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Efficient shallow learning 
as an alternative to deep learning
Yuval Meir 1, Ofek Tevet 1, Yarden Tzach 1, Shiri Hodassman 1, Ronit D. Gross 1 & Ido Kanter 1,2*

The realization of complex classification tasks requires training of deep learning (DL) architectures 
consisting of tens or even hundreds of convolutional and fully connected hidden layers, which is 
far from the reality of the human brain. According to the DL rationale, the first convolutional layer 
reveals localized patterns in the input and large-scale patterns in the following layers, until it reliably 
characterizes a class of inputs. Here, we demonstrate that with a fixed ratio between the depths of the 
first and second convolutional layers, the error rates of the generalized shallow LeNet architecture, 
consisting of only five layers, decay as a power law with the number of filters in the first convolutional 
layer. The extrapolation of this power law indicates that the generalized LeNet can achieve small error 
rates that were previously obtained for the CIFAR-10 database using DL architectures. A power law 
with a similar exponent also characterizes the generalized VGG-16 architecture. However, this results 
in a significantly increased number of operations required to achieve a given error rate with respect 
to LeNet. This power law phenomenon governs various generalized LeNet and VGG-16 architectures, 
hinting at its universal behavior and suggesting a quantitative hierarchical time–space complexity 
among machine learning architectures. Additionally, the conservation law along the convolutional 
layers, which is the square-root of their size times their depth, is found to asymptotically 
minimize error rates. The efficient shallow learning that is demonstrated in this study calls for 
further quantitative examination using various databases and architectures and its accelerated 
implementation using future dedicated hardware developments.

Traditionally, artificial neural networks have been derived from brain dynamics, where synaptic plasticity 
modifies the connection strength between two neurons in response to their relative  activities1,2. The earliest 
artificial neural network was the  Perceptron3,4, which was introduced approximately 65 years ago, consisting 
of a feedforward classifier with many inputs and a single Boolean output unit. The development of more 
structured feedforward architectures with numerous convolutional and fully connected hidden layers, which 
can be increased to  hundreds5,6, as well as the development of their non-local training techniques, such as 
backpropagation (BP)7,8, are required to address solutions to complex and practical classification tasks. These 
are essential components of the current implementation of deep learning (DL) algorithms. The underlying 
rationality of DL algorithms is that the first convolutional layer is sensitive to the appearance of a given pattern 
or symmetry in limited areas of the input, whereas the subsequent convolutional layers are expected to reveal 
large-scale features characterizing a class of  inputs9,10.

In a supervised learning scenario, a feedforward step is initially performed, in which the distance between 
the current and desired outputs for a given input is computed using a given error function. The BP procedure is 
utilized in the next step, where weights are updated to locally minimize the error  function7,11. Graphic processing 
units (GPUs) are used to accelerate this time-consuming computational process of multiplying large matrices and 
vectors, and its use is repeated several times over the training set until a possible desired test error is achieved. 
Architectures with an increasing number of hidden layers enable learning to be efficiently optimized for complex 
classification tasks, which goes together with the advancement of powerful GPU technology.

However, the brain’s architecture differs significantly from that of DL and consists of very few feedforward 
 layers12–14, only one of which approximates the convolutional wiring, mainly from the retinal input to the first 
hidden  layer12,15. The key question driving our research is whether learning non-trivial classification tasks using 
brain-inspired shallow feedforward networks can achieve the same error rates as DL, while potentially requiring 
less computational complexity. A positive answer will question the need for DL architectures and might direct 
the development of unique hardware for the efficient and fast implementation of shallow learning. Additionally, 
it will demonstrate how brain-inspired shallow learning has advanced computational capability with reduced 
complexity and energy  consumption16,17.
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Results
LeNet18,19, a five-layer prototype of a shallow feedforward architecture, has two convolutional layers with max-
pooling operations and three successive fully connected layers (Fig. 1A). The first and second convolutional 
layers have d1 = 6 and d2 = 16 filters, respectively, representing the depth of each layer, and their convolutional 
layer sizes after max-pooling, mi ×mi

(

height × width
)

, are 14× 14 and 5× 5 , respectively. One can notice that

which hints on the following conservation law along the convolutional layers

where m2
i  and depthi represent the ith convolutional layer size and the number of filters, respectively. We 

minimized the LeNet error rates for the CIFAR-10  database20 as a function of d1 while maintaining the ratio 
d2/d1 constant using the stochastic gradient descent (SGD)  algorithm21,22 (Fig. 1B, Supplementary Information). 
The results indicate decaying of error rates, ǫ , with increasing d1 as a power law

with an exponent ρ ∼ 0.41 , even for small d1 . Although the error rate of the original LeNet, d1 = 6 , is ǫ ≃ 0.23 , it 
can be further minimized by increasing d1 . Any small ǫ can be achieved on the test set using generalized LeNet, 
a shallow architecture, based on the power law extrapolation for large d1 values. However, its minimization for 
a given large d1 is a heavy computational task that requires an exhaustive search in a hyper-parameter space 
that its values vary among layers, with an increasing number of epochs and complex scheduling. For instance, 
preliminary results of an incomplete optimization for d1 = 27 and d2 = 72  using at least 500 epochs indicate 
ǫ ∼ 0.137 , which is close to the expected result of the extrapolated power law (Fig. 1B).

The conservation law (Eq. 2) was found to govern the convolutional layer sizes of the original VGG-16 
architecture, which consists of 16  layers23, except for the fifth convolution set, where the number of filters is 
bounded by 512 (Fig. 2A with d = 64 ). The nth (n ≤ 4) convolution set has d · 2n−1 filters, where the convolutional 
layer size is m

2n−1 (n ≤ 5) . The minimization of ǫ for VGG-16 and the CIFAR-10 database (Fig. 2A with m = 32 ) as 
a function of d results in a power law with a similar exponent to LeNet (Fig. 1B), ρ ∼ 0.4 (Fig. 2B, Supplementary 
Information). The results allude to the universal behavior of power-law scaling (Eq. 3) which is independent of 
the architecture details, where d is the number of filters in the first convolutional layer. Additionally, the exponent, 
ρ, does not necessarily increase with the number of convolutional or hidden layers. Interestingly, the standard 
VGG-16 network ( d = 64 in Fig. 2A), with batch normalization but without dropouts, results in ǫ ∼ 0.065 
(Supplementary Information), which is identical to the reported test error with significant  dropouts24. Hence, 
the advantage of dropouts in the minimization of ǫ might be questionable in this case.

A shallow network’s ability to achieve any small ǫ , based on the extrapolation of the power-law scaling 
(Fig. 1B), is accompanied by a significant reduction in computational complexity per epoch compared with a 
DL architecture (Fig. 2A). Complexity is measured as the number of multiplication-add (MAdd) operations per 
input during a forward and BP  step25,26. It is calculated as a function of the number of filters, d1 and d in Figs. 1 
and 2, respectively (Fig. 3A, Supplementary Information). In both cases, the number of operations per step 
scale as a quadratic polynomial with the number of filters and are derived from the following argument: When 
the number of filters in a convolutional layer is doubled, its computational complexity increases by a factor of 
four because its consecutive convolutional layer is also doubled. The origin of the linear terms in the quadratic 
polynomials (Fig. 3A) is mainly attributed to the input size of the first fully connected layer, which increased 

(1)
d2

d1
=

16

6
≃

14

5
=

m1

m2

= 2.8,

(2)depthi ×mi = constant,

(3)ǫ(d1) =
A

(d1)
ρ ,

Figure 1.  Learning in generalized LeNet architecture. (A) Generalized LeNet architecture for the CIFAR-10 
database ( 32× 32× 3 pixels input’s size) consisting of five layers, two convolutional layers including max 
pooling and three fully connected layers. The first and second convolutional layers consist of d1 and d2 filters, 
respectively, where d1

d2
≃

6
16

 . (B) The test error, ǫ , as a function of d1 on a log–log scale, indicating a power-law 
scaling with exponent ρ ∼ 0.41 , Eq. (3) (Supplementary Information). The activation function of the nodes is 
ReLU.
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linearly with the number of filters. Hence, the number of weights increases linearly with the number of filters, 
whereas the number of weights in the successive fully connected layers remains constant and is independent of 
the number of filters (Figs. 1A, 2A).

The computational complexities as a function of the error rates were calculated using the power law extrapo-
lation of ǫ(d) (Figs. 1B, 2B). The results indicate that the complexity increases with 1/ǫ , as a power law with an 
exponent ρ close to 5, ∼ 4.85 for LeNet and ∼ 4.94 for VGG-16 (Fig. 3B). Since error rates in both cases (Figs. 1B, 
2B) are approximated by

therefore, d ∝ ǫ−2.5 and in the leading term (Fig. 3A)

A direct calculation of the computational complexity ratio per step between LeNet and VGG-16, based on ǫ(d) 
(Figs. 1B, 2B), indicates that it is less than 0.6 for at least ǫ ≥ 0.005 (Fig. 3C). As it is extremely sensitive to the 
similar estimated values of ρ for both LeNet and VGG-16 (Figs. 1B, 2B), further extrapolation toward vanishing 
ǫ is unclear. Nevertheless, the lower complexity per epoch of shallow architectures serves as an example of the 
potential advantages of brain-inspired architectures. We note that the entire computational learning complexity is 
proportional to the number of training epochs and the classification of an input depends on a forward step only.

Under parallel computation, the required number of clock steps in a feedforward or BP realization is bounded 
from below by the number of layers. Decreasing this lower bound using a mechanism similar to that of carry-
lookahead27, developed for the addition and multiplication of large numbers, is practically inapplicable for 
such complex architectures. This is another expected advantage of learning based on brain-inspired shallow 
architecture.

The power-law behavior (Eq. 3) is demonstrated to govern both shallow and DL architectures, where the 
number of filters obeys the conservation law (Eq. 2). The following two questions were examined: The first ques-
tion concerns the robustness of the power law (Eq. 3) for architectures that deviate from the conservation law 
(Eq. 2). The second question is whether Eq. (2), which controls the number of filters in the convolutional layers 
is indeed the optimized choice to minimize ǫ.

The power-law scaling for LeNet, which deviates from the conservation law (Eq. 2) is defined as follows:

which differs from 16
6

 . For a smaller constant, 4
3
 , the error rates were increased by a larger pre-factor A, as 

shown in Eq. (3); however, ρ remained similar ∼ 0.4 (Fig. 4A). For a larger constant, 16
3
, the slope decreased, 

ρ ∼ 0.35 (Fig. 4A, Supplementary Information). The results first indicate the robustness of the power law for 
various constants (Eq. 4) which alludes to its universal behavior. Second, for a smaller constant and any given 
d1, the error rates were enhanced. For a large constant (Eq. 4) and sufficiently large d1 error rates were also 
enhanced because ρ decreased, but for small d1 values, the error rates decreased. The results indicate that the 
conservation law (Eq. 2) with a constant that is expected to be approximately 16

6
 , asymptotically minimizes ǫ 

for a large d1 . Similar trends were obtained for VGG-16, where the number of filters in the nth convolution set 

ǫ ∝
1

d0.4
,

Complexity ∝ d2 ∝ ǫ−5.

(4)
d2

d1
= constant,

Figure 2.  Learning in generalized VGG-16 architecture. (A) Generalized VGG-16 architecture consisting of 16 
layers, where the number of filters in the nth convolution set is d · 2n−1 ( n ≤ 4) and the square-root of the size 
of the filter is m · 2−(n−1) ( n ≤ 5), where m×m× 3 is the size of each input ( d = 64 in the original VGG-16 
architecture). (B) The test error, ǫ , as a function of d on a log–log scale, for the CIFAR-10 database ( m = 32 ), 
indicating a power-law scaling with exponent ρ ∼ 0.4 , Eq. (3) (Supplementary Information). The activation 
function of the nodes is ReLU.
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( n ≤ 4) increased as constant(n−1) , whereas in the original architecture constant = 2 (Fig. 2A). For constant = 1.5 , 
the error rates increased with a larger pre-factor, A, where ρ remained similar ∼ 0.4 (Fig. 4B, Supplementary 
Information). For constant = 2.5 , ρ ∼ 0.32 , indicating once more that the error rates increased asymptotically 
compared to constant = 2, but for small d , the error rates could be decreased. The results for VGG-16 indicate 
the robustness of the universal power-law behavior for various constants, as shown in Eq. (4), where a constant 
close to 2 minimizes ǫ.

The following theoretical justification may explain why the conservation law (Eq. 2) leads to the minimization 
of error rates: Its purpose is to preserve the signal-to-noise ratio (SNR) along the feedforward convolutional 
layers such that the signal is repeatedly amplified. The noise of each large convolutional filter is expected to be 
proportional to the square-root of its size, m, and its signal to m2 . Consequently, the SNR is proportional to m , 
and for the entire convolutional layer composed of depth d is m · d . Hence, to compensate for the shrinking 
of the convolutional layer size along the feedforward architecture, its depth must be increased accordingly. 
Indeed, preliminary results indicate that doubling the number of filters in the fifth convolution set of VGG-16 
(with d = 16) , such that the number of filters in all convolutions ( n ≤ 5) is 16 · 2n−1 decreased ǫ by ∼ 0.015 
compared with the standard VGG-16 architecture (Fig. 2, Supplementary Information for enhanced VGG-16). 
This supports the argument that maintaining the same SNR along the entire deep architecture enhances success 

Figure 3.  A comparison of learning complexity between generalized LeNet and VGG-16 architectures. (A) 
Complexity of a feedforward and BP step for a single input of LeNet (green) and VGG-16 (red) measured 
for several d(d1) values (open circles) and the quadratic polynomial fits. Complexity is measured in Giga 
multiplication-add operations (GMAdd). (B) Complexity as a function of ǫ(d) for LeNet (green) and VGG-16 
(red) for several values of small ǫ (open circles) obtained from the power-law scaling (Figs. 1B, 2B) and the fitted 
power-law scaling (in dashed boxes), obtained from the last three small values of ǫ (dashed lines). (C) The ratio 
between the complexity of LeNet and VGG-16 for several values ǫ (open circles connected by a dashed line), 
obtained from the extrapolated ǫ(d1) and ǫ(d) for LeNet and VGG-16 (Figs. 1B, 2B), respectively, and a direct 
measure of the  complexity25,26 (Supplementary Information).
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rates. Nevertheless, further extended simulations on various architectures and databases are required to support 
the accuracy of the suggested conservation law, particularly because the convolutional layer sizes are small and 
far from the thermodynamic limit. Additionally, it is important to examine how the sensitivity of ρ and the 
conservation law are related to the properties of the cost function and the details of BP dynamics.

Discussion
Minimizing error rates for a particular classification task and database has been one of the primary goals of 
machine learning research over the past few decades. As a result, more structured DL architectures consisting of 
various combinations of concatenated convolutional and densely connected layers have been developed. Typically, 
further significant minimization of error rates requires deeper architectures, where such an architecture with 
some modifications can achieve reasonably high success rates for several other databases and classification tasks. 
This study suggests that, using the extrapolation of the power-law scaling (Eq. 3) traditional shallow architectures 
can achieve the same error rates as state-of-the-art DL architectures. The preferred architecture can reduce the 
space–time complexity for a specific training algorithm on a given database and hardware implementation. 
A theoretical framework is presented for constructing a hierarchy of complexity between families of artificial 
feedforward neural network architectures, based on their power-law scaling, exponent ρ , and pre-factor A . It is 
possible that the optimal architecture among several ones depends on the desired error rate (Fig. 4). Contrary 
to common knowledge, shallow feedforward brain-inspired architectures are not inferior, and they do not rep-
resent, as thought, an additional biological  limitation28. They can achieve low error rates such as DL algorithms, 
even with significantly low computational complexity for complex classification tasks (Fig. 3). We note that the 
presented power law as a function of the depth of the architecture differs from the power law behavior for SRs 
as a function of the dataset  size29–33.

Architectures that maximize ρ and its upper bound are not yet known. Preliminary results indicate that 
for a specific architecture, ρ may increase when the number of weights grows super-linearly with the number 
of filters. This can be achieved using a fully connected layer, in which the number of input and output units is 
proportional to the number of filters. Another possible mechanism is the addition of a super-linear number of 
cross-weights to the filters. This represents a biological realization because cross-weights result as a byproduct 
of dendritic nonlinear  amplification17,29,34,35. Nevertheless, these possible enhanced ρ mechanisms significantly 
increase computational complexity and are mentioned for their potential biological relevance, limited number 
of layers, and the natural emergence of many cross-weights.

Advanced GPU technology is used to minimize the running time of the DL algorithms. Indeed, our single-
epoch running time using the CIFAR-10 database and VGG-16 with d = 4 is only a factor ∼ 1.5 compared 
with LeNet with d1 = 6 , where both cases have similar success rates. However, shallow architectures with the 
same error rates as advanced deep architectures require more filters per convolutional layer, and consequently, 
a significantly increased number of fully connected weights. Above a critical number of filters, depending on 
the GPU properties, an epoch’s running time is significantly slowed down and can even increase by a few orders 
of magnitude. Similarly, the running time in our case of VGG-16 with d = 400 is ∼ 60 times slower than that 

Figure 4.  Conservation law indicating the optimal ratio between the depth of filters and their convolutional 
layer size. (A) Success rates and their standard deviation as a function of d1 for the generalized LeNet 
architecture where d2

d1
=

16
3

 (green) and d2
d1

=
4
3
 (blue) with fitted (color coded) power law (Supplementary 

Information), and the results for d2
d1

=
16
6

 (yellow, as shown in Fig. 1B) are presented for reference. (B) Similar 
to (A), for the generalized VGG-16 architecture, where the number of filters in the nth convolution set ( n ≤ 4) 
is d · 2.5n−1 (green) and d · 1.5n−1 (blue) with fitted (color coded) power law (Supplementary Information), and 
results for d · 2n−1 (yellow, as shown in Fig. 2B) are presented for a reference.
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with d = 8 , and LeNet with d1 = 2304 is ∼ 900 times slower than that with d1 = 6 . Hence, efficient realization 
of competitive error rates of shallow architectures to advance DL architectures requires a shift in the properties 
of advanced GPU technology. Additionally, it is expected to achieve a significant reduction in computational 
complexity for a desired error rate and a specific database (Fig. 3).

The power law behavior is presented in this work only for CIFAR10 database and its universal behavior 
must be confirmed in further research on other datasets. We note that this mission is difficult for the MNIST 
and CIFAR100 datasets. For MNIST, SRs exceed 0.99 even with LeNet and its power law extrapolation towards 
unity including error bars is improbable. On the other hand, for CIFAR100 the reported VGG16 success  rates36 
are around ~ 0.74, hence, the power law observation requires higher success rates such that finite size effects are 
minimized. However, extending the initial depth above d = 64 is beyond our computational capabilities.

The observation of power law as a function of the filter’s depth must also be generalized to other architectures 
beyond LeNet and VGG16. We note that this mission requires careful optimization of systems’ hyper-parameter 
space independently for each initial depth, resulting in a demand for high computational power. In addition, 
results are presented only for stochastic gradient descent  algorithm21,22 and the robustness of the power law 
behavior needs to be verified on other more advanced  optimizers37, as well as its possible extension to other 
deep learning tasks, i.e.  segmentation38,39.

Additionally, for large dimension image inputs shallow networks exhibit degradation in SRs and it is com-
monly accepted that deep architectures are required to enhance SRs. The exhibited results suggest that increasing 
depth of shallow network will enhance SRs also for large dimension image inputs where the computational com-
plexity is proportional to input size, as for deep architectures. However, its verification requires further research.

Finally, the theoretical origin of the universal power-law scaling (Eq. 3), governing shallow and DL archi-
tectures, has not yet been discovered. The following theoretical framework may provide a starting point for 
investigating this general phenomenon. The teacher–student online scenario is one of the analytically solvable 
cases exemplifying power law behavior  cases40. In the prototypical realizable scenario, the teacher and student 
have the same feedforward architecture, for example, a binary or a soft committee  machine41–43, but different 
initial weights. The teacher supports the students with a random input–output relation, and the student updates 
its weights based on this information and its current set of weights. The generalization error (test error) decays 
as a power law with the number of input–output examples, which is normalized to the size of the input. This 
work differs from online learning because the size of the non-random training dataset is limited, and a training 
example is repeatedly presented as an input without an online scenario. However, assuming a power-law scaling 
(Eq. 3), an architecture with an infinite number of filters d → ∞ , exists such that the test error vanishes. This 
architecture is the teacher’s counterpart and represents a learning rule in the online scenario. A student with 
fewer filters attempts to imitate the teacher and results in a generalization error, which is expected to decrease 
with an increasing number of filters. It is currently impossible to find an analytical solution for the shallow and 
deep architectures that are shown as a function of the number of filters. The question is whether a toy model, 
where a filter may be represented by a perceptron with a nonlinear output unit, can be solved analytically to show 
that the generalization error decays as a power law with the number of filters.

Data availability
Source data are provided in this study, including all data supporting the plots, along with other findings of this 
study.
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