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Predictive machine learning 
approaches for the microstructural 
behavior of multiphase zirconium 
alloys
Tamir Hasan 1, Laurent Capolungo 2 & Mohammed A. Zikry 1*

Zirconium alloys are widely used in harsh environments characterized by high temperatures, 
corrosivity, and radiation exposure. These alloys, which have a hexagonal closed packed (h.c.p.) 
structure thermo-mechanically degrade, when exposed to severe operating environments due to 
hydride formation. These hydrides have a different crystalline structure, than the matrix, which 
results in a multiphase alloy. To accurately model these materials at the relevant physical scale, it is 
necessary to fully characterize them based on a microstructural fingerprint, which is defined here as 
a combination of features that include hydride geometry, parent and hydride texture and crystalline 
structure of these multiphase alloys. Hence, this investigation will develop a reduced order modeling 
approach, where this microstructural fingerprint is used to predict critical fracture stress levels that are 
physically consistent with microstructural deformation and fracture modes. Machine Learning (ML) 
methodologies based on Gaussian Process Regression, random forests, and multilayer perceptrons 
(MLP) were used to predict material fracture critical stress states. MLPs, or neural networks, had 
the highest accuracy on held-out test sets across three predetermined strain levels of interest. 
Hydride orientation, grain orientation or texture, and hydride volume fraction had the greatest effect 
on critical fracture stress levels and had partial dependencies that were highly significant, and in 
comparison hydride length and hydride spacing have less effects on fracture stresses. Furthermore, 
these models were also used accurately predicted material response to nominal applied strains as a 
function of the microstructural fingerprint.

Zirconium alloys are widely used in settings where high temperature resistance, corrosion resistance, or low 
susceptibility to radiation are  required1. They can be used as cladding for uranium in nuclear reactors, where 
exposure to high temperature heavy water can cause defects within the microstructure caused by hydrogen 
 accumulation2,3. These defects have been shown to degrade the mechanical behavior properties of zirconium 
alloys, such as ultimate tensile stress, ductility, and fracture  strains4,5. These microstructural characteristics can 
play a critical role in material performance during long-term storage and in incidents, such as loss of coolant 
accidents (LOCA)6. It is, therefore, essential to understand and predict the impact of hydrides on these materials.

Experimental studies of hydrided zirconium materials have indicated that hydrided materials, along with the 
geometry associated with the hydrides, are instrumental in characterizing the material response. For hydride 
formation occurring during delayed hydride cracking (DHC), Shi and Puls concluded that the size and shape 
of the hydrides precipitated at the crack tip negatively affected the stress intensity factor, and thereby crack 
 propagation7. The fracture toughness in Zircaloy-4 sheet has been experimentally shown to decrease as hydrogen 
content increased, and as the proportion of radially oriented hydrides  increased8. Higher temperatures were 
found to reduce crack propagation due to increased ductility. Studies of fracture in hydrided materials have 
shown that hydrides tend to cause brittle failure at temperatures below 100 °C, with the matrix exhibiting duc-
tile  failure9. Colas et al. studied the thermal dependence of hydride formation further and quantified the elastic 
strains due to the formation of different hydride  orientations10. Sharma et al. found that fracture toughness was 
reduced with the formation of hydrides, and even more so for radial hydride formation, with approximately an 
80% reduction when compared with circumferential  hydrides11. Studies of fatigue in hydrided zirconium alloys 
have also shown a strong preference for microcrack formation in radially oriented  hydrides12.
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Computational analyses of hydrided materials have been performed at various length scales, with phase 
field modeling (PPM) and density functional theory (DFT) to study hydride  formation13,  reorientation14, 
 embrittlement15, and their effects on crack propagation. At larger length scales, finite element method (FEM) 
models are used from microstructural to the macro. Liu et al. examined a component level model informed 
by grain-scale simulations of hydrides and found that a linking effect between individual hydrides influenced 
fracture crack paths and material  failure16. Therefore, it is necessary to examine populations of hydrides to fully 
understand how larger scale systems are affected.

While these investigations have provided a viable lens by which to understand hydrided zirconium alloys, 
there has not yet been a unified model that relates how failure nucleates and evolves. Furthermore, a validated 
statistically based or ML ranking of the parameters known to be important has not yet been attained. A major 
drawback to both experimental studies and the modeling of hydrided zirconium materials is the time and lack 
of capability to validate predictions for nonlinear behavior.

Various studies have proposed the use of reduced order models (ROMs) to characterize  materials17,18. These 
ROMs are not computationally expensive to query and can provide a statistically significant representation of 
the data they were trained on. These approaches, however, lack a sufficient expression for the spatial extreme 
phenomena that lead to material failure and crack propagation, and there are no such models that directly address 
the question of hydrided zirconium. Hence, a ROM predicting thermo-mechanical fracture behavior for a high 
dimensional representation of the hydrided zirconium matrix is critical for understanding the characteristics 
of fracture in these materials. It is also essential for the large-scale modeling of these materials by reducing the 
computational burden of fundamentally understanding high fidelity materials at a macro scale.

Therefore, to address these shortcomings, a dislocation density-based crystalline plasticity approach is used 
to model a representative solution space of the hydrided zirconium problem, which provides a database that 
can be interrogated by ML approaches to understand and predict how microstructural behavior affects fracture 
nucleation and propagation in hydrided alloys. The microstructural material fingerprint includes face input 
categories: hydride orientation, grain orientation, hydride volume fraction, hydride length, and hydride spacing. 
These fingerprint components ensure that the database and resulting models can be queried using new findings 
that are obtained experimentally. This is an important aspect of a computational materials database because it 
creates the link between simulated and experimental data and provides added context to experimental data that 
would be difficult to measure  manually19. The database was used to generate statistically significant models of 
critical fracture stress in the five-dimensional space that describes the material fingerprint. An extreme value 
theory (EVT) framework for reducing the dimensionality of a meshed model’s output was used to create a heavy-
tailed representation of the material dynamics such that the resulting models best describe extreme fracture stress 
states. Furthermore, these models were interrogated to determine the relative importance of each parameter 
comprising the material fingerprint. The process by which the raw data is processed via EVT, fit using various 
model types, and finally used to generate a prediction of the extremes of the material critical fracture stress state 
given a material fingerprint and strain level, is shown in Fig. 1.

Methods
Multiple-slip crystal plasticity dislocation-density. A dislocation-density crystalline plasticity 
approach was used in conjunction with FEM to generate the database used in this study. The crystalline plastic-
ity approach was developed by Zikry and  Kao20 and Shanthraj and  Zikry21 and uses a set of partial differential 
equations to describe the dislocation evolution within a unit area called dislocation density. Separate equations 
are used for mobile and immobile dislocation densities, ρm and ρim , and a set of nondimensional coefficients 
are used to describe the sourcing, trapping, annihilation, immobilization, and recovery of  dislocations21. The 
dislocation density evolution equations are

where gsour is the coefficient pertaining to an increase in the mobile dislocation density due to dislocation sources, 
gmnter is the coefficient related to the trapping of mobile dislocations due to forest intersections, cross slip around 
obstacles, or dislocation interactions, grecov is a coefficient related to the rearrangement and annihilation of immo-
bile dislocations, and gimmob is related to the immobilization of mobile dislocations. These coefficients, which 
have been nondimensionalized, are summarized in Table 1, where f0, and ϕ are geometric parameters. H0 is the 
reference activation enthalpy,  lc is the mean free path of a gliding dislocation, b is the magnitude of the Burgers 
vector, and ρs is the saturation density. It should be noted that these coefficients are functions of the immobile and 
mobile densities, and hence are updated as a function of the deformation mode. Shear slip rate, γ̇ , is a measure 
of the accumulated plastic strain on a material that is related to the mobile dislocation activity in a material as

where v(α) is the average velocity of mobile dislocations on slip system α.
The orientation relationships (ORs) between the δ hydrides examined in this work and the surrounding matrix 
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and represent the plane relationships between the h.c.p. material and the f.c.c. material.

Finite‑element Input categories and model. Each simulation was developed according to its own material finger-
print and consisted of a plane strain model with displacement control for the FE model. The average mesh size 
was 60,000 elements and consisted of 49 zirconium h.c.p. alloy grains and approximately 50 f.c.c. hydrides, for 
conditions including hydride spacing and hydride length based on the fingerprint. Strain was applied uniaxially, 
and grain orientation with respect to the loading axis was defined using the value of the material fingerprint 
parameter. The strain rate was constant at 10 s−1 . Grain orientations were defined as the angle that the zirconium 
alloy’s [0 0 1 0] axis forms with respect to the loading axis, which is uniaxial at the [0 0 1 0] global direction. 
Changes to this parameter rotated the grain with respect to the [0 1 0 0] normal axis. Mohamed and  Zikry23 
validated the material properties used in the simulations, which are presented in Table 2.
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]
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(

110
)
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Figure 1.  An outline of the proposed ML modeling process. The FEM results are distilled into a representation 
of their extrema, and then various ML approaches were tested to determine which was best suited to model the 
data. These models have the material fingerprint as inputs, and then output the material state for a given level of 
strain.
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Database generation. To characterize the solution space of all possible material fingerprints, a total of 210 
simulations were simulated using FEM. The material fingerprints for each simulation consisted of five material 
parameters and were chosen according to uniform distributions bounded by the values in Table 3. The parameter 
values were chosen from a grid of 4 equally spaced values from within these bounds. In addition to modifying 
grain orientation according to the range within these bounds, grain to grain misorientation was randomized at 
a maximum of 10°. These parameters influence dislocation activity and fracture, and the specific values used 
correspond to experimental  values4,11,23,24. To sample from the solution space, the trajectory method used in the 
Elementary Effects method (implemented in SAlib) was  used25,26.

Model development. To avoid numerical issues with the model input parameters being at different physical 
scales, the parameters were processed by centering the mean of each feature around zero and scaling to unit 
variance using the StandardScaler function in Scikit-Learn (Version 0.23.2)27. The critical fracture stress values 
were also scaled by 100 MPa.

When training the models, the data was randomly split into an 85% training set and a 15% validation set. The 
training set was used to train model hyperparameters. The hyperparameters were randomly chosen for training 

Table 1.  Coefficients for dislocation-density equations (Eqs. 1–2).
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Table 2.  Material properties.

Property Zircaloy-4 δ-hydrides

Young’s modulus (GPa) 35 132

Static yield stress (MPa) 220 220

Poisson’s ratio 0.349

Rate sensitivity coefficient 45

Initial immobile dislocation density  (m−2) 1 ×  1010

Initial mobile dislocation density  (m−2) 1 ×  107

Burger’s vector 1 ×  10–10

Fracture stress (MPa) (N/mm2) 700 1000

Final applied tensile nominal strain (%) 12 12

Table 3.  Hydride microstructural distributions.

Material fingerprint Minimum value Maximum value

Hydride Length 0.5E−5 m 3.0E−5 m

Parent Grain Orientation 0° 90°

Hydride Volume Fraction 5% 20%

Hydride Orientation 0° 90°

Hydride Spacing 2.5E−6 m 1.0E−5 m
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within predefined ranges chosen for each model type. Typically, 50,000 iterations within the hyperparameter 
space were used along with a fivefold cross validation technique to reduce overfitting to the data. After the best 
possible model hyperparameters were found, the model was tested on the validation set which comprised 15% 
of the original data, and which had not been used to train the model. The goodness of fit, for this model, is the 
measurement of the model’s performance in predicting this validation set.

A linear regression using OLS was used to provide a benchmark for the other modeling methods explored in 
this work. Because the simulations are non-linear, there was only a small likelihood of attaining a high level of 
accuracy with this class of models. However, linear regression provides the most interpretable model output of 
any of the other modeling systems. Scikit-Learn’s LinearRegression function was used to produce these  models27.

The random forest regression model was used to generate a model. It is comprised of an ensemble of decision 
trees whose outputs are averaged. The result is a general model that provides accurate predictions in high 
dimensional  spaces28. Decision tree-based methods are also helpful because their output can be interrogated, 
though it may be cumbersome to do so for an ensemble of decision trees. 100 estimators were used for each 
regression model, corresponding to 100 decision trees, which would make this kind of interpretation difficult. 
Other methods exist to interpret the output of a random forest regressor, and they are implemented here. The 
importance of each input parameter can also be determined using methods such as recursive feature elimination. 
Scikit-Learn’s  RandomForestRegressor27 was used.

A multilayer perceptron, or neural network, was also fitted to the data. While neural networks are the least 
interpretable method presented in this study, they have also been shown to be powerful estimators for highly 
dimensional data. The models presented here were comprised of 3 hidden layers with 5 neurons each. Scikit-
Learn’s MLPRegressor function was used to train and test these  estimators27.

Gaussian Process Regression (GPR) was chosen as a model type because of its built-in measure of uncertainty. 
A combination kernel comprised of a Matern kernel and an Exponential Sine Squared kernel were used for 
training. The sinusoidal attribute of this kernel was a result of the prior understanding that material properties 
tend to follow a sinusoidal path as a non-isotropic material is rotated. The Matern kernel additionally allowed the 
model to effectively capture discontinuities in the solution space. The GaussianProcessRegressor function within 
the SciKit-Learn package was used to train the models, and a cross validated randomized search was used to find 
length scale, the Matern ν parameter, and the periodicity parameter for the exponential sine squared  kernel27.

Application to fracture probability. The purpose of this study is to obtain ROMs that describe the fracture stress 
state of a material given its material fingerprint and strain level. This is performed by predicting the µ value 
of a Gumbel distribution trained to the 95th percentile of each data set. These µ values are normalized by the 
fracture stress to provide physically based insights. These models can provide critical microstructural fracture 
predictions without FEM models or experimental measurements, and is a representation of incipient fracture 
within the material. The fracture critical stress information predicted from these models can then be used in 
conjunction with other computational and experimental methods to determine the likelihood of failure. These 
predictions are the link between the material fingerprint and the fracture probability for that material at a certain 
strain level.

Results and discussion
The FE models were obtained from crystal plasticity simulations for the hydrided zirconium alloy. The database 
was populated by randomly modifying five parameters of interest using four predefined levels between a mini-
mum value and a maximum value. These parameters are given in Table 3. A representative FE mesh for quasi-
static plane strain loading conditions that correspond to a strain-rate of 0.01/s is shown in Fig. 2a. The nonlinear 
FE approach is based on the methodology detailed  in22,23. In addition to the mechanical loading conditions, 
there are thermal boundary conditions of 20 °C applied on all four sides of the mesh. As discussed  in22,23, the 
thermal changes are, however minimal due to the applied quasi-static loading rate and that the reference stress 
on each slip system is also thermally independent. A 0° reference angle is defined with respect to the loading 
direction. The grain orientation parameter is set to 0° when the zirconium alloy parent material [0 0 1 0] direc-
tion is coincident with the loading direction. Changes to the parent grain orientation are achieved by rotating 
the parent material about its [0 1 0 0] axis. This allows us to quantify the effect of different grain orientations 
with respect to the loading axis according to a single angle parameter. Furthermore the FE model was validated 
with predictions pertaining to zirconium alloys as detailed  in22,23.

The four ML modeling methods were fit to the training data using a cross validated technique and randomi-
zation to tune hyperparameters in all cases. The coefficient of determination values resulting from testing the 
models against the validation set are shown in Table 4. The coefficient of determination, or  r2, makes a compari-
son between the errors at each data point and the variation observed in the data points. A small ratio between 
the squared quantities indicates that the model error is less than the average variation in the data points, and 
results in an  r2 value closer to 1. The ordinary least squares method is included as a benchmark and reasonable 
predictability was not expected owing to the nonlinear nature of the problem. The most robust results came from 
fitting neural networks to the data, but the GPR and Random Forest methods also provided excellent results. In 
addition to developing models specifically at individual strain levels, the MLP, GPR, and random forest methods 
were used to develop models, with strain as a dependent variable, in addition to the features of the material fin-
gerprint. By incorporating nominal strain as an additional parameter, a six-dimensional input parameter space 
is obtained with more data points. The scale of the distribution was also included as a second output variable. 
The r2 values for these models are given in Table 4. The values improved over those of individual strain levels, 
owing both to the large variation in material response during large increments in strain and the additional data 
available for training and testing. The model verifications were performed on a held-out test set. Figures 2b and 
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3 show comparisons between FEM database and predicted model values for selected material fingerprints and 
variations in both strain and grain orientation for the MLP. The predictions from the model provide a continuous 
representation of the solution, as opposed to the FEM data, which was developed using the Morris trajectory 
scheme, and therefore, only exists in predefined intervals within the parameter space.

The material dependency on nominal strain level is already well established, the models trained to specific 
strain levels can then be used to examine the dominant microstructural fingerprint features in the following 
sections. The neural network-based models were used for this analysis because the r2 values consistently higher 
than the GPRs, and the ability of the model to describe the solution space was determined to be more valuable 
than the measure of uncertainty that the GPRs provide.

Feature elimination. Recursive feature elimination (RFE) was applied to determine which features can be 
eliminated from a given model without affecting the model’s predictive power. Features are randomly removed, 
and recursion is used to drive towards the smallest set of possible features. Fivefold cross validation was used 
to test the smaller feature sets to ensure that the model’s continued efficacy was not random. This method of 
feature tuning is only available for models that assign weights to features, and the random forest model was the 
only such type considered in this work. Applying RFE to the random forest models previously described at three 
strain levels resulted in the feature importance ranking as outlined in Table 5. Grain and hydride orientations 
are consistently the highest ranked features, followed by volume fraction. Hydride spacing is consistently the 
least important parameter. This is most likely because spacing between hydrides on the axis perpendicular to the 
hydrides was also controlled by the hydride volume fraction.

Feature significance. To determine the importance of individual features, a permutation scheme was used. 
Each parameter was randomly permuted to determine the resulting impact on the model output, measured in 

Figure 2.   (a) The finite-element representation of a multiphase hydrided zirconium alloy representative 
volume element. The arrows correspond to the applied tensile displacements. (b) Model verification as a 
function of strain response. The coloring indicates a subset of material parameters as referenced in the center 
legend. Grain orientation, hydride volume fraction, and hydride orientation were varied and the model 
prediction at various strain levels was compared to FEM output.

Table 4.  Validation set  r2 values for critical fracture stress.

Model type 0.75% Strain 2.25% Strain 3.25% Strain All Strains

GPR 0.87 0.61 0.85 0.98

Neural Network 0.86 0.88 0.93 0.98

Random Forest 0.86 0.80 0.88 0.46

Ordinary Least Squares 0.50 0.44 0.51 0.69
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the amount by which the coefficient of determination ( r2 ) decreased when the model was scored against the 
training dataset with one parameter permuted. Each parameter was permuted a total of 10 times, and the results 
showing the impact on the coefficient of determination are shown as boxplots in Fig. 4. This was calculated for 
the neural network model trained at the 2.75% strain level, but similar plots produced for all strain levels indi-
cated similar information, as did the random forest model set. These results correspond to the feature impor-

Figure 3.  Model verification as a functions of grain orientation. The colors denote a subset of material 
parameters as referenced in the legend in the top right. Variations in hydride volume fraction and hydride 
orientation are also included. FEM output data is not shown for the 5% HVF, 0° hydride orientation, 0° grain 
orientation case because that case was not part of the training dataset.

Table 5.  Feature importance ranking for 3 random forest models.

Feature 1.25% Strain 1.5% Strain 2.75% Strain

Hydride length 3 3 2

Grain orientation 1 1 1

Hydride volume fraction 2 2 1

Hydride orientation 1 1 1

Hydride spacing 4 4 3

Figure 4.  Permutation importance study. Performed for all parameters, calculated for the neural network 
trained for the 2.75% strain level.
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tance ranking for the 3 random forest models shown in Table 5. Hydride orientation and grain orientation have 
the highest impact on the model’s ability to explain the variation of critical fracture stress in the data. Hydride 
volume fraction, hydride length, and hydride spacing all had considerably reduced impact on the outcome, and 
the consistency of the reduced impact (tight range) indicated that an appropriate number of permutations were 
present to differentiate the less important parameters.

A partial dependence study was also used to determine the how changing various features affects the critical 
fracture stress. The average model output at different constant values of the target feature was determined while 
varying the values for the other features. Figure 5 shows the individual dependencies for the three highest ranked 
parameters: grain orientation, hydride volume fraction, and hydride orientation. As grain orientation increases, 
the average fracture critical stress decreases until the material is at a 60° orientation and then increases again, 
showing the effects of preferred orientations where mobile dislocations in prismatic slip systems are most active 
and act to reduce the average fracture stress levels within the material. As hydride volume fraction increases, so 
too does the critical fracture stress, as expected because of the greater proportion of the material that consists 
of brittle hydride material. Finally, as hydride geometric orientation changes from radial to circumferential, 
the critical fracture stress levels tend to increase because of greater hydride tip interaction that occurs when 
the hydrides are oriented with the loading axis. This causes dislocation immobilization and increased fracture 
critical stress. Figure 6 shows the dependence for both the hydride length and the hydride spacing. It is impor-
tant to note that the range of effect is much lower in these parameters when compared to the grain orientation, 
hydride volume fraction, and hydride orientation, which is in agreement with their reduced significance in the 
permutation importance study.

A contour plot of the partial dependence that incorporates both the grain orientation and the hydride orienta-
tion is shown in Fig. 7. This plot indicates that the highest fracture critical stress values tend to occur at radially 
hydrided materials with high misorientation with respect to the loading axis, and that the lowest values tend to 
occur with mixed hydrides and low misorientation with the loading axis.

Global sensitivity analysis was performed using the Sobol method on the 3.25% nominal strain MLP model. A 
Saltelli sampler was used with 5000 data points. The SAlib implementation in Python was used for sampling and 
 analysis26. The results are shown in Figs. 8 and 9. They indicate a similar result to the previous parameter studies, 
with the highest indices attached to grain orientation, hydride orientation, and hydride volume fraction. The val-
ues of the second order indices are comparatively small, indicating that most of the model variance is attributed 
to single parameters. Hydride spacing was the least impactful parameter, as also shown in the feature importance 
study. If 0.05 is taken as the cutoff for an influential  parameter29, then interactions with the grain orientation 
(texture) parameter are the only second order indices where the upper 95% confidence intervals fall within an 
influential range. The interactions observed between grain orientation and hydride volume fraction or hydride 
orientation are reasonable because material texture will impact dislocation accumulations within the material, 
thereby influencing the degree to which hydride orientation or volume fraction impact the material response.

Figure 5.  Partial dependence plots. The three highest ranked features normalized by fracture stress.

Figure 6.  Partial dependence. Shown for hydride length and hydride spacing, showing minor variation.
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Significant factors influencing dislocation activity. To further understand the role of dislocation-
densities in affecting fracture, the immobilized dislocation density response was also modeled and analyzed 
to determine the relative importance of different features in the material fingerprint. The same method used 
to train a neural network for the critical fracture stress predictions was also used to train a model describing 
the maximum immobile dislocation density response, ρim,max , for all the modeled slip systems of the parent 
grain material. The training process resulted in a holdout test-set coefficient of determination of 0.98, indicating 
that the universal function approximator was able to capture the nonlinearities associated with the dislocation 
density evolution equations effectively. Figure 10 shows the results of a feature importance study on this model. 
Grain orientation is by far the most important parameter and hydride orientations do not seem to influence the 
maximum activation. This indicates that the orientation of the hydrides plays a role in the fracture critical stress 
predictions because of the geometric interaction between hydride orientations and trapped dislocations, and 
that the severity of the impact of dislocation accumulations on the critical fracture stress can be mainly influ-
enced based on the hydride orientations. The material degradation caused by hydrides spanning the radius of 
the cladding tube, i.e., radial hydrides, is exacerbated by the accumulation of immobilized dislocation densities 
at preferential grain orientations.

Figure 7.  Partial dependence. The combined effects of grain orientation and hydride orientation are shown.

Figure 8.  Sobol analysis for material fingerprint showing total effects. Calculated for the 3.25% nominal strain 
MLP model. 95% confidence intervals are indicated by black lines.
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Conclusions
In this investigation, a database of deterministically FE modeled crystalline structures was used to find 
relationships between the proposed material fingerprints and fracture. Ordinary least squares, GPR, symbolic 
regression, random forest, and multilayer perceptron modeling techniques were evaluated for their performance 
in representing material critical fracture stress response. The parameters were evaluated to determine their 
contribution to the models, and to quantify their importance to the overall behavior with a focus on fracture 
stress.

Specifically:

1. Multilayer perceptrons (neural networks) had the best overall average performance, based on the coefficient 
of determination.

2. Grain and hydride orientations were predicted to be the feature most significant to the evolution of critical 
fracture stress level extremes.

3. Grain orientations statistically had the greatest impact on immobile dislocation density accumulation and 
activation along the preferred slip systems.

4. Hydride length and hydride spacing had relatively low significance in predicting critical fracture stress, which 
indicates that future studies might use a coarser representation of these parameters without loss of accuracy.

This investigation provides a detailed ML microstructural approach that can be utilized to understand and 
predict behavior in h.c.p. alloys with f.c.c. hydrides. The unique aspect of this approach is the coupling of 
deterministic FE models to ML, and it can be a new step in understanding and potentially controlling failure in 
multiphase materials through ML tools coupled to large strain plasticity and fracture methodologies, and this 
approach can be extended to random hydride orientations.

Figure 9.  Sobol analysis for material fingerprint showing second order effects. Calculated for the 3.25% 
nominal strain MLP model. 95% confidence intervals are indicated by black lines.

Figure 10.  Feature importance for the maximum immobile density, ρim,max . Bar chart showing the dominance 
of material texture in predicting extremes of immobile dislocation density.
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