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Ameliorating effect of probiotic 
on nonalcoholic fatty liver disease 
and lipolytic gene expression 
in rabbits
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Fatma Elgendey 1

Nonalcoholic fatty liver disease (NAFLD) is a condition that affects about 24% of people worldwide. 
Increased liver fat, inflammation, and, in the most severe cases, cell death are all characteristics of 
NAFLD. However, NAFLD pathogenesis and therapy are still not clear enough. Thus, this study aimed 
to determine the effect of a high-cholesterol diet (HCD) inducing NAFLD on lipolytic gene expression, 
liver function, lipid profile, and antioxidant enzymes in rabbits and the modulatory effects of probiotic 
Lactobacillus acidophilus (L. acidophilus) on it. A total of 45 male New Zealand white rabbits, eight 
weeks old, were randomly divided into three groups of three replicates (5 rabbits/replicate). Rabbits 
in group I were given a basal diet; rabbits in group II were given a high-cholesterol diet that caused 
NAFLD; and rabbits in group III were given a high-cholesterol diet as well as probiotics in water for 
8 weeks. The results showed that a high-cholesterol diet caused hepatic vacuolation and upregulated 
the genes for lipoprotein lipase (LPL), hepatic lipase (HL), and cholesteryl ester transfer protein 
(CETP). Downregulated low-density lipoprotein receptor (LDLr) gene, increased liver enzymes 
[alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate 
dehydrogenase (LDH)], cholesterol, triglycerides (TG), low-density lipoprotein (LDL), glucose, and 
total bilirubin. On the other hand, it decreased high-density lipoprotein (HDL), total protein, albumin, 
and liver antioxidants [glutathione peroxidase (GPx), catalase (CAT), reduced glutathione (GSH), 
and superoxide dismutase (SOD)]. Supplementing with probiotics helped to return all parameters to 
normal levels. In conclusion, probiotic supplementation, especially L. acidophilus, protected against 
NAFLD, and restored lipolytic gene expression, liver functions, and antioxidants to normal levels.

The percentage of nonalcoholic fatty liver disease (NAFLD) patients who also have nonalcoholic steatohepatitis 
(NASH) is expected to increase during the coming ten years. One modelling study predicts that by 2030, there 
will be an increase in NAFLD prevalence of 18%. There will be 27 million NASH patients in the US, a 56 percent 
increase from the current  number1. NAFLD is associated with an increased chance of passing away, particularly 
from heart disease, hepatocellular cancer, and liver-related  incidents2. Moreover, NAFLD is consistently seen in 
bladder cancer  patients3. According to the increase in frequency in recent decades, it has emerged as the second 
most common reason for liver transplantation in the United  States4. Hepatic steatosis, NASH, liver cirrhosis, and 
hepatocellular cancer are all considered to be part of the nonalcoholic fatty liver disease group of liver  illnesses5.

The development and progression of NAFLD have been linked to a number of genes. NAFLD has been most 
strongly associated with the single nucleotide polymorphism (SNP) causing isoleucine to methionine substitution 
at position 148 in the patatin-like phospholipase domain-containing 3 (PNPLA3). Triacylglycerol, diacylglycerol, 
and monoacylglycerol are hydrolyzed by PNPLA3, but the I148M mutation renders the enzyme  inactive6. This 
genetic variant is associated with increased NASH activity, increased liver lipid content, and an increased chance 
of developing hepatocellular cancer and liver  fibrosis7,8. Three more well-researched genetic variants include 
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glucokinase regulator (GCKR) P446L, membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), 
and transmembrane 6 superfamily member 2 (TM6SF2), rs58542926 C > T. They also raise the risk of fibrosis 
and increase the severity of  NAFLD9,10.

The lipase gene family includes lipoprotein lipase (LPL), pancreatic lipase, hepatic lipase, and endothelial 
lipase. The gene converts lipoprotein triglycerides into one monoacylglycerol molecule and two free fatty acids. 
Chylomicrons and very low density lipoprotein (VLDL) contain it. Additionally, it facilitates the uptake of free 
fatty acids, cholesterol-rich lipoproteins, and leftover chylomicrons into  cells11. The LPL gene encodes lipopro-
tein lipase, which is expressed in the heart, muscles, and adipose  tissue12. Low-density lipoprotein receptors are 
crucial for regulating blood cholesterol levels. They are particularly prevalent in the liver, which is capable of 
getting rid of the majority of the extra cholesterol in the body. The number of low density lipoprotein receptors 
(LDLr) on the surface of liver cells controls how rapidly cholesterol is removed from the  bloodstream13–15. The 
LDLr gene has 18 exons and is located in band 19p13.2 on chromosome  1916. The hydrolysis of triacylglycerides 
is catalyzed by hepatic lipase (HL). Other names for it include hepatic triglyceride lipase (HTGL)17. Chromosome 
15 contains the HL  gene18. Hepatic lipase is mostly expressed in hepatocytes and endothelial cells in the liver. 
There are two possibilities for hepatic lipase: it can either stay attached to the liver or it can separate from liver 
endothelial cells and be free to enter the  bloodstream19. Cholesteryl ester transfer protein gene (CETP), a pro-
tein that reduces high density lipoprotein (HDL) levels by transferring cholesteryl esters from HDL to particles 
that contain apolipoprotein B in exchange for triglycerides. Triglycerides and cholesterol esters are transported 
between VLDL, LDL, and HDL via the enzyme CETP. Lower CETP levels promote the synthesis of HDL. Since 
higher HDL levels are associated with a decreased risk of  atherosclerosis20. The genomic DNA for the CETP 
gene has about 25 Kbp and 16  exons21. The upregulation of CETP is brought on by either an increase in dietary 
cholesterol or endogenous  hypercholesterolemia22.

In numerous studies, probiotic treatment has been found to decrease the symptoms of NAFLD in animal 
 models23–25. Probiotics improve liver function, restore the gut flora, and improve the lipid profile by assess-
ing circulating total cholesterol, HDL, LDL, and  triglycerides25. One of the most prevalent genera of probiotic 
bacteria, Lactobacillus, has a long history of safe use and is recognized by the US Food and Drug Administra-
tion as safe for human  consumption26. The researchers found that the strain most successful at reducing total 
cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) was Lactobacillus acidophilus27,28. The most 
popular probiotics, Lactobacillus species, are given for a lengthy  period29. It was discovered to prevent NAFLD 
brought on by a high-fat diet (HFD) and to enhance gut permeability, inflammation, and gut flora modulation 
in a diet-induced obesity  model30–32. The interaction of probiotic bacteria with bile acids via deconjugation 
events catalyzed by bile salt hydrolase enzymes (BSH) is assumed to be the basic mechanism of their cholesterol-
lowering  properties33. Probiotic strains containing BSH help deconjugate bile salts, which is the first stage in 
the colon’s biotransformation of bile salts. Deconjugation is the term for the enzymatic dissolution of the C-24 
N-acyl amide link connecting bile acids to their amino acid  conjugates34.

So, this study aimed to determine the effect of a high cholesterol diet (HCD) inducing NAFLD on lipolytic 
gene expression, liver function, lipid profile, and antioxidant enzymes in rabbits and the modulatory effects of 
probiotic Lactobacillus acidophilus on it.

Material and methods
The current study was approved by the Ethical Committee for live birds sampling at the Faculty of Veterinary 
Medicine, Benha University (BUFVTM 01-09-22).

Rabbits. The current study was carried out in the Faculty of Veterinary Medicine, Benha University, Depart-
ment of Animal Wealth Development, using 45 male New Zealand white rabbits (eight weeks old, about 1200 g 
body weight). They were obtained from SAN El-HAGAR, ASH SHARQIYAH, EGYPT. All animal handling 
procedures are in agreement with the ARRIVE guidelines from the National Center for the Replacement, Refine-
ment, and Reduction of Animals in Research (NC3Rs) 19 throughout the experimental period (eight weeks).

The experimental design. The rabbits were weighed individually and marked. The rabbits were divided 
into three groups at random; each group had three replicates of five rabbits. The rabbits were housed in wire 
mesh cages with identical housing and care practices; feed was applied twice a day, and water was applied con-
stantly by the nipple system. The home was clean, disinfected, and well-ventilated, with the right environmental 
temperature. Lighting was provided for 16 h: 8 h of darkness throughout the experimental period. All methods 
were carried out in accordance with relevant guidelines and regulations.

The three groups were as follows:

• Group I received the basal diet.
• Group II received a high cholesterol diet (HCD), a 2% cholesterol  diet35.
• Group III received HCD with probiotic (1 g/L water) in water. The probiotic Lactobacillus acidophilus (Lacto 

 biotech®) is produced and exported by Mycrofeed Srl, Italy, and obtained by Cairomed Pharmaceuticals 
Company.

The experimental food was introduced to the rabbits gradually over a two-week adaptation period, the trial 
lasted for eight weeks. The ingredients and nutritional composition of the basal diet and HCD are represented 
in Tables 1 and 2.
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Histopathological examination of the liver. Liver samples from various areas of the liver were obtained 
for histological evaluation and investigation for NAFLD. Samples were stored in 10% buffered neutral formalin, 
and then exposed to microscopic examination in accordance with the method described by  Davis36.

Scoring of hepatic steatosis was done according Nassir et al.37 in which grading was done on the basis of the 
percentage of fat within the hepatocytes: grade 0 (healthy, < 5%), grade 1 (mild, 5%-33%), grade 2 (moderate, 
34%-66%), and grade 3 (severe, > 66%).

Determination of lipolytic genes expression. Samples collection. On day 56 following the com-
mencement of the trial (at the end of eight weeks), 12 representative rabbits (selected at random as three rabbits 
per replicate) had been sacrificed by overdose injection of pentobarbital sodium at 60 to 70 mg/kg live weight for 
sampling. Liver samples had been taken and kept at − 80 °C for subsequent study.

Quantitative real‑time PCR analysis. Following the manufacturer’s instructions, 50 mg of tissue was homog-
enized in a sterile collection tube with 750 µl of Trizol solution using a rotor Tissue Ruptor to extract the total 
RNA (Qiagen, GmbH, Germany). By measuring the absorbance in a nanodrop spectrophotometer (BMG Lab 
Tec. GmbH, Germany), the concentration and purity of RNA were assessed. The A260/A280 ratio of undiluted 
RNA is (1.8–2.0). The primers were created using NCBI Primer-BLAST Software, and their sequences are dis-
played in Table  3. Two µg of total RNA was reverse transcribed into cDNA using 2X Reverse Transcriptase 
Master Mix (Applied Biosystem, USA) following the manufacturer’s instructions. The Applied Biosystems 7500 

Table 1.  Ingredients and nutritional composition of basal diet.

Ingredients Amount (kg/ton) %

Nutrients chemical composition

Component Value Unit

Berseem hay 16% 303.00 30.30 Digested energy 2600.92 Kcal/kg

Wheat bran 250.00 25.00 Crude protein 17.99 %

Soybean meal 46 175.00 17.50 Crude fiber 13.48 %

Yellow corn 136.00 13.60 Lysine 0.97 %

Fennel hay 50.00 5.00 Methionine + cystine 0.60 %

Molasses 30.00 3.00 Calcium 1.10 %

Glutafeed 27.00 2.70 Total phosphorus 0.70 %

Limestone 10.60 1.06 Chloride 0.23 %

Monosodium phosphate 8.25 0.83 Sodium 0.20 %

Salt 3.50 0.35

Vitamin, mineral premix 3.00 0.30

Bi sodium carbonate 1.90 0.19

Anticoccidial 1.00 0.10

Anti-mycotoxin 0.50 0.05

D-L methionine 0.25 0.03

Table 2.  Ingredients and nutritional composition of HCD.

Ingredients Amount (Kg/ton) %

Nutrients chemical composition

Component Value Unit

Berseem hay 16% 259.00 25.90 Digested energy 2,602.69 Kcal / kg

Wheat bran 249.00 24.90 Crude protein 17.99 %

Rice kernel 181.00 18.10 Cholesterol 100 Cholesterol

Soybean meal 46 123.00 12.30 Crude fat 5.00 %

Full fat soya 55.00 5.50 Crude fiber 13.55 %

Fennel hay 50.00 5.00 Lysine 0.99 %

Molasses 30.00 3.00 Methionine + cystine 0.59 %

Barely 28,00 2.80 Calcium 1.09 %

Limestone 16.00 1.60 Total phosphorus 0.70 %

Salt 3.50 0.35 Chloride 0.23 %

Vitamin, mineral premix 3.00 0.30 Sodium 0.20 %

Bi sodium carbonate 1.50 0.15

Anticoccidial 0.50 0.05

Antimycotoxin 0.50 0.05
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Fast Real-time PCR, USA, was used to quantify the mRNA. The quantitative PCR was conducted using the 
SYBER Green Master Mix in a 20 µL reaction mixture (TOPreal TM qPCR 2X PreMIX). The initial activation 
(3 min/95 °C), denaturation (3 s/95 °C), and annealing/extension (30 s/60 °C) were used to justify the cycling 
condition, and 40 cycles were used in total, according  to38. The GAPDH gene served as the standard for all gene 
expression levels. Utilizing the  2-ΔΔCt technique, gene expression has been compared and  quantified39.

Biochemical analysis of blood. At the completion of the study period, blood samples were taken from 
each animal. After an overnight fast, blood samples were taken from the ear vein of the rabbits by means of a 
serum-separating blood collection tube and a vacuum gel tube with a clot activator. Samples were drawn into 
dry, clean test tubes and allowed to clot for half an hour at room temperature to separate the serum. Clear sera 
were separated by centrifugation at 3500 rpm for 15 min and then collected using automatic micropipettes in 
Eppendorf ’s tubes. The serum was maintained at − 20 °C in a deep freezer to determine the following parameters: 
alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase 
(LDH), cholesterol, triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), total pro-
tein, albumin, glucose, and total bilirubin.

Determination of liver antioxidants. Liver antioxidants were determined in liver tissue homogenate 
according to methods adopted by  Weissman40 for glutathione peroxidase (GPx),  Aebi41 for catalase (CAT), 
Beutler et al.42 for reduced glutathione (GSH), and Nishikimi et al.43 for superoxide dismutase (SOD).

Statistical analysis. The statistical program SPSS was used to analyze the data (version 21; SPSS Inc., Chi-
cago, IL, USA). The results were mean ± SE, according to the independent sample T-test analysis, Significant 
statistically (P ≤ 0.05).

Ethical approval. The current study was approved by the Ethical Committee for live birds sampling at the 
Faculty of Veterinary Medicine, Benha University (BUFVTM 01-09-22).

Guidelines. All methods were carried out in accordance with relevant guidelines and regulations.

ARRIVE guidelines. The authors confirm that the study was carried out in compliance with the ARRIVE 
guidelines.

Result
Concerning histopathological changes in liver sections from control rabbits, they showed the liver’s typical 
histological structure, which was made up of hepatic lobules with radiating hepatocytes surrounding a central 
vein and irregular blood sinusoids separating them (Fig. 1). HCD supplemented group exhibited pronounced 
hepatic vacuolation coupled with fat cytoplasmic vacuoles, (Fig. 2). Hepatic fatty changes in the group receiving 
probiotic supplements and HCD were significantly reduced, and there was very slight glycogen infiltration, as 
shown in Fig. 3. Quantitative scoring of histological sections involving the criteria of the percentage of fat within 
the hepatocytes showed that the control group scored at grade 0 (2 ± 0.58), HCD group at grade 2 (50 ± 1.58), 
and the HCD + probiotic group at grade 1 (20 ± 2.89).

The impact of probiotic supplementation and HCD-induced fatty liver on lipolytic gene expression in the 
liver was depicted in Figs. 4 and 5. The HCD group showed a significant (P ≤ 0.05) increase in LPL, HL, and 
CETP gene expression as well as a significant decrease in LDLr gene expression when compared to the control 
group and probiotic-supplemented group. Supplementation of probiotics reversed the effects of HCD on gene 
expression, as no significant differences were found between the control group and probiotic-supplemented 
group for all genes studied.

Figures 6 and 7 indicated the impact of a high-cholesterol diet (HCD) and probiotic supplementation on the 
liver enzymes ALT, AST, ALP, and LDH. These results showed that the ALT, AST, ALP, and LDH enzymes were 

Table 3.  Primers used for qRT-PCR. GAPDH refers to Glyceraldehyde 3-phosphate dehydrogenase, LPL refers 
to Lipoprotein lipase, LDLr refers to low-density lipoprotein receptor, HL refers to hepatic lipase, and CETP 
refer to Cholesteryl ester transfer protein.

Gene name Primer sequence (5′-3′) Expected product size Accession number

GAPDH F- GCC GCT TCT TCT CGT GCA G
R- ATG GAT CAT TGA TGG CGA CAA CAT 145 L23961

LPL F- ACA AGA GAG AAC CAG ACT CCAAC 
R- TCA GAC TTC CAG CAA TGC CAG 216 ENSOCUT00000008235

LDLr F- TGC ACT CCA TCT CCA GCA TC
R- TCT TCT CGC ACC AGT TCA CC 264 M11501

HL F- CTA CAT CAG CGG AAA GCA CA
R- GAG CTC CAG GAA GTG ACA GC 241 AF041202

CETP F-AGC TCT TCA CAA ACT TCA TCT CCT TC
R- CTT GTG ATG GGA CTC CAG GTAGG 206 M27486
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significantly higher in the HCD group than in the other groups. There were no significant differences between 
the control group and the HCD with a probiotic-supplemented group.

Figures 8 and 9 illustrate how supplementing with probiotics and HCD affects the lipid profile [cholesterol, 
triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL)]. These results showed 
that the HCD group showed a significant increase in cholesterol, TG, and LDL with a significant decrease in HDL 

Figure 1.  Photomicrograph of the hepatic section of control rabbit, showing normal hepatic cells (H letters) 
arranged in cords and searated with sinusoids (arrowheads) around the central vein (CV), (H&E stain), X200, 
bar = 50 µm.

Figure 2.  Photomicrograph of the hepatic section of HCD supplemented rabbit, showing marked hepatic 
vacuolation associated with fat cytoplasmic vacuoles (arrowheads) (CV indicates central vein and H indicates 
hepatocytes), (H&E stain), X200, bar = 50 µm.

Figure 3.  Photomicrograph of the hepatic section of HCD with probiotic supplemented rabbit showing marked 
decrease hepatic fatty changes with mild glycogen infiltration (arrowheads) (CV indicates central vein and H 
indicates hepatocytes), (H&E stain), X200, bar = 50 µm.
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Figure 4.  Effect of HCD supplementation and HCD with probiotic supplementation on lipolytic gene 
expression [Lipoprotein lipase (LPL) and Low-density lipoprotein receptor (LDLr)].

Figure 5.  Effect of HCD supplementation and HCD with probiotic supplementation on lipolytic gene 
expression [Hepatic lipase (HL) and Cholesteryl ester transfer protein (CETP)].

Figure 6.  Effect of HCD supplementation and HCD with probiotic on liver enzymes [Alanine Transferase 
(ALT), Aspartate Transaminase (AST), and Alkaline Phosphatase (ALP)].
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Figure 7.  Effect of HCD supplementation and HCD with probiotic on liver enzyme [Lactate dehydrogenase 
(LDH)].

Figure 9.  Effect of HCD supplementation and HCD with probiotic on lipid profile [High-Density Lipoprotein 
(HDL) and low-density lipoprotein (LDL)].

Figure 8.  Effect of HCD supplementation and HCD with probiotic on lipid profile [cholesterol and Triglyceride 
(TG)].



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6312  | https://doi.org/10.1038/s41598-023-32584-7

www.nature.com/scientificreports/

compared to the control and probiotic-supplemented groups. The results indicated that probiotic supplementa-
tion reversed the effect of HCD.

Figures 10, 11, and 12 showed the impact of HCD and probiotic supplementation on liver function (total 
protein, albumin, glucose, and total bilirubin). These results demonstrated a marked increase in glucose and 
total bilirubin, as well as a marked decrease in total protein and albumin in the HCD-supplemented group when 
compared to the other groups, while the HCD & probiotic-supplemented group exhibited a marked decrease in 
glucose and total bilirubin, as well as a significant increase in total protein when compared to the HCD group.

Figures 13 and 14 showed how probiotic supplementation and HCD-induced fatty liver affect antioxidant lev-
els [glutathione peroxidase (GPx), catalase (CAT), reduced glutation (GSH), and superoxide dismutase (SOD)]. 
These findings indicate that the liver’s concentrations of GPx, CAT, GSH, and SOD were significantly (P ≤ 0.05) 
lower in the HCD-supplemented group than they were in the control group and the probiotic-supplemented 
group. There were no significant differences in enzyme levels between the probiotic-supplemented group and 
the control group.

Discussion
The HCD-supplemented group’s liver sections showed significant hepatic vacuolation along with fat cytoplasmic 
vacuoles. This is similar to Helal et al.44, who revealed hepatocytes that appeared to be enlarging and ballooning. 
In rats with induced fatty liver, cells throughout the hepatic lobule have macrovacuoles scattered throughout 
the cytoplasm. Also, Wang et al.45 demonstrated that there were numerous vacuoles in the hepatocytes of the 
rabbits fed the HCD, according to an investigation of the liver’s histology. Probiotic supplements dramatically 
minimized hepatic fatty alterations, and there was very little glycogen infiltration. These results are consistent 
with Rishi et al.46, who observed that probiotic administration improved the liver’s morphology.

Figure 10.  Effect of HCD supplementation and HCD with probiotic on liver function (Total Protein and 
albumin).

Figure 11.  Effect of HCD supplementation and HCD with probiotic on liver function (Glucose).
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Figure 12.  Effect of HCD supplementation and HCD with probiotic on liver function (Total bilirubin).

Figure 14.  Effect of HCD and HCD with probiotic supplementation on liver antioxidants [Catalase (CAT), 
Glutathione hydroxylase (GSH) and superoxide dismutase (SOD)].

Figure 13.  Effect of HCD and HCD with probiotic supplementation on liver antioxidant [Glutathione 
Peroxidase (GPx)].
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The result showed that there was up-regulation in lipoprotein lipase (LPL) gene expression in the HCD 
group. This finding is similar to that of Zhang et al.47, who discovered that a high-cholesterol diet increases the 
expression of the LPL gene. Also, similar to Teratani et al.48, who reported that NAFLD and nonalcoholic steato-
hepatitis (NASH) patients’ livers had significantly greater levels of LPL messenger RNA (mRNA) expression than 
did healthy subjects’ livers. The development of NAFLD in their mice model is accompanied by a considerable 
increase in hepatic LPL mRNA levels. Pardina et al.49 compared morbidly obese humans with steatosis to control 
subjects, and LPL mRNA activity was significantly higher (nearly double). Perla et al.50 said that increased LPL is 
linked to NAFLD, while in the HCD plus probiotic-supplemented group, the LPL gene is down regulated. This 
result is consistent with the findings of Wang et al.51, who found that the gene expression of LPL was consider-
ably lower in the Lactobacillus johnsonii group than in the control group. Furthermore, Karimi et al.52 discovered 
that probiotic administration, whether single or multiple species, significantly reduced LPL gene expression. 
LPL expression is increased in both humans and mice by serum obesity-related substances such as leptin, IL-6, 
and free fatty acids (FFA)48. According to reports, the putative signal transducer and activator of transcription 3 
(STAT3)-binding site is located in the LPL promoter, and STAT3 signalling elevates LPL  expression53. It can be 
claimed that taking a probiotic supplement boosted the expression of (PPARG), which in turn up-regulates the 
expression of angiopoietin-like 4. (ANGPTL-4). Lower TG levels result from the downregulation of LPL caused 
by the upregulation of ANGPTL-452.

The LDLr gene expression was lower in the HCD group than in the other groups. This result is similar to that 
reported by Chen et al.54, who reported that, compared to the normal diet group, the high-fat diet group’s levels of 
LDLr mRNA expression were considerably lower. Also, similar to Zhang et al.47, who reported that, compared to 
the control group, the mRNA expression of LDLr was significantly lower in the high-fat, high-cholesterol groups. 
This is also similar to Xin et al.55, who found that evidently, a high-fat, high-sucrose diet reduced the expression 
of LDLr mRNA and protein in the liver. Also, similar to Song et al.56, who reported that, compared to mice on a 
regular diet, animals on a high-fat diet had significantly fewer LDLr genes in the liver. The expression was higher 
in the HCD supplemented with probiotics than in the HCD supplemented group. This outcome is comparable 
to that of Palaniyandi et al.57, who discovered that the high-cholesterol diet group supplemented with probiot-
ics had higher levels of LDLr gene expression in the liver than the high-cholesterol diet control group. Tamtaji 
et al.58 discovered that selenium and probiotic-supplemented patients had significantly higher levels of LDLr gene 
expression than those who just received selenium supplements. Similarly, Song et al.56 found that administering 
L. acidophilus NS1 increases LDLr expression in the liver, which was previously suppressed by a high-fat diet.

The expression of the hepatic lipase (HL) gene was increased in the HCD group more than in other groups. 
This result is similar to that reported by Miksztowicz et al.59, who reported that the patients with hepatic steatosis 
showed considerably higher hepatic lipase activity than controls, and this activity was higher in the most severe 
state of hepatic steatosis. This result is incompatible with Yang et al.60, who reported that hepatic lipase expression 
levels dramatically dropped in the high-fat diet groups. When compared to the HCD group, the expression of HL 
in the probiotic-supplemented group was significantly lower. It might be caused by probiotics like Lactobacillus 
acidophilus, which increased HDL and decreased total and LDL cholesterol in experimental  animals61. Increased 
hepatic lipase has a role in promoting a more atherogenic profile, as evidenced by the direct correlation between 
LDL cholesterol and hepatic lipase and the inverse associations with HDL  cholesterol59.

The expression of cholesteryl ester transfer protein (CETP) was increased in the HCD group. These results 
are similar to those of Lucero et al.62, who reported that patients with hepatic steatosis exhibit elevated CETP 
activity; they are also similar to those of Lottenberg et al.63, who said that a high level of CETP activity is fre-
quently seen in hypercholesterolemic people. Blauw et al.64 recorded that it is conceivable that metabolic liver 
inflammation won’t significantly decrease CETP expression and production. The expression of CETP decreased 
in HCD with the probiotic-supplemented group, as probiotics could have caused it. In test animals, Lactobacillus 
acidophilus boosted HDL and decreased total and LDL  cholesterol61. It’s thought that increased activity of CETP 
is associated with low  HDL65.

The obtained data revealed that HCD supplementation in normal rabbits exhibited a significant increase in 
serum ALT, AST, and ALP activities when compared with the control. These findings are remarkably identical 
to those of previous  investigations45,66,67. On the other hand, these results disagree with those of Kainuma et al.68, 
who reported that there is no significant difference between high cholesterol diets and control diets rabbits. The 
considerable increase in ALT, AST, ALP, and LDH following high-cholesterol diet (HCD)-induced nonalcoholic 
fatty liver disease (NAFLD) was attributed to an increase in the hepatic cell membrane’s fragility, which caused 
enzyme release into the bloodstream. Due to the liver’s compromised structural integrity, these cytoplasmic 
enzymes are released into the circulation following an autolytic breakdown or cellular  necrosis69. The level of 
these enzymes decreased in HCD with the probiotic-supplemented group. These findings are similar to those of 
Adesiji et al.70 and Li et al.71, who reported that Lactobacillus acidophilus decreases liver enzyme levels. This might 
be viewed as a positive side effect of taking Lactobacillus acidophilus, which is effective in preserving the health 
and activity of the epithelial cells lining the biliary duct, showing how probiotics directly affect liver  function72.

The levels of serum triglycerides (TG) and cholesterol were rising. These outcomes resemble those reported 
by Sigrist-Flores et al.73; Xing et al.74; and Lee et al.75. TG and cholesterol levels were significantly lower in the 
HCD probiotic supplemented group compared to the HCD supplemented group. These resemble the reports 
of Mazloom et al.76 and Lee et al.77, who reported that Lactobacillus acidophilus has a hypocholesterolemic 
impact and lowers blood triglycerides. Also, Song et al.56 reported that hepatic cholesterol and TG levels may 
be decreased by L. acidophilus. Also, Kullisaar et al.78 reported that probiotic supplementation dramatically 
decreased total cholesterol and triglycerides. These results may be attributed to a decrease in the host’s intes-
tinal absorption of fatty acids as a result of L. acidophilus79. Moreover, Park et al.80 reported that L. acidophilus 
improves lipid metabolism.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6312  | https://doi.org/10.1038/s41598-023-32584-7

www.nature.com/scientificreports/

The result showed that there was a decrease in high-density lipoprotein (HDL) and an increase in low-density 
lipoprotein (LDL) in serum. These findings are similar to those of Paul et al.81, who reported that lower blood 
HDL and greater LDL particle content were independently linked to NAFLD. Also, Briseño-Bass et al.82 reported 
that a rise in LDL and a reduction in HDL were both substantially correlated with hepatic steatosis, and Sigrist-
Flores et al.73 reported that chronic intake of the fat-enriched diet inducing fatty liver caused a high level of LDL 
and a low level of HDL. Moreover, Kainuma et al.68 reported that many physiopathological characteristics of 
NAFLD are shared by cholesterol-fed rabbits, where this model may be useful for elucidating the mechanism 
of NAFLD related primarily to hyperlipidemia because it did not exhibit insulin resistance or obesity. When 
compared to the HCD-supplemented group, the HCD with probiotic supplementation significantly increased 
HDL and decreased LDL. These findings are similar to those of Song et al.56, who reported that high LDL cho-
lesterol levels may be reduced as a result of L. acidophilus-induced liver low-density lipoprotein receptor (LDLr) 
recovery, which may make it easier for the liver to absorb plasma LDL. Also, Jouybari et al.61 found that ingestion 
of yoghurt containing Lactobacillus acidophilus in their experimental animals resulted in a rise in HDL and a 
decrease in total and LDL cholesterol. Kullisaar et al.78 found that due to probiotic use, LDL cholesterol levels 
and total cholesterol all reduced dramatically, while HDL cholesterol showed a trend to improve. Probiotics are 
thought to decrease cholesterol by blocking the reabsorption and subsequent excretion of bile salts through their 
action of deconjugating bile salt, which prevents its  recycling83.

The findings showed that there was a significant decrease in total protein and albumin in the HCD group 
compared to other groups. These findings are consistent with those of Helal et al.44, who found that fatty liver 
had a significant decrease in total protein and albumin levels. In addition, Mikolasevic et al.84; Grgurevic et al.85; 
and Kawaguchi et al.86 reported that patients who had NAFLD showed a low level of serum albumin. The results 
disagreed with Cho et al.87, who reported that patients with fatty liver showed a higher level of total protein. 
Serum total protein and albumin significantly increased in the HCD group with probiotic supplementation com-
pared to the HCD group. These findings are similar to those of Ayyat et al.88, who claimed that taking a probiotic 
supplement increased serum total protein and albumin levels significantly. Moreover, Adriani et al.89 stated that 
broiler chicken treated with dry probiotics had the greatest levels of blood protein and albumin. These findings 
didn’t agree with Alkhalf et al.90, who declared that their study’s probiotic supplementation had no effect on the 
serum concentrations of total protein or albumin. The inclusion of probiotics in the diet increases the amount of 
aminoethyl cysteine and lysine analogues in the digestive system, which are then converted to lysine and cysteine 
amino acids to enhance the retention of proteins important for the development of  meat91.

The research showed that the HCD group’s serum glucose rose in comparison to the other groups. This is 
analogous to Helal et al.44, who reported that fatty liver-induced lab animals had higher serum glucose levels, 
and likewise in line with Cho et al.87 and Paul et al.81, who reported that individuals with fatty livers have high 
serum glucose levels. The results showed that the HCD in the probiotic-supplemented group had a significantly 
lower serum glucose level. These results concur with those of Adesiji et al.70, who noted that the lactobacillus 
acidophilus-treated rat groups showed a considerable reduction in blood glucose levels. This observation can 
be the result of appropriate insulin release, which helps to control blood glucose  levels92. Endogenous insulin 
production may be enhanced by promoting glucose storage in the liver, increasing the body’s usage of glucose, 
or giving probiotics that may have improved the beta cells’ declining  activity93.

The study revealed that the HCD group’s serum total bilirubin was significantly higher than that of the other 
groups. This is similar to Jain and  Singhai94, who reported that the affected liver’s serum bilirubin levels have 
significantly increased. Nevertheless, HCD with probiotic supplementation significantly reduced serum total 
bilirubin levels. This agrees with Mutlu et al.95, who reported that the probiotic supplementation group in their 
study had reduced levels of bilirubin. In this case, glucuronidase activity may be inhibited.

The results showed that there was a decrease in liver antioxidants (GPx, CAT, GSH, and SOD) in the HCD-
supplemented group. These data are analogues to Videla et al.96, who reported that GPx, GSH, CAT, and SOD 
activity were decreased in NAFLD patients. Compared to the HCD group, these antioxidants were signifi-
cantly higher in the group receiving probiotic supplements with HCD. These results are consistent with those of 
Amdekar and  Singh97, who found that L. acidophilus maintained oxidative stress markers in collagen-induced 
arthritic rats. Moreover, Dowarah et al.98 discovered that certain lactic acid bacteria strains might boost the 
production of antioxidant enzymes or control and alleviate circulatory oxidative stress to shield cells from oxi-
dative stress-related harm. Although the Food and Drug Administration has not approved any medications to 
treat NAFLD, current treatment options depend on lifestyle modification and dietary restrictions. In addition, 
treatment is based on the use of antioxidants as probiotics or the treatment of associated metabolic diseases like 
obesity, type 2 diabetes, and dyslipidemia, which are all directly related to NAFLD. Recently, there are many 
drugs in the pipeline that are reckoned as good candidates to cure NAFLD/NASH99.

Conclusion
Many of the physiopathological characteristics of NAFLD were shared by cholesterol-fed rabbits. This model 
may be useful for elucidating the mechanism of NAFLD related primarily to hyperlipidemia because it did not 
exhibit insulin resistance or obesity. However, the current study showed that the enzymatic activity of the serum 
liver profile, liver function tests, liver tissue antioxidants and peroxide, and lipid profile were all improved when 
a probiotic was administered throughout the rabbit’s rearing period. Also, the supplements improved the patho-
logical organ damage brought on by HCD.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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