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Rewiring of the 3D genome 
during acquisition of carboplatin 
resistance in a triple‑negative 
breast cancer patient‑derived 
xenograft
Mikhail G. Dozmorov 1,2,10*, Maggie A. Marshall 1,10, Narmeen S. Rashid 2,3, 
Jacqueline M. Grible 2, Aaron Valentine 2,4, Amy L. Olex 5, Kavita Murthy 6, 
Abhijit Chakraborty 6, Joaquin Reyna 6, Daniela Salgado Figueroa 6, Laura Hinojosa‑Gonzalez 6, 
Erika Da‑Inn Lee 9, Brittany A. Baur 9, Sushmita Roy 8,9, Ferhat Ay 6,7 & J. Chuck Harrell 2*

Changes in the three‑dimensional (3D) structure of the genome are an emerging hallmark of cancer. 
Cancer‑associated copy number variants and single nucleotide polymorphisms promote rewiring of 
chromatin loops, disruption of topologically associating domains (TADs), active/inactive chromatin 
state switching, leading to oncogene expression and silencing of tumor suppressors. However, little is 
known about 3D changes during cancer progression to a chemotherapy‑resistant state. We integrated 
chromatin conformation capture (Hi‑C), RNA‑seq, and whole‑genome sequencing obtained from 
triple‑negative breast cancer patient‑derived xenograft primary tumors (UCD52) and carboplatin‑
resistant samples and found increased short‑range (< 2 Mb) interactions, chromatin looping, formation 
of TAD, chromatin state switching into a more active state, and amplification of ATP‑binding cassette 
transporters. Transcriptome changes suggested the role of long‑noncoding RNAs in carboplatin 
resistance. Rewiring of the 3D genome was associated with TP53, TP63, BATF, FOS‑JUN family 
of transcription factors and led to activation of aggressiveness‑, metastasis‑ and other cancer‑
related pathways. Integrative analysis highlighted increased ribosome biogenesis and oxidative 
phosphorylation, suggesting the role of mitochondrial energy metabolism. Our results suggest that 
3D genome remodeling may be a key mechanism underlying carboplatin resistance.

High-throughput chromosome conformation capture (Hi-C) technology provides information on multiple levels 
of 3D chromatin  organization1. These include chromatin loops, Topologically Associating Domains (TADs), 
and A/B (active/inactive) compartments, reviewed  in2,3. At the kilobase scale, chromatin loops (local maxima 
pixels on Hi-C chromatin interaction maps) connect gene promoters with distal enhancers, promoting regula-
tion of gene  expression4–6. At the megabase scale, TADs represent regions on the linear genome that are highly 
self-interacting7,8.

Disruption of chromatin interactions due to copy number variants and even single nucleotide polymor-
phisms has been reported to promote enhancer  hijacking9,10, fusion of  TADs11,12, creation or destruction of 
sub-TADs within existing TAD  boundaries13,14, and/or switching chromatin states between active and inactive 
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 conformations1,7. These events are frequent in cancer, leading to coordinated expression of oncogenes and/or 
silencing of tumor  suppressors15,16.

Breast cancer is now the second leading cause of cancer-related deaths in the US, and the incidences of breast 
cancer continue to  rise17. About 15–20% of breast cancers present with an aggressive hormone receptor-negative 
(triple negative breast cancer, TNBC)  phenotype18. TNBC cancers are characterized by rapid proliferation rates 
and high metastatic propensity, and they are associated with the worst outcome of all breast cancer subtypes. 
Unlike estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2 positive breast can-
cers, TNBCs cannot be treated with endocrine therapies or HER2-targeted agents (Trastuzumab, Pertuzumab), 
and chemotherapies are standard of care. The addition of carboplatin (CBDCA, cis-Diammine-1,1-cyclobutane 
dicarboxylate platinum) to neoadjuvant therapy increases the proportion of patients achieving a pathological 
complete  response19. Unfortunately, drug resistance can occur, and 90% of treatment failures in metastatic cancers 
are attributed to chemoresistance (i.e., drug resistance). While molecular mechanisms of drug resistance have 
been  explored20, the association between 3D changes and drug resistance remain underexplored.

In this study, we characterized the 3D genome organization changes during TNBC cancer progression from 
primary (PR) drug-sensitive state to a carboplatin-resistant (CR) state. We utilized the TNBC patient-derived 
xenograft (PDX) model UCD52, which, among other PDXs, is known to faithfully recapitulate the heterogeneity 
and genomics/transcriptomic profiles of human  disease21. The carboplatin-resistant state was established through 
the progressive passaging of PDX tumors under treatment until tumors continued growing in the presence of 
the drug (Fig. 1). We performed replicated Hi-C experiments, RNA-seq, and whole-genome sequencing (WGS) 
to understand the interplay between 3D structure, gene expression, and copy number variant changes associ-
ated with carboplatin resistance. The carboplatin-resistant state was characterized by the genome-wide increase 
in short-range chromatin interactions (< 2 Mb), chromatin loops, and more topologically associating domains 
(TADs). Gene expression changes highlighted near-complete shutdown of drug metabolism pathways and acti-
vation of many aggressiveness-, metastasis-, and other cancer-related signatures. A number of long noncoding 
RNAs associated with cancer-related phenotypes and functions were significantly upregulated. Analysis of copy 
number variation confirmed these findings and highlighted the amplification of ATP-binding cassette (ABC) 
transporters known for multidrug resistance. Integrating different omics layers strengthened the evidence for 
amplification of ABC transporters and activation of cancer- and drug resistance-related genes/pathways, and 

Figure 1.  Development of a PDX-model of acquired carboplatin resistance in triple-negative breast cancer. 
(a) UCD52 PDX tumors were grown in female NSG mice. Once tumors reached 25–50  mm2 in size, mice 
were treated with carboplatin. After tumor growth resumed, tumors were harvested, prepared into a single-cell 
suspension, and passaged into a new recipient mouse. Single-cell suspensions were also used for Hi-C, WGS, 
and RNA-seq. (b) Plot depicts growth rates of untreated and treated primary (PR) UCD52 tumors as well as 
passage number 1, 3, and 9 carboplatin resistant (CR) tumors. N = 1 or 2 per passage number. Image created 
with BioRender.com.
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the role of mitochondrial energy metabolism in carboplatin resistance. Our study provides a unique multiomics 
dataset and characterizes the 3D genomic reorganization in carboplatin resistance in TNBC.

Results
Carboplatin resistance‑associated gene expression changes may promote more aggressive 
phenotype. Dysregulated gene expression in cancer is tightly coupled to alterations in 3D  structure15,16. 
To better understand transcriptome changes in carboplatin resistance, we performed RNA-seq comparing gene 
expression changes between primary tumor (PR) and carboplatin-resistant (CR) state. We observed minimal 
mouse read contamination, 3.83% and 1.93% for UCD52PR/UCD52CR, respectively. We detected an approxi-
mately equal number of up-and downregulated transcripts (2052 up and 1933 down, edgeR FDR = 0.1) in the 
CR condition (Supplementary Table S1). Considering protein-coding genes, HOXB4 (homeobox B4) was the 
most significantly upregulated (log2FC = 6.14, FDR = 7.72E−30), and its expression was associated with multid-
rug resistance of human myelogenous  leukemia22 (Fig. 2a). Among the top 20 upregulated genes, we observed 
BRCA1 (log2FC = 3.85, FDR = 2.70E−13), mutations of which were associated with a more aggressive TNBC 
 phenotype23. Other upregulated genes were similarly associated with cancer aggressiveness, metastasis, and 
other oncogenic properties that may facilitate resistance in the CR condition. We observed more downregulated 
protein-coding genes (1837, vs. 1637 upregulated), with MYBPC1 (myosin binding protein C1) being the most 
significantly downregulated (log2FC = − 4.71, FDR = 5.58E−38). Together with 43 other downregulated genes, it 
was among the list of 257 downregulated genes in purified TNBC cells identified by Komatsu et al.24 (hypergeo-
metric p value < 1.00E−3). These results suggest that carboplatin resistance-associated gene expression changes 
may promote aggressive cancer phenotype.

To understand the functional significance of the CR transcriptome changes, we performed GSEA analysis 
using KEGG pathways and MSigDB  collections25 (Supplementary Table S1). Analysis of the “C2 curated gene 
sets” collection identified several cancer-related processes, such as the enrichment of CR-downregulated genes 
in metastasis-downregulated “Jaeger Metastasis Down” signature (93 genes, NES = − 2.34, FDR = 1.79E−4) (Sup-
plementary Table S1). We also observed enrichment of CR-downregulated genes in adhesion-related signatures, 
such as “Onder CDH1 Targets Down” (160 genes, NES = − 2.25, FDR = 4.27E−5). These genes were downregulated 
in HMLE cells (immortalized non-transformed mammary epithelium) after E-cadhedrin (CDH1) knockdown 
by RNAi. Loss of E-cadherin promotes metastasis by disrupting intercellular  contacts26; consequently, our obser-
vations suggest increased metastatic potential in the CR condition. We also observed several downregulated 
cancer-related pathways and hallmark signatures, such as “Sana TNF Signaling Up” (33 genes, NES = − 2.65, 
FDR = 3.19E−5); however, the “DNA Repair” signature was upregulated (NES = 1.80, FDR = 4.91E−2). These 
results further strengthen our observation that aggressiveness and metastatic signatures may be upregulated in 
carboplatin resistance.

Ribosomal and oxidative phosphorylation/metabolic genes are upregulated in carboplatin 
resistance. Among KEGG pathways, “Ribosome” was the most significant (37 genes, Normalized Enrich-
ment Score (NES) = 2.66, FDR = 4.01E−5), (Fig. 2c). Similarly, “Structural Constituent of Ribosome” was among 
the most significant ontologies in the “C5: ontology gene sets” MSigDb’s collection (62 genes, NES = 2.79, 
FDR = 5.84E−6). “Oxidative phosphorylation” was another KEGG pathway upregulated in CR and enriched 
in NADH-Ubiquinone Oxidoreductase Subunit encoding genes, ATP Synthase genes, and others (24 genes, 
NES = 2.64, FDR = 2.67E−4). “Oxidative Phosphorylation” gene set was similarly upregulated in the “H: hallmark 
gene sets” MSigDb’s collection (50 genes, NES = 2.04, FDR = 4.59E−3). Importantly, this pathway has recently 
been described as a mediator of resistance to  chemotherapy27. These results suggest that protein synthesis and 
metabolic activities may be enhanced in carboplatin resistance.

Immune signature downregulation in carboplatin resistance. “Defense Response” was the most 
significant gene ontology enriched in downregulated genes (332 genes, NES = − 2.33, FDR = 4.10E−7), (Fig. 2c, 
Supplementary Table S1). Similarly, “Immune Response” ontology was enriched in 328 downregulated genes 
(NES = − 2.19, FDR = 4.10E−7). Analysis of the MSigDB’s “C2 curated gene sets” collection identified “Sana 
Response to IFNG Up” signature among the most significant enriched in 45 downregulated genes (NES = − 2.60, 
FDR = 1.96E−6). The “H hallmark gene sets” analysis also identified “Interferon Gamma Response” enriched in 
77 downregulated genes (NES = − 2.39, FDR = 1.97E−5) and “Interferon Alpha Response” signatures (48 genes, 
NES = − 2.30, FDR = 2.88E−4). Overexpression of IFN-inducible genes was observed in chemo-responder PDX 
models of TNBC with no changes in non-responders28; consequently, downregulation of interferon signatures in 
the CR condition may indicate a favorable condition for carboplatin resistance development.

Long noncoding RNAs are overrepresented in carboplatin resistance. Considering transcript 
types, we observed significantly more lncRNA being upregulated in CR (317 vs. 54 downregulated, Chi-square 
p value = 1.24E−42) (Supplementary Table S1). H19 (imprinted maternally expressed transcript), the first dis-
covered  lncRNA29 was the top significantly upregulated (Fig. 2b) and is known to promote cancer stemness 
and paclitaxel  resistance30. Literature review identified other top up- and downregulated lncRNAs also promot-
ing aggressiveness and drug resistance in breast and other cancers. Paralleling RNA-seq analysis observations, 
CEROX1 (cytoplasmic endogenous regulator of oxidative phosphorylation 1), the second most upregulated 
lncRNA, suggested the role of oxidative phosphorylation. To understand the collective effect of lncRNAs, we 
used  LncSEA31 (Supplementary Table S1). LncSEA analysis identified enrichment of upregulated lncRNAs in 
“Metastasis” (7 lncRNAs, hypergeometric FDR = 3.63E−10), “Proliferation” (10 lncRNAs, FDR = 1.58E−9) and 
similar cancer hallmark signatures (Fig. 2d), suggesting increased aggressiveness of cancer cells in carboplatin 
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resistance. “Breast cancer ER+ vs. Breast cancer Normal TNBC” (64 lncRNAs, FDR = 1.64E−16) and other breast 
cancer-related cancer phenotype signatures shared the largest number of upregulated lncRNAs. Breast cancer 
specificity was also reflected in the enrichment of upregulated lncRNAs in BRCA-associated cis-eQTLs (67 

Figure 2.  Differentially expressed transcripts and their functional significance. Differentially expressed 
protein-coding genes (a) and lncRNAs (b). Red/blue colors correspond to genes up- or downregulated in the CR 
condition. Top 20 most significant up- and downregulated transcripts are listed in the corresponding panels and 
selected transcripts are highlighted. (c) Most significant GSEA enrichments using KEGG, Gene Ontology, and 
Hallmark MSigDb collections. (d) Functions, phenotypes, and signatures enriched in lncRNAs upregulated in 
carboplatin resistance. Each panel corresponds to enrichment categories from the LncSEA analysis. All panels 
show −log10(p-value) except “Cancer Phenotype” showing gene counts.
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lncRNAs, FDR = 1.61E−14) and in enhancers in T-47D breast cancer cell line (47 lncRNAs, FDR = 2.07E−18). 
Similar to the analysis of protein-coding genes, “Ribosome” was the most significant subcellular location 
enriched (15 lncRNAs, FDR = 1.50E−16), although “Cytoplasm” had the largest number of lncRNAs (53 lncR-
NAs, FDR = 6.48E−9). The small number of downregulated lncRNA transcripts (54 total, 30 had annotations) 
was insufficient for all enrichment analysis; yet, 21 downregulated lncRNAs were enriched in targets of TP63 
(FDR = 1.00E−5). These results suggest that carboplatin-resistant lncRNAs may support protein-coding tran-
scripts in enhancing metabolic activities and promoting aggressive cancer phenotype.

WGS data reveals twice as many deletions than amplifications in carboplatin resistance. Can-
cer-specific copy-number alterations have been associated with changes in chromatin  structure13,32. To under-
stand the effect of large-scale copy-number alterations (deletions and duplications), we compared WGS data 
between the CR and PR conditions. We found 10.34% and 15.49% mouse reads contamination in the UCD52PR/
UCD52CR data, respectively. The coverage between WGS and Hi-C data was positively correlated (Mean Spear-
man correlation of 10 kb-binned coverage for PR/CR = 0.699/0.671, respectively). As expected for a highly rear-
ranged carboplatin resistant genome, the CR genome had more reads with low mapping quality and pairs map-
ping to different chromosomes (Supplementary Table S2, Supplementary Figure S1). Chromosomes 3, 5, 20, 
and 22 had fewer than average coverage indicative of large deletions in CR. In contrast, chromosomes 4, 6, and 
17 showed higher than average coverage in CR, suggestive of large duplications. The comparison of mitochon-
drial chromosome coverage similarly identified nearly double coverage (1.79X) in the CR as compared with 
the PR condition. Indeed, circular binary segmentation of coverage log2 ratio (coverage differences between 
the CR and PR conditions) identified these chromosomes as having large genomic variants (Fig. 3a,b, Supple-
mentary Figure S2). Similarly, consensus SV calls using delly, lumpy, and breakdancer showed more CR-specific 
deletions and fewer duplications as compared with the PR condition (Supplementary Table S2, Supplementary 
Figure S3). In total, 202.11 Mb genomic DNA was deleted, and 114.60 Mb was duplicated in the CR condition 
when compared to PR, corresponding to 6.52% and 3.70% of the total genome size, respectively. Similarly, out 
of all genes overlapping copy number variant regions 71.64% of them were located in copy number-low regions, 
while 28.36% were in copy number-high regions. These results suggest that the carboplatin-resistant genome 
undergoes significant rearrangements with enrichment towards deletions.

We then interrogated the influence of copy number variation on gene expression. Correlating gene expression 
changes and their coverage changes of corresponding loci, we observed a significant positive correlation (Pearson 
correlation = 0.396, p value < 2.00E−16, see Methods) (Fig. 3c). Focusing on ABC transporters (described in the 
following section), we similarly observed a high correlation (Pearson correlation = 0.494, p value = 5.53E−3). 
These results highlight general concordance between genomic copy number variation and transcriptome changes 
in carboplatin resistance.

ABC transporters are amplified in carboplatin resistance. Genes deleted in CR were enriched in 
“Nikolsky Breast Cancer 20q12-q13” (43 genes, hypergeometric FDR = 3.64E−20) and “Nikolsky Breast Cancer 
22q13” (16 genes, FDR = 5.41E−18) regions (Fig. 3d, Supplementary Table S2). Conversely, genes on chromo-
some 17 region “Nikolsky Breast Cancer 17q21-q25” were amplified in CR and contained ATP-binding cas-
sette (ABC) transporters (ABCA5/ABCA6/ABCA8/ABCA9/ABCA10) among them (Fig.  3b, 172 genes total, 
FDR = 7.39E−178). Similarly, genes in “Farmer Breast Cancer Cluster 5”, which is a subset of the 17q21-25 genes 
containing ABC  transporters33, were amplified (19 genes, FDR = 3.07E−27). We performed GSEA analysis on 
genes ranked by coverage difference (Methods) and found similar enrichments (Supplementary Table S2). ABC 
transporters are known to promote chemoresistance via drug efflux and contribute to cancer development and 
metastasis via other  mechanisms34–36. Paralleling our observation of upregulated lncRNAs, the role of noncod-
ing RNAs in regulating ABC transporters started to  emerge37. These results suggest that amplification of ABC 
transporters may be a hallmark of genome rearrangement in carboplatin resistance.

Chromatin conformation changes show stronger short‑range interactions in carboplatin 
resistance. To understand the role of 3D genomic changes in carboplatin resistance, we performed Hi-C 
sequencing with two replicates per condition yielding ∼ 1.4 billion read pairs; their quality metrics and the 
proportion of mouse reads were comparable (Supplementary Table S3). Reproducibility assessment of replicates 
using HiCRep demonstrated high concordance within replicates (Fig. 4a). Similarly, correlation of Hi-C matrices 
at 1 Mb resolution showed high concordance within conditions (Pearson Correlation Coefficient (PCC) ∼ 0.95 ) 
and lower concordance between conditions (PCC ∼ 0.90 , Fig. 4b). Condition-specific replicates were merged for 
downstream processing and analyzed at 10 kb resolution. The differential chromatin contact maps are shown in 
Supplementary Figure S4. Comparison of the decay curves identified a larger number of short-range interactions 
within the 2 Mb distance range, the physiological size of Topologically Associating Domains (TADs) (Fig. 4c,d). 
These observations suggest that genome-wide short-range interactions and TADs may be strengthened in CR.

More chromatin compartments switch to an active state in carboplatin resistance. 3D struc-
tural changes in cancer genomes have been described at all levels of 3D genome  organization16. We first inves-
tigated differences in open (transcriptionally active) and closed (inactive) genomic compartments (A and B, 
respectively). We quantified genome-wide differences in A-A and B-B interactions as  described38 and found 
increased A-A interactions with the parallel decrease in B-B interactions in the CR condition (Fig. 4e,f). Inter-
compartment interactions (A-B, B-A) and the global compartmentalization score were largely unchanged 
(Fig. 4g). To get a finer insight into the A/B compartment changes, we used dcHi-C which utilizes quantile nor-
malized compartment scores calculated from eigenvector decomposition and a multivariate distance measure to 
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identify statistically significant changes in compartmentalization among multiple contact  maps39. Furthermore, 
to avoid considering eigenvectors capturing chromosomal arms, dcHiC checks for eigenvector correlation with 
gene density and GC content and anticorrelation with chromosome length (Supplementary Table S3). We com-
pared genome-wide dcHiC-selected eigenvectors between the CR and PR conditions and found the majority of 
the genome preserving its compartment state when transitioning into the carboplatin-resistant state (AA/BB 
states occupying 44.61%/45.29% of the genome, respectively, Supplementary Figure S5A,B,C). These compart-
ments were not associated with structural variants likely due to their large genomic footprint making permuta-
tion analysis infeasible. Approximately 10% of the genome switched compartments, with 5.38% and 4.72% of the 
genome undergoing AB/BA compartment switch, respectively. We then compared statistically significant com-

Figure 3.  Whole Genome Sequencing coverage differences between the CR and PR conditions. (a) Count and 
size of large deletions and duplications in the CR condition identified by the Circular Binary Segmentation 
algorithm. (b) An example of large deletions and duplications on chromosome 17 with a portion containing 
ABC transporters zoomed-in. (c) Correlation of gene expression and coverage changes, genomewide and ABC 
transporters only. Genes with small changes (less than 1SD of the change distribution) were excluded. (d) Gene 
sets from MSigDb enriched in deleted (blue) or duplicated (red) genes.
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partment changes (FDR < 0.3). Besides AB and BA compartment switches, we note that compartmentalization 
magnitude differences may be significant within regions of the same compartment state (AA and BB) (Fig. 5a). 
Of all significant changes, 36.60% and 31.47% were AB/BA switches, and 22.84%/9.09% significant changes 
were AA/BB magnitude differences, respectively (Supplementary Figure S5D). Chromosome 4 had the largest 
proportion of significant BA compartment switches (5.52%) (Fig. 5b). On the contrary, chromosomes 3 and 22 
had the largest number of significant AB switches (5.93% and 4.92%, respectively). Together with strengthening 
o short-range interactions, more changes in active compartments (54.31% AA and BA changes) than inactive 
compartments (45.69% AB and BB changes) suggest increased transcriptional activity in carboplatin resistance.

Compartment changes lead to the activation of many genes. We focused on genes overlapping 
significant compartment switches. Expectedly, the total number of genes overlapping significant BB regions 
was low (89 genes), reflecting the transcriptionally inactive state of B compartments. In contrast, the number 
of genes in regions switching from B (inactive) in PR to A (active) in the CR compartment state was the high-
est (339 genes), followed by genes in the AA and AB switches (330 and 261, respectively, Fig. 5c). In summary, 
we observed 669 genes in chromatin regions switching to the active state (AA and BA compartment switches) 
as compared with 350 genes switching into the inactive state (BB and AB switches). These results suggest that 
compartment changes in carboplatin resistance led to the activation of many genes.

We hypothesized that changes in AB compartments may correspond to changes in gene expression. 
We observed positive correlation between eigenvector changes and gene expression changes (PCC = 0.15, 
p value = 8.73E−4, Fig.  5d). This correlation was highest for genes in AA compartments (PCC = 0.38, p 
value = 2.29E−6) and BA compartments (PCC = 0.24, p value = 1.37E−2) (Fig. 5e), suggesting that changes in 
active chromatin compartments are associated with gene expression changes. Conversely, correlation within 
AB compartments was low (PCC = 0.12, p value = 3.04E−1) and even negative in BB compartment changes 
(PCC = − 0.26, p value = 2.42E−1) (Supplementary Figure S5E). These observations support the notion that car-
boplatin resistance-associated interaction strength changes occur in transcriptionally active chromatin regions; 
consequently, we expect genes associated with compartment changes to be enriched in pathways and gene 
signatures identified in RNA-seq analysis.

Metabolism genes switch into the inactive state in carboplatin resistance. To understand the 
collective effect of compartment changes, we ranked genes by the maximum eigenvector difference. GSEA analy-
sis of KEGG pathways identified the decreased activity (enrichment in downregulated genes) of amino-acid-, 
sugar-, and xenobiotic metabolic pathways, such as “Tyrosine metabolism” (8 genes, NES = − 2.27, FDR = 1.07E−4) 
(Fig. 5f, Supplementary Table S3). Activity of the “Basal cell carcinoma” pathway was increased (enriched in 
upregulated genes) in CR (17 genes, NES = 1.61, FDR = 7.07E−2), potentially reflecting more aggressive state 

Figure 4.  Replicability and compartmentalization changes in carboplatin resistance. (a) Multi-dimensional 
scaling (chromosome-specific HiCRep measures, averaged for each pairwise comparison) and (b) a heatmap 
of Pearson Correlation Coefficients for replicates at 1 Mb resolution. (c) Distance-dependent chromatin 
interaction decay curves (X-axis—distance on log10 scale, Y-axis—corrected chromatin contacts on log10 
scale) and (d) differences between them (Y-axis—log2 ratio of contact probabilities for CR vs. PR conditions). 
(e) Compartmentalization saddle plots (500 kb resolution), (f) contact enrichments between top A and B 
compartment bins (Methods), and (g) overall compartmentalization score in the CR versus PR condition 
comparison.
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of carboplatin-resistant cells. Analysis of the “C2” MSigDb category identified several “Nikolsky Breast Cancer 
Amplicon”  signatures40 enriched in genes switching into inactive state. These genes were frequently colocalized 
with CR-specific deletions, confirming the notion that genomic rearrangements, gene expression, and compart-
ment switches are related. We also observed downregulation of several metabolic pathways, such as “Ethanol 
Oxidation” (7 genes, NES = − 2.23, FDR = 2.21E−6). Notably, the “Transcriptional Regulation by Small RNAs” 
signature was switching into active state (67 genes, NES = 1.78, FDR = 7.79E−3), that, together with upregula-
tion of lncRNAs from the RNA-seq analysis, suggest the role of noncoding transcripts in carboplatin resist-
ance. Analysis of the “C5” MSigDb category (ontologies) identified activation of “Homophilic Cell Adhesion Via 
Plasma Membrane Adhesion Molecules” genes (76 genes, NES = 2.22, FDR = 9.82E−7) ontology and inactivation 
of “Ethanol Oxidation” (7 genes, NES = − 2.25, FDR = 5.39E−6) and other metabolic functions. These results sug-
gest decreased activity of metabolic pathways in carboplatin resistance.

Longer‑range and CTCF‑independent loops are enriched in the CR condition. Chromatin loops 
are considered the primary mechanism of enhancer-promoter interactions. We considered loops detected by 
 Mustache4 in the PR and CR conditions. Loops are defined as pairs of interacting regions (i.e., loop anchors), 
while anchors are individual regions. We separated them into common and condition-specific loops and 
anchors, allowing ± 1 bin flank (neighbor regions are considered while computing overlap). Figure 6a illustrates 
common loops with adjacent anchors at one or both ends. It also demonstrates the difference between loops and 
anchors in that a condition-specific loop may have both common and condition-specific anchors (Supplemen-
tary Table S4).

Mustache detected ∼ 1.5 times more loops in the CR condition as compared to the PR condition (16,716 
vs. 10,652, results are reported at 10 kb resolution unless specified otherwise). Separating condition-specific 
and common loops identified more than 2 times unique loops in the CR condition as in the PR conditions 
(10,397 vs. 4333) (Fig. 6b). Comparing the proportions of common versus unique loops identified the majority 
of CR loops were unique (10,397 unique vs. 6319 common loops); the reverse was observed for PR loops (4333 
unique vs. 6319 common loops). Similarly, anchor analysis identified more anchors in the CR condition, and 

Figure 5.  Chromatin state changes in carboplatin resistance. (a) Genomewide flow chart and (b) chromosome-
specific proportions of the genome switching states between active A and inactive B compartments in the 
CR versus PR comparison at FDR < 0.3. (c) Number of genes overlapping chromatin state switching regions. 
(d) Correlation between gene expression- (X-axis) and chromatin state (eigenvector) changes (Y-axis). Only 
changes larger than 1SD or (e) changes within AA or BA switches were considered. (f) Most significant GSEA 
enrichments using KEGG, curated gene sets, and Gene Ontology MSigDb collections.
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the majority of them were CR-specific. These observations were consistent across resolutions. The PR-specific 
loop anchors were marginally enriched in the AB compartment switches (permutation p value = 2.80E−2), while 
the CR-specific anchors were enriched in both AB and BA compartment switches (p value < 1.00E−4), sug-
gesting chromatin rewiring in compartment-switching regions in the CR condition. Integrating the PR- and 
CR-specific loop anchors with structural variations, we found them to be depleted in the condition-specific dele-
tions (p value = 1.00E−2–1.00E−4) and deletions and duplications detected across both the PR and CR genomes 
(p value < 1.00E−4). These results suggest that structural variants may indirectly affect chromatin rewiring. 
The Aggregate Peak Analysis (APA) confirmed the enrichment of PR/CR-specific loops in the corresponding 
Hi-C matrices, while common loops showed enrichment in both conditions (Fig. 6c). With the observation of 
increased short-range interactions and chromatin switching into a more active state, these results suggest a major 
interactome rewiring via many unique loops in the CR condition.

We compared size of the PR/CR specific/common loops. Loops specific for either condition were significantly 
longer than the PR/CR-common loops (median size 310 kb in PR/330 kb in CR vs. 250 kb for common loops, 
10 kb resolution, Wilcoxon p value < 1.04E−41, Supplementary Table S4). These observations were consistent 
across resolutions. The CR-specific loops were generally longer than the PR-specific loops at 10 kb resolution 
(median size 330 kb vs. 310 kb). Considering size ranges, we found a smaller proportion of condition-specific 
loops with a size under 100 kb and a larger proportion of loops larger than 1 Mb (Fig. 6d). These results suggest 
that most condition-specific loop interactions occur at longer distances.

CTCF is the most well-known protein enriched at loop anchors in convergent orientation. We first quanti-
fied the number of multiple, single, and adjacent CTCF motifs overlapping condition-specific and common 
anchors. Condition-specific anchors were less overlapping with CTCF motifs than common loops (Supplemen-
tary Table S4). Considering convergence types, we found that condition-specific loops had fewer loops with CTCF 
in convergent orientation and more loops without CTCF binding (Fig. 6e). While these results may indicate 
that condition-specific loops may be transitory, their aggregate peak analysis suggests they show a strong local 
enrichment indicative of strong loops specifically in the condition where they are reported. In summary, our 
observations suggest that condition-specific loops are less dependent on CTCF, longer-range and more abundant 
in the carboplatin resistant state.

mTOR, WNT signaling, and other cancer pathways are associated with increased looping in 
carboplatin resistance. To understand the functional significance of CR-specific interactome changes, 
we performed functional enrichment analysis of genes overlapping condition-specific loop anchors under the 
assumption that such anchors facilitate condition-specific enhancer-promoter interactions. Analysis of KEGG 
pathways identified genes overlapping common anchors being enriched in “Cell cycle” (25 genes, FDR = 9.44E−3) 

Figure 6.  Condition-specific and common loops and anchors. (a) Differences between loops and anchors. 
Common loops (blue arcs) and PR/CR-specific loops (green/red arcs) may share anchors that are considered 
common (blue rectangles), while the other, loop-specific anchors, are considered PR/CR-specific (green/red 
rectangles). Adjacent anchors are considered in the same category. (b) Counts of the condition-specific and 
common loops and anchors. (c) Aggregate Peak Analysis of condition-specific and common loops (X-axis) in 
the condition-specific matrices (Y-axis). Corner numbers correspond to center-to-corner ratios. (d) Size range 
comparison of loop size distributions, (e) Proportions of loops with various CTCF configurations at boundaries.
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pathway (Supplementary Table  S4). Genes overlapping PR-specific anchors were marginally enriched in the 
“Focal adhesion” KEGG pathway (23 genes, FDR = 1.94E−2); however, other genes from this pathway over-
lapped CR-specific anchors and were also enriched in it (39 genes, FDR = 4.52E−3). In contrast, genes overlap-
ping CR-specific anchors were strongly enriched in “Pathways in cancer” (90 genes, FDR = 7.99E−4), “Breast 
cancer” (29 genes, FDR = 1.22E−2), and other cancer-specific pathways (“Gastric cancer”, “Glioma”, “Hepatocel-
lular carcinoma”) (Fig. 7a). We also observed CR-specific enrichments in “mTOR signaling pathway” (31 genes, 
FDR = 7.45E−3), “ECM-receptor interaction” (18 genes, FDR = 2.12E−2), “Wnt signaling pathway” (29 genes, 
FDR = 2.24E−2), and similar cancer-related pathways. These results suggest that many cancer-related genes and 
pathways may be regulated by CR-specific loops.

TP53, TP63, BATF, and FOS‑JUN motifs are enriched in anchors of CR‑specific loops. We 
hypothesized that carboplatin resistance-specific loops may enable regulation through interactions with specific 
transcription factor (TF) binding sites. Such transcription factors are commonly identified by motif enrichment 
analysis. Given the low resolution of Hi-C data (10 kb), we focused on open chromatin regions within the PR/
CR-specific anchors. That is, anchors were intersected with the “Cancer/epithelial” ATAC-seq data from Meule-
man et al.41, and only open chromatin regions were considered.

Using the AME tool from the MEME suite (Methods), we identified TP53, TP63, BATF, and FOS-JUN 
family of transcription factor motifs (JASPAR 2022) as significantly enriched in the CR-specific anchors 
(FDR < 1.00E−70, Fig. 7b, Supplementary Table S4). These motifs were also enriched in anchors common to PR 
and CR, suggesting that general features of loop anchors that are independent of carboplatin resistances may drive 
these enrichments. Therefore, we performed a discriminative analysis of CR/PR-specific versus corresponding 
CR/PR common anchors. We did not observe significant enrichments in the PR-specific versus PR-common 
anchors. In contrast, confirming the results of the shuffled analysis, FOSL1-JUND, BATF3, TP53, TP73, and 
other TFs were distinctly enriched in the CR-specific versus CR-common comparison (FDR = 2.23E−4/3.23E−
4/7.30E−4/4.81E−3, respectively). These observations suggest TP53, TP63, BATF, and the FOS-JUN family of 
transcription factors may be regulating gene expression change via CR-specific looping.

We also performed enrichment analysis in cell-/tissue-specific experimentally obtained TFBSs from ChIP-seq 
experiments using  UniBind42. Differential analysis of CR-specific versus PR-specific anchors at 10 kb resolution 
similarly identified TP53 and TP63 as the topmost enriched transcription factors, followed by ESR1 (hyper-
geometric p value = 7.94E−4/4.27E−3/6.91E−3, respectively) (Fig. 7c). Notably, these enrichments were breast 
cancer-specific (MCF7 (invasive ductal breast carcinoma), MCF10A (breast epithelial cells), ZR-75-1 (invasive 
ductal carcinoma)), reflecting the breast cancer origin of UCD52 cell line and a more aggressive phenotype in the 
CR condition. We also observed enrichment of FOS (p value = 2.16E−2, MCF10A-ER-Src experiment) and CTCF 
(p value = 3.00E−2); the latter is expected as we are focusing on loop anchors known to be enriched for CTCF 
binding. At 25 kb resolution, FOS, JUN, and JUNB from MCF10A cell line were the most enriched (p value = 4.3
6E−5/5.01E−4/2.45E−3) (Fig. 7d). These structurally and functionally related transcription factors are collectively 
described as activating protein-1 (AP-1), a multi-functional complex that mediates gene regulation during cell 
proliferation, differentiation and apoptosis or transformation, and tumorigenesis, and has long been known to be 
involved in multidrug resistance in breast cancer  cells43. Together with the MEME analysis, the UniBind enrich-
ments add FOS-JUN family of transcription factors to the list of potential regulators of carboplatin resistance.

Smaller, stronger TADs are abundant in carboplatin resistance and enriched in cancer‑related 
genes and pathways. Given the increased interaction strength and the number of loops at shorter dis-
tances, we expected to detect more TADs in the CR condition. Indeed, using Insulation Score (IS, see Methods), 
we detected more TADs in the CR condition (8152 vs. 5870 in PR, Supplementary Table S5). In contrast to Mus-
tache loops that do overlap, IS detects consecutive TAD boundaries. Therefore, the larger number of TADs in the 
CR condition corresponded to the significantly smaller average TAD size (Median size 240 kb in PR vs. 190 kb 
in CR, Wilcoxon p value = 2.45E−46) (Supplementary Figure S6A). The number of CR-specific TADs was larger 
than that of PR-specific TADs (5437 vs. 3155), also reflected in the number of anchors (total and condition-spe-
cific). Similarly, the CR-specific TADs were smaller than the PR-specific TADs (Median size 360 kb vs. 210 kb, 
Wilcoxon p value = 4.25E−125). Considering size ranges, we observed fewer condition-specific TADs less than 
100 kb and more TADs larger than 500 kb (Supplementary Figure S6B). Similar to the condition-specific loop 
anchors, the condition-specific TAD boundaries were depleted in deletions and duplications detected across 
both the PR and CR genomes (p value = 3.00E−3–1.00E−4). The aggregate peak and TAD analyses (APA, ATA) 
confirmed stronger looping and interactions within TADs in the CR condition (Supplementary Figure S6E,F). 
We investigated the enrichment of genes overlapping CR-specific and PR-specific TAD boundaries and found 
the “Pathways in cancer” KEGG pathway was among the most significant in CR (87 genes, FDR = 8.48E−4) while 
nothing was significant in PR. These results support previous observations that short-range interactions and 
loops strengthen in the carboplatin-resistant state and are associated with cancer-related genes.

Integrative analysis suggests activation of mitochondrial metabolism and cancer‑associated 
pathways/targets in carboplatin resistance. To prioritize genes affected in carboplatin resistance, we 
combined multiple layers of evidence into a CR-specific importance score. This score is a sum of evidence pri-
oritizing genes significantly upregulated in CR (RNA-seq), amplified and overlapped CR-specific copy number 
variants (WGS), located in compartments switching into active state (dcHiC), and overlapped CR-specific loop 
anchors (Mustache) and TAD boundaries (hicFindTADs) (Supplementary Table S6). Examples include MCUB, 
a part of mitochondrial calcium uniporter complex known to play a role in  chemoresistance44, RPL38 ribosomal 
protein, a part of gene expression signature of cisplatin  resistance45, ABCA5, ATP binding cassette subfamily A 
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member 5, upregulation of which has been associated with poor  outcome36, IL17D, an interleukin expression 
of which has been correlated with drug  resistance46, and BRCA1, a part of DNA repair pathway associated with 
drug  resistance47. We validated that MCUB and BRCA1 had increased protein expression in carboplatin resist-
ance (Supplementary Figure S7).

As expected, enrichment analysis on CR- and PR-specific genes supported by four or more of these criteria 
identified functional signatures previously observed with each omics data type separately (Fig. 7e,f). Paralleling 
observations from RNA-seq and dcHiC analyses, the CR-specific genes (regulation gained in CR) were enriched 
in “Ribosome” (19 genes, FDR = 1.52E−2), “Oxidative phosphorylation” (16 genes, FDR = 4.14E−2) KEGG path-
ways and similar gene ontologies and hallmark signatures (Supplementary Figure S8). Consistent with our 

Figure 7.  Functions and transcription factors enriched in condition-specific loop anchors. (a) Most significant 
hypergeometric enrichments of genes overlapping condition-specific loop anchors in KEGG pathways. Blue/
red colors indicate PR/CR-specific enrichments. (b) MEME motif enrichment analysis at 10 kb resolution. Red 
gradient represents the enrichment level of transcription factor motifs (X-axis) in the condition-specific and 
common loop anchors (Y-axis). (c,d) Transcription factor enrichment analysis at 10 kb and 25 kb resolutions 
(UniBind). X-axis—transcription factors, Y-axis—−log10(enrichment p value), each dot represents cell/tissue-
specific set of ChIP-seq peaks. (e,f) Most significant hypergeometric enrichments of genes supported by at 
least four pieces of evidence in the CR/PR condition. All analyses were performed on open chromatin regions 
(ATAC-seq) overlapping the condition-specific and common loop anchors.
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observation of ABC transporter amplification on chr17, they were overrepresented among CR-specific genes and 
enriched in the “Nikolsky Breast Cancer 17q21-q25 Amplicon” signature (75 genes, FDR = 9.62E−31). Enrich-
ment of the PR-specific genes (regulation lost in CR) expectedly showed immune-related functions detected as 
downregulated in CR, such as “Influenza A” KEGG pathway (27 genes, FDR = 1.54E−3), “Regulation of Viral 
Process” ontology (32 genes, FDR = 2.00E−5), and “Interferon Gamma Response” hallmark signature (43 genes, 
FDR = 8.16E−6) (Supplementary Table S6).

Discussion
This study presents an integrative analysis of carboplatin resistance in breast cancer. The comparison of genomic 
(WGS), transcriptomic (RNA-seq) and 3D (Hi-C) datasets provides a unique perspective of mechanisms that 
promote acquired carboplatin resistance. Our study focuses on carboplatin resistance which is important as this 
drug has become an integral component of most TNBC treatment regimens. Second, we utilize a PDX model 
of TNBC as a better physiological experimental system for tumor  development48, in contrast to cultured cell 
lines. Third, we integrated 3D interactome rewiring with genomic and transcriptomic changes and, in line with 
previous  observations47,49, identified amplification of ABC transporters, mitochondrial energy metabolism, and 
several cancer-related pathways/genes/transcription factors as potential mechanisms of carboplatin resistance.

A limitation of our study is that it reports observations from one experimental model. Yet, our overlapping 
layers of evidence from multi-omics data provide a coherent picture of the 3D genome and transcriptome changes 
in the carboplatin-resistant state. Furthermore, many of our observations have been supported by other studies. 
For example, increase in short-range interaction frequencies and predominant switching of chromatin into a 
more active state in endocrine-resistant ER + breast cancer may reflect decompaction of constitutive heterochro-
matic regions, a known hallmark of  carcinogenesis50. Differences in A/B compartment switching observed in 
the carboplatin resistant state support previously reported interaction strength increase in the A compartment 
with the parallel decrease in the B compartment under Decitabine treatment of endocrine-resistant breast cancer 
cell  lines50. Paralleling our observations of the larger number of TADs in the CR condition, an increase in the 
number of TADs in B-cell  lymphoma51 and prostate  cancer13 has been reported. Furthermore, cancer TADs are 
known to be smaller than  normal13, supporting our results. However, unlike our observations, loss of chromatin 
interactions was observed in Tamoxifen-resistant (but not in Fulvestrant-resistant) breast cancer  cells52. Also, 
the development of endocrine resistance led to a significant increase in TAD size in Fulvestrant-resistant (but 
not in Tamoxifen-resistant) breast cancer  cells52. These discrepancies can be attributed to different mechanisms 
driving endocrine- and carboplatin resistance, and differences in PDX mouse models. In summary, our results 
together with other studies warrant further work to refine the mechanisms of 3D genome remodeling in chem-
oresistance under different conditions.

Our findings of upregulated oxidative phosphorylation and ribosomal proteins suggest the role of mito-
chondrial energy metabolism in carboplatin resistance. Mitochondria generate metabolic energy by converting 
carbohydrates and fatty acids to ATP by glycolysis and oxidative phosphorylation (OXPHOS). Most mitochon-
drial proteins are translated on free cytosolic ribosomes and imported into the organelle by specific targeting 
signals. Some recent studies have shown that OXPHOS can be upregulated in certain cancers and suggest the 
role of TP5353, and OXPHOS inhibitors have shown promise in various  tumors54. Interestingly, Lonidamine, a 
drug interfering with OXPHOS, has been known to potentiate the effect of chemotherapy on platinum-resistant 
ovarian cancer cells for over 25  years55. Furthermore, the OXPHOS pathway has recently been described as 
a mediator of chemotherapy resistance in  TNBC27. Together with the emerging understanding of the role of 
mitochondrial components in chemotherapy  resistance44, our results suggest that the mitochondrial metabolic 
processes may hold promise in overcoming carboplatin resistance.

Besides gene expression and structural variants, other layers of genomic information have been linked to 
3D genome changes. DNA methylation has recently emerged as a major player in 3D chromatin remodeling in 
endocrine-resistant breast  cancer52. Open chromatin (ATAC-seq) data and transcription factor binding profiles 
(e.g., CTCF ChIP-seq) are frequently used in the analysis. These (epi)genomic data are often obtained from public 
repositories for well-established cell- and tissue types. In contrast, our experimental system (UCD52 PDX model) 
is relatively unexplored and does not have readily available additional omics data. Therefore, generation of other 
genomic datasets, e.g., Smc1 or Rad21 ChIP-seq, to be integrated with our current data is of our future priorities. 
Furthermore, we performed our experiments on bulk tissue which obscures high heterogeneity of TNBC and 
warrants the use of single-cell  technologies56. One rationale was the hypothesis that repeated carboplatin treat-
ment will minimize heterogeneity by selecting resistant clones. This may explain the better agreement between 
Hi-C replicates in the CR condition (Fig. 4a). Our future plans include using single-cell technologies, including 
scHi-C, and integrating multi-omics data on a single-cell level.

Conclusions
Our study is the first to provide a unique multi-omics dataset and integrative analysis of carboplatin-resistance 
in TNBC. It addresses several limitations of current studies. Specifically, we focused on TNBC as the most 
deadly and incurable subtype, instead of luminal subtypes with better survival prognosis and available treatment 
strategies. We utilized a PDX model as an experimental system better reflecting human tumor development. 
We investigated resistance to carboplatin, one of the platinum-based drugs, instead of better studied resistance 
to endocrine therapies. We took a multi-omics integrative approach by generating deeply sequenced Hi-C data, 
whole-genome sequencing, and RNA-seq. This approach allowed us to highlight the role of long noncoding RNAs 
and amplification of ABC transporters and prioritize mitochondrial metabolism and oxidative phosphorylation 
pathways as the possible mechanisms of carboplatin resistance.
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Methods
Basal‑like TNBC PDXs. The UCD52 basal-like triple-negative breast cancer PDX model was obtained 
from the University of Colorado. Tumors were grown in the mammary fat pads of female non-obese diabetic 
severe combined immunodeficient gamma (NSG) mice (The Jackson Laboratory, strain #005557). Tumors were 
allowed to grow to ∼ 70− 100mm2 in size before being excised and prepared into a single-cell suspension using 
a previously described  protocol57. Single-cell suspensions of PDX cells were used for serial passaging. Tumor 
cells were resuspended 1:1 in Matrigel (Corning) and injected into the right mammary gland of female NSG 
mice (500 K cells/injection). Single-cell suspensions were also used for Hi-C, WGS, and RNA-seq. All studies 
involving mice were approved by the Virginia Commonwealth University (VCU) Institutional Animal Care 
and Use Committee (IACUC) (Protocol# AD10001247), and all experiments were performed following IACUC 
guidelines and regulations. The results of animal experiments are reported in accordance with the ARRIVE 
guidelines 2.0.

Development of a Carboplatin Resistant Subline. UCD52 tumors were allowed to grow in female 
NSG mice. Once tumors were ∼ 25− 50mm2 , mice were randomizet into two groups, one receiving three 40 mg/
kg carboplatin doses administered intraperitoneally (treatment group) and another untreated (control group). 
Treatments were spaced four days apart. Treatment with carboplatin initially shrunk tumors and prevented 
tumor growth for a period of time. When tumor growth resumed, UCD52 tumors were harvested, prepped into 
single-cell suspensions, and serially passaged into new recipient mice. This process was repeated until the tumor 
was no longer responsive to carboplatin, yielding a derived carboplatin-resistant subline of UCD52. Mice bear-
ing the carboplatin-resistant subline of UCD52 continued to receive the aforementioned regimen of carboplatin 
treatment to maintain the phenotype.

Sample preparation. Hi-C sequencing was performed in replicates by Arima Genomics (San Diego, CA) 
as  described58. WGS was performed by the Beijing Genomics Institute (BGI) according to the manufacturer’s 
protocol. RNA was prepared with the Qiagen RNeasy mini kit. Sequencing libraries were prepared with NEB-
Next Ultra II RNA Library Prep Kit for Illumina using manufacturer’s instructions (New England Biolabs). The 
sequencing libraries were multiplexed and clustered onto a flowcell. After clustering, the flowcell was loaded 
onto the Illumina HiSeq instrument according to the manufacturer’s instructions. The samples were sequenced 
using a 2 × 150 bp Paired End (PE) configuration. Image analysis and base calling were conducted by the HiSeq 
Control Software (HCS). Raw sequence data (.bcl files) generated from Illumina HiSeq was converted into fastq 
files and de-multiplexed using Illumina bcl2fastq 2.17 software. One mismatch was allowed for index sequence 
identification. Approximately 30 M reads were obtained per  sample59.

Hi‑C. The data was processed using the Juicer v.1.6  pipeline60 and hg38 human genome assembly, which we 
showed to be the most optimal setting for PDX Hi-C data  processing58. Reproducibility was estimated using the 
Python implementation of  HiCRep61 at 1 Mb resolution. Multi-dimensional scaling and hierarchical cluster-
ing were performed on the matrix of pairwise chromosome-averaged HiCRep measures. Data resolution was 
estimated using the method introduced in Rao’s 2014 paper (the number of bins with > 1000 contacts should 
be at least 80% of the total number of bins, calculate_map_resolution.sh script)5. The maximum resolution 
per merged replicate (10 kb) was selected unless specified otherwise. Distance-dependent decay of interaction 
counts was obtained using HiCExplorer’s hicPlotDistVsCounts v.3.6  tool62, and the decay parameters were esti-
mated using the poweRlaw v.0.70.6 R  package63. Differential decay analysis was performed using the GENOVA 
v.1.0.0 R  package64 on 100 kb-resolution data.

A/B compartment analysis. To directly quantify the tendency of each region to interact with the other 
regions in either A or B compartments, we calculated several A/B compartment strength metrics. Briefly, .hic 
files were converted to multi-resolution .mcool files using the hic2cool tool v.0.8.3 (https:// github. com/ 4dn- dcic/ 
hic2c ool). Data at 100 kb resolution was iteratively corrected and the AB compartment analysis was performed 
using the GENOVA v.1.0.0 R package. 100 kb bins were grouped into 50 percentile groups based on their PC1 
(1st eigenvector) value. Within pairwise combinations of the 50 percentile groups, average contact enrichments 
(obs/exp) between bins were calculated, and log2 of the contact enrichment scores were plotted as a heatmap 
saddle plot. Summarized A-A and B-B compartment strengths were calculated as the mean log2 contact enrich-
ment between the top (A-A) or bottom (B-B) 20% of PC1 percentiles and between the top and bottom 20% of 
PC1 percentiles for A-B compartment strength, excluding chrY and chrM. The compartmentalization score 
was calculated as previously described using mean contact enrichments for A-A, B-B, and A-B following this 
formula: log((A− A)∗(B− B)/(A− B)2)65.dcHiC (differential compartment analysis of Hi-C) is a method that 
identifies statistically significant differences in compartmentalization among two or more contact maps, includ-
ing changes that are not accompanied by a compartment  flip39. dcHiC first employs a time- and memory-efficient 
R implementation of singular value decomposition (SVD) to achieve the eigenvalue decomposition of each Hi-C 
contact map. This is followed by automated selection to find the principal component and its sign (reoriented if 
needed) that best correlates with gene density and GC content per sample. The resulting compartment scores are 
then quantile normalized, and a multivariate score (Mahalanobis distance) is computed to detect the outliers. 
The multivariate score is then used for computing the final statistical significance (Chi-square test) of differences 
in compartmentalization. dcHiC was applied to PR and CR Hi-C data at 250 kb resolution with default param-
eters. Chromosome-wise principal compartments for each sample were selected based on what best correlates 
with gene density and GC content. The compartment scores and signs were further manually inspected to refine 
the assignment (Supplementary Table S3). Statistically significant differences were called at FDR = 0.3.

https://github.com/4dn-dcic/hic2cool
https://github.com/4dn-dcic/hic2cool
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Loop analysis. Mustache v1.2.44 was used to detect significant intrachromosomal loops in reads from the 
CR and PR strains. Merged replicate Hi-C maps of 10  kb resolution were inputted into Mustache and ana-
lyzed using VC normalization with a p value threshold of 0.1. The output calls were filtered for significance at 
FDR < 0.05.

A loop is defined by two anchors forming an interaction pair. Loops called in PR and CR conditions were 
separated into condition-specific and common loops using the GenomicInteractions v.1.28.0 R  package66. Loops 
were considered common allowing for a resolution-size flank when considering overlaps. Similarly, anchors 
within a resolution-size flank were considered overlapping. Anchors were separated into PR/CR-specific and 
common anchors using the GenomicRanges v.1.46.1 R  package67. Loops and anchors overlapping centromeres, 
telomeres, and excludable regions (the excluderanges v.0.99.6 R package, https:// github. com/ dozmo rovlab/ exclu 
deran ges) were removed. TNBC-specific enhancers were obtained from Huang et al.68. The association (enrich-
ment) analysis was performed using the regioneR v.1.30.0 R package.

Motif analysis. Open chromatin regions within the PR/CR-specific and common anchors were analyzed 
using the MEME suite via the memes v.1.2.0 R  package69. The AME analysis identifies enriched motifs in a set 
of target sequences as compared with shuffled sequences. Additionally, AME discriminative analysis compares 
sets of sequences for motifs enriched in one of the sets. The  UniBind42 differential enrichment analysis was run 
with default settings. Enrichment results supported by at least 50 open chromatin regions and two ChIP-seq 
experiments were kept.

CTCF overlap analysis. The proportion of PR/CR-specific and common anchors overlapping CTCF motifs 
were quantified using GenomicRanges v.1.46.1 R  package67. Anchors were reduced to merge overlapping sets 
prior to counting the number of CTCF motifs overlapping each anchor. The anchors overlapping multiple or 
single CTCF sites were extracted and quantified, and anchors overlapping no CTCF sites were flanked in both 
directions by one bin equal to Hi-C resolution. The overlap between the extended anchors and CTCF motifs was 
calculated, and the anchors were classified as containing at least one (overlapping) or no CTCF sites.

RNA‑seq analysis. A custom reference genome was created consisting of human, mouse, and viral 
genomes. The GRCh38.d1.vd1 Reference Sequence of the human genome, which includes viral genomes, and 
the corresponding annotation file were obtained from NCI’s Genomic Data Commons. It was merged with 
the GRCm38 M12 Gencode release of the primary assembly mouse genome and its corresponding annotation 
file. Chromosomes were labeled with organism-specific prefixes before concatenation, similar to the method 
described by Callari et al.70.

FastQC v.0.11.8 and MultiQC v.1.8 were used to perform initial quality control on FASTQ files. Reads were 
trimmed to remove adaptors and poor quality bases using Cutadapt v.1.1571. STAR v2.5.2b72 was used to index 
the concatenated reference genome and perform the alignment. The FASTQ files were aligned to the concat-
enated genome with the following STAR parameter settings: –outSAMtype BAM Unsorted –outSAMorder Paired 
–outReadsUnmapped Fastx –quantMode TranscriptomeSAM –outFilterMultimapNmax 1. Read counting to 
obtain gene expression values from the aligned BAM files utilized a transcript reference file created from the 
concatenated genome and was performed using the Salmon v0.8.2 “quant” algorithm with the library type set to 
“IU”73. The counts were imported into R v.4.0.3 using the tximport R package v.1.18.074. Differential expression 
was performed using the edgeR v.3.36.0 R  package75 on human transcript counts.

Functional enrichment analysis. Functional enrichment analysis (GO, KEGG) using a hypergeometric 
test was performed using the enrichr R package v.3.076. Pre-ranked GSEA was performed with 1000 permuta-
tions on gene sets obtained from the Molecular Signature Database hosted at the Broad Institute (MSigDB) 
(msigdbr v.7.4.1). For gene expression differences, genes were ranked by −log10(p-value), with the sign reflecting 
the directionality of fold change. For gene coverage differences, genes were ranked by log2 coverage differences 
weighted (multiplied) by the average coverage for the corresponding gene. This was done to prioritize genes 
with high average coverage and high coverage differences. For AB compartment switches, genes were ranked by 
eigenvector differences. All statistical calculations were performed in R v4.1.0 and Bioconductor v.3.14.

Expression correlation with other measures. Gene expression changes were compared with WGS 
coverage changes and AB compartment differences (Eigenvector differences). Gene expression coverage counts 
were obtained with htseq-count v.0.11.1 using “–order = pos” and “–stranded = no”  settings77 and Gencode v.39 
gene annotations. Genes with small changes in either measure (absolute log2FC less than 1 SD of the corre-
sponding distribution) were removed.

WGS structural variant (SV) analysis. Mouse reads were removed from PDX WGS data by align-
ing the data to the combined hg38 and mm10 genome and retaining reads aligned to the human portion, as 
 recommended70. Paired-end reads were aligned to the hg38 human genome assembly using bwa mem v.0.7.1778, 
duplicates were removed using picard MarkDuplicates v.2.18.2979. Sorting, indexing, alignment statistics extrac-
tion was performed using samtools v.1.780. Coverage bigWig files at 10 kb resolution were obtained with the 
deeptools’s v.3.5.081 bamCoverage tool. Coverage differences (log2 ratio) were obtained using deeptools bam-
Compare. The DNAcopy v.1.68.0 R  package82 was used to segment coverage differences using the Circular 
Binary Segmentation algorithm.

https://github.com/dozmorovlab/excluderanges
https://github.com/dozmorovlab/excluderanges
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We predicted SV using three different tools: delly v.0.1.1983, lumpy v.0.2.1384, and breakdancer v.1.1.1285, 
and filtered out the SVs calls with less than 5 PE reads of evidence to increase call stringency. We then defined a 
consensus call set by overlapping the results with bedtools v2.30.086, with a window size of 1kbp for translocations 
and 500 bp for all other SV types. To reduce the number of false positives, we kept only the SVs that were recov-
ered by at least two algorithms. Finally, we intersected these consensus calls to identify sample-specific variants.

Immunohistochemical Staining of Formalin‑Fixed Paraffin‑Embedded PDX Sections. Immu-
nohistochemistry (IHC) was performed on formalin fixed paraffin embedded tissue sections using rabbit 
primary anti-BRCA1 (HPA057371) or anti-MCUB (HPA048776) antibodies from Sigma-Aldrich, (St.  Louis 
MO, USA), as well as polymer/HRP secondary antibody with 3,3’-Diaminobenzidine (DAB + chromogen and 
DAB + substrate buffer (K4011), Dako (Carpinteria CA, USA). Tissues were counterstained with hematoxylin 
(GHS332, Sigma-Aldrich), coverslips were mounted with Permount (SP15, Fisher) and slides imaged at 400X 
magnification with a Carl Zeiss™ AxioLab™ A1 light microscope and processed with ZEN Digital Imaging for 
Light Microscopy software.

Protein quantification of BRCA1 and MCUB. IHC images were quantified in  ImageJ87 (two replicates 
per condition * three areas = 6 measurements). The Colour Deconvolution option was selected, and the stain 
H DAB was selected. Upon deconvolution, the Colour_2 image (DAB) was analyzed via Set Measurements for 
mean grey value only as the display value. The image was measured (Ctrl + M) to obtain a mean intensity value. 
The optical density (OD) was calculated as OD = log10

255

meanintensity . The differences in ODs were quantified using 
two-tailed t-test.

Data availability
All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene Expression 
Omnibus (GEO; https:// www. ncbi. nlm. nih. gov/ geo/), under accession number GSE201435. The whole genome 
sequencing data generated in this study have been submitted to the NCBI SRA database (https:// www. ncbi. 
nlm. nih. gov/ biopr oject/), under accession number PRJNA832117: https:// datav iew. ncbi. nlm. nih. gov/ object/ 
PRJNA 832117. All original code has been deposited at Github (https:// github. com/ dozmo rovlab/ PDXHiC_ 
suppl ement al).
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