corresponding wave. ‡ Qualitative description of the progress of vaccination program.

Wave
Dominated 
 variant† Vaccination‡

IFR (%)

20–39 years 95% CI 40–59 years 95% CI
60 years and 
older 95% CI

1st (1 Feb 
2020–15 Jun 
2020)

Wild type – 0 [0, 0] 0.50 [0.43, 4.03] 15.79 [0.66, 16.36]

2nd (16 Jun 
2020–15 Oct 
2020)

Wild type – 0 [0, 0] 0.03 [0.02, 0.03] 0.54 [0.52, 1.75]

3rd (16 Oct 
2020–28 Feb 
2021)

Wild type – 0 [0, 0.02] 0.07 [0.05, 0.09] 3.12 [2.92, 4.41]

4th (1 Mar 
2021–15 Jun 
2021)

Alpha 
(B.1.1.7) Partly 0.03 [0.03, 0.10] 0.37 [0.29, 0.56] 6.42 [4.69, 7.44]

5th (16 Jun 
2021–15 Dec 
2021)

Delta 
(B.1.617.2) Mostly 0.01 [0.01, 0.01] 0.12 [0.10, 0.16] 0.95 [0.70, 1.10]

6th (16 Dec 
2021–31 Jan 
2022)

Omicron 
(B.1.1.529)  + 0 [0, 0] 0.02 [0.01, 0.04] 1.260 [0.90, 2.54]
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Figure 1 compares the observed count of confirmed cases against the estimated incidence of infection, which 
allowed us to estimate the ascertainment bias in Fig. 2 for each epidemic wave. Among adults aged 20–39 years, 
ascertainment bias was the greatest during the first wave, estimated at 4.2-fold, and the second highest was in 
the second wave. Ascertainment biases among adults aged 40–59 years and 60 years and older peaked during 
the second wave, estimated at 8.7- and 13.5-fold, respectively. Ascertainment bias had the lowest estimates dur-
ing the third and fourth waves, but then abruptly increased during the fifth wave among the elderly and during 
the sixth (Omicron variant) wave among all adults. Sensitivity analysis of the data of truncation did not alter 
these observations (Supplementary Fig. S2). Ascertainment biases were qualitatively similar across age groups.

Discussion
The present study assessed the cumulative risk of infection in Japan using serial cross-sectional seroprevalence 
data. By obtaining the cumulative risk of infection continuously from the spline model and calculating the CFR 
in Osaka for each epidemic wave and age group, we were able to compute the IFR by epidemic wave and age 
group. These procedures enabled us to estimate the ascertainment bias of cases by age group over the 2-year 
course of the pandemic in a single geographic unit, Osaka, from 2020 to 2022. To the best of our knowledge, the 
present study is the first to have longitudinally quantified the IFR and ascertainment bias of COVID-19 in Japan.

Figure 1.  Comparison between observed confirmed cases and estimated number of infections with COVID-19 
in Osaka, Japan, 2020–2022. The horizontal axis shows the epidemic wave in Japan from 2020 to 2022, while the 
vertical axis represents the absolute number of cases. The red bars represent the observed number of confirmed 
cases, while the blue bars show the estimated number of infections. The left panel (A) shows estimates for young 
adults aged 20–39 years, the middle panel (B) for those aged 40–59 years, and the right panel (C) shows the 
elderly aged 60 years and older.

Figure 2.  Ascertainment bias estimates by age group and epidemic wave in Osaka, Japan, 2020–2022. 
The horizontal axis shows the epidemic wave in Japan from 2020 to 2022, and the vertical axis represents 
the estimated ascertainment bias. Ascertainment bias is expressed as the ratio of the estimated number of 
infections to the observed number of confirmed cases. The left panel (A) shows estimates for young adults 
aged 20–39 years, the middle panel (B) for those aged 40–59 years, and the right panel (C) shows estimates for 
those aged 60 years and older. The solid lines show least square estimates, and the red dashed lines show 95% 
confidence intervals computed using the bootstrap method.
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Five notable take-home messages from this study are as follows: (i) the size of the epidemic before the Omi-
cron variant evolved was the largest during the fifth wave, which was caused by the Delta variant; (ii) IFR was 
highest during first wave and second highest during the fourth wave, caused by the Alpha variant; (iii) once 
vaccination became widespread, IFR decreased considerably among adults aged 40–59 years and 60 years and 
older during the fifth wave; (iv) ascertainment bias was high during the first and second waves but decreased 
during the third and fourth waves; and (iv) once the Omicron variant emerged, the IFR diminished while ascer-
tainment bias inflated.

Explicitly estimating the size of an epidemic is vital to obtaining a thorough grasp of the epidemiological 
dynamics. For instance, if we relied on reported confirmed cases (Table 2), the number of Delta-variant-infected 
people would remain underestimated. Among the elderly, only 7922 confirmed cases were reported during the 
fifth wave, but actually, as many as 38,000 infections should have taken place. From July to August 2021, the 
Olympic Games were held in Tokyo, Japan, under a declaration of a state of emergency, and healthcare facilities 
were overwhelmed with high caseload  pressure23. Vaccination as well as under-ascertainment due to limited 
hospital capacities during the course of the fifth wave may have influenced the elevated ascertainment bias among 
the elderly during the corresponding period.

The IFR was the highest during the first wave, which is understandable, because specific treatments for severe 
cases were still under development. Notably, the absence of treatments along with the governmental policy that 
advised patients to remain at home for the first four days of their illness could have had an impact on the  IFR24. 
Because COVID-19 started to spread during the winter of 2020, the government considered that differentiating 
COVID-19 from influenza would be difficult, and thus a 4-day rule was in place by early May 2020. The second 
highest IFR was seen during the fourth wave in Osaka, which is known to have delayed declaring a state of 
emergency, and again healthcare facilities in Osaka were overwhelmed with enormous  caseloads25.

Similarly, ascertainment bias was relatively high during the first and second waves, and it should be noted that 
RT-PCR testing capacity during these early periods was limited. Nevertheless, improvements were seen during 
the third and fourth waves, while the Omicron variant elevated the level of ascertainment bias. Infection with 
the Omicron variant induces general clinically mild  symptoms26, and the presence of mild and asymptomatic 
cases can explain the observed finding. The sixth wave was also unique, in that the IFR was also considerably 
low. Although we cannot be certain, vaccination prior to the Omicron epidemic and the limited virulence of this 
variant compared with the Alpha and Delta variants may explain this observation.

As an important technical remark, we should discuss the smoothing procedure for the cumulative risk of 
infection. We employed a smoothing spline model to fit the seroprevalence curve because we were unable to 
determine the actual infection rate over time without the model. To do so, we assumed that the cumulative risk 
of infection would share similar time-dependent patterns of increase to the cumulative number of confirmed 
cases. As we minimised the distance D, we were able to determine the spline parameter λ, enabling statistical 
estimations of IFR and the ascertainment bias. The proposed method could potentially act as an alternative to 
the prevalence survey used in the United Kingdom that requires repeated monitoring of RT-PCR testing results 
in the general  population27.

This study had technical limitations. First, we consistently relied on anti-N antibody data. Although the 
antibody reflects the incidence of natural infection, we cannot fully and precisely exclude a possible increase 
due to vaccination (e.g., inactivated vaccines). Nevertheless, more than 98% of vaccinations in Japan involve a 
messenger RNA  vaccine28. For simplicity, antibody decay was discarded. Second, the included seroprevalence 
surveys were inconsistent in terms of sampling areas, sampling methods, and serum testing methods. Rather 
than these points, the present study valued the presence of seroprevalence data over time and for age groups. 
Third, the very last survey was conducted in the midst of the Omicron variant epidemic, and thus we had to 
truncate a part of the observed data; taking into account that only the early stage of the Omicron wave might 
have led to an underestimation of the IFR because healthcare pressure may have been later elevated. Similarly, 
ascertainment bias might have been underestimated for the sixth wave, considering that caseloads in and after 
February 2022 were far greater than those in January 2022. Fourth, excess all-cause deaths possibly related to 
COVID-19 pandemic were observed during the course of time in  Japan29, but we simply used confirmed number 
of deaths to estimate the IFR, because we did not have causally attributed death estimate that could be extracted 
from estimated excess deaths. Fifth, the present study focused on the parameters of time and age, and underly-
ing comorbidities and other conditions, including obesity, were ignored, despite being known to influence the 
risk of death from COVID-1930.

Conclusions
The present study successfully estimated the IFR and ascertainment bias in Osaka in a longitudinal manner. 
Both the IFR and ascertainment bias were high during the first and second waves, and once vaccination became 
widespread, the IFR decreased considerably among the elderly. The emergence of Omicron led to an abrupt 
increase in the ascertainment bias, and clarifying that feature is the subject of our ongoing study.

Methods
Epidemiological data. We used two different types of datasets: (i) epidemiological data containing the 
cumulative numbers of confirmed cases and deaths for each epidemic wave, and (ii) seroepidemiological data 
from surveys conducted in a cross-sectional manner. In the collation of epidemiological data, the present study 
focused on Osaka Prefecture, the third largest prefecture in Japan. To extract the cumulative number, the daily 
number of confirmed cases from February 1, 2020, to January 31, 2022, and the specific death dates of deceased 
individuals were  extracted31. With respect to the collation of seroepidemiological data, a mixture of five cross-
sectional survey datasets was  combined32–35. Three were nationally representative surveys conducted by the Min-
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istry of Health, Labour, and Welfare of  Japan32,35 and yielded age-specific seroprevalence data. The other two 
sources were cross-sectional studies in  Hyogo33, the neighbouring prefecture of Osaka and Tokyo, the capital of 
which experienced a comparably sized  epidemic34. It should be noted that confirmed cases include reinfected 
individuals, while the overall risk of infection was maintained to be very small in Japan by the end of 2021.

The first national survey took place in Tokyo, Osaka, and Miyagi from June 1–7,  202032. Subjects were ran-
domly invited to voluntarily provide blood samples, and an antibody against a SARS-CoV-2 nucleocapsid anti-
gen was tested by employing a chemiluminescent microparticle immunoassay with a specificity of 99.6–99.9% 
(SARS-CoV-2 IgG assay; Abbott). The subsequently conducted survey was an original study carried out in Hyogo 
from August 6 to October 1, 2020, analysing serum samples in five hospitals and a healthcare  foundation33. In 
this study, two different testing methods—(i) a electrochemiluminescence immunoassay (ECLIA) using the 
Elecsys Anti-SARS-CoV-2 assay and the Cobas e801 module (Roche Diagnostics, Rotkreuz, Switzerland) and 
(ii) a chemiluminescent enzyme immunoassay (CLEIA)—were both used for detecting IgG against the SARS-
CoV-2 nucleocapsid protein, and sera that were positive either by ECLIA or CLEIA were recorded as positive. 
The third survey took place in Tokyo from September 1, 2020, to March 31,  202134. Participants were randomly 
selected from outpatient visits to 14 hospitals in Tokyo. Anti-SARS-CoV-2 IgG was analysed using an iFlash 3000 
chemiluminescence immunoassay analyser (Shenzhen YHLO Biotech, Shenzhen, China) with an iFlash–SARS-
CoV-2 IgG kit, which primarily detects anti-N antibodies. The fourth and fifth surveys were nationally representa-
tive surveys conducted in Tokyo, Osaka, Miyagi, Aichi, and Fukuoka from December 3 to 27, 2021, and from 
February 2 to March 6, 2022,  respectively35. Subjects were randomly sampled and invited to voluntarily donate 
blood samples. Anti-nucleocapsid antibodies were measured using Roche’s Elecsys Anti-SARS-CoV-2 system. 
In addition to antibody-positive results, people with a past history of a confirmed diagnosis of COVID-19 were 
defined as positive.

At present, the vaccines used in Japan (mRNA vaccine and virus vector vaccine) do not have any viral genome 
sequences other than the sequence encoding the spike(s) antigen. The production of anti-spike antibodies is 
induced by both natural infection and vaccination. However, anti-nucleocapsid antibodies are only produced 
after a natural infection. Thus, the number of infected individuals can be measured by examining the presence of 
anti-nucleocapsid antibodies. Table 4 summarises the above-mentioned surveys and serological testing methods.

For the population census, we referred to the national population survey of 2020, focusing on Osaka 
 Prefecture36.

Statistical estimation of cumulative incidence. We entered the data for the cumulative incidence 
over time from June 2020 to February 2022 into the statistical model. To ensure the smoothness of the fitted 
cumulative incidence, a smoothing spline function was employed to identify patterns in the cumulative risk of 
infection over the course of time. We used serial cross-sectional data from five serum surveys and assumed that 
each survey result represented the seroprevalence in the middle of each month; namely, June 15, 2020; August 
15, 2020; December 15, 2020; December 15, 2021; and February 15, 2022. Because continuously observed data 
were missing, a smoothing spline model was fitted to the seroprevalence data to deal with the data in a discrete 
manner (i.e., every 15 days) for the period from June 15, 2020, to February 15, 2022. The calendar time was 
used as predictor variable and the knots for the spline were evenly spaced in the conducting times of the five 
serum surveys. The smoothing parameter λ was determined by comparing the spline model solution against the 
cumulative count of confirmed cases. That is, let fi(t) be the cumulative incidence, as predicted by the smoothing 
spline, for wave i at calendar time t, and similarly, let ci(t) be the cumulative number of confirmed cases during 
wave i at reporting date t. We computed the following distance D:

where wi is the ascertainment bias calculated as wi = fi(ti)/ci(ti) , and where ti was the last date of i-th epidemic 
wave. Because the present study handled datasets covering more than 2 years, we discarded the small time-lag 
between seroconversion and reporting date. In a range from 0 to 1 (e.g., 0.001, 0.002,.…, 1), we calculated D 
and found λ that minimised error. Bootstrap-based 95% confidence intervals (CI) were computed by resampling 
positive individuals from each survey 1000 times.

D =

∑

i

{

∑

t

[

fi(t)

wi
− ci(t)

]2
}

,

Table 4.  Five seroepidemiological surveys of COVID-19 conducted in Japan, 2020–2022.

Study period Place (prefecture)
Testing method of anti-nucleocapsid 
antibody Sample size (persons) Positive cases (persons) Ref.

June 1–7, 2020 Tokyo, Osaka, Miyagi Chemiluminescent microparticle 
immunoassay 7950 23 32

August 6–October 1, 2020 Hyogo ECLIA and CLEIA 10,377 44 33

September 1, 2020–March 31, 2021 Tokyo iFlash 3000 chemiluminescence 
immunoassay 23,234 242 34

December 3–27, 2021 Tokyo, Osaka, Miyagi, Aichi, Fukuoka Elecsys 8147 204 35

February 2–March 6, 2022 Tokyo, Osaka, Miyagi, Aichi, Fukuoka Elecsys 8149 348 35
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Estimation of IFR and ascertainment bias. Given the smoothed incidence of infection, we estimated 
the IFR and ascertainment bias up to the end of January, 2022, that is, for all six waves. Before estimating the 
IFR, we first analysed the confirmed case and death datasets by January 31, 2022, to estimate CFR by age group 
for each epidemic wave i,

where Mi and Ci are cumulative numbers of deaths and confirmed cases, respectively, of wave i. Notably,  CFRi 
was modelled as a function of epidemic wave i. Furthermore, we discarded small time-lags between the date of 
reporting and the date of death because the number of cases between different epidemic waves tended to be very 
small. The 95% CI was computed using the Wilson score interval. Subsequently, we calculated the IFR using 
death count data and estimated the cumulative incidence of wave i, Fi, that is,

Finally, the ascertainment bias Bi was subsequently computed as the ratio of the total to ascertained (con-
firmed) number of infected individuals, that is,

Notably, wi was estimated from the first to fifth waves by minimising the above-mentioned D, that is, wi = Bi 
for i = {1,2,3,4,5}, but Bi was uniquely calculated using this equation for the sixth wave. As for the sixth wave 
(Omicron wave), we analysed the cases observed by January 15, 2022, while the cumulative risk of infection 
using the spline model was modelled until January 31, 2022, allowing 2 weeks for humoral immune responses 
to be  established37. This was in the midst of the sixth wave, but the truncation was required to correspond to the 
timing of the fourth national seroepidemiological survey, which took place during the course of the sixth wave. 
As part of the sensitivity analysis, we varied the date of truncation from January 10 to January 20.

Data availability
The systematically collected datasets are listed in Supplementary Table S1.
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