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Novel Gemini ionic liquid 
for oxidative desulfurization of gas 
oil
Hoda A. Mohammed 2, Hamida Y. Mostafa 1*, Dina M. Abd El‑Aty 1 & Ashraf M. Ashmawy 3

The  N1,N1,N3,N3‑tetramethyl –N1,N3‑diphenylpropane‑1,3‑diaminium dichloride ionic liquid (ILc) 
is an environmentally friendly catalyst for oxidative–extractive desulfurization of gas oil (sulfur 
content = 2400 ppm) in the presence of  H2O2 as an oxidizing agent. The precise structure of the 
prepared IL was confirmed using FT‑IR spectroscopy,  and1H‑NMR. The reaction temperature, IL ratios, 
 H2O2 dosage, and reaction time were studied to assess their effects on the desulfurization efficiency. 
The thermodynamic parameters of the oxidation reaction were determined. A desulfurization 
efficiency of 84.7% was obtained after the extractive desulfurization process using acetonitrile as 
an organic solvent at a solvent to feed ratio of 1:1 (v/v). Furthermore, the prepared IL may be reused 
for at least six cycles without any significant change in its desulfurization performance or chemical 
structure, which confirms its high reusability.

Sulfur compounds in fossil fuels present a significant challenge for petroleum  refineries1. Sulfur oxides  (SOx) 
formed during the combustion of sulfur-containing fossil fuels are key contributors to serious air pollution, 
particularly acid rain and hazy  weather2. Hydrodesulfurization (HDS) is an important process in oil refining. It 
is commonly used for oil desulfurization, employing metal catalysts to convert organic sulfur in fuels to hydrogen 
sulfide and related  hydrocarbons3–5. HDS is widely used in industry to effectively remove sulfides with low boil-
ing points and no steric hindrance such as thioethers and  mercaptans6,7. However, this technique require large 
hydrogen consumption, expensive catalysts, and extremely hard reaction  conditions8,9. Efficient desulfurization 
can be achieved by multistage extraction desulfurization (EDS)10,11; however, the process costs are high because 
of the high amount of extractant used and the regeneration problems that may occur during the  process1,12,13. 
Large amounts of catalysts are required for oxidative desulfurization (ODS)14–17. Moreover, regeneration difficul-
ties and poor repeatability are caused by the loss of catalytic active sites during the process. Thus, it is essential to 
develop new catalysts and extractants with high desulfurization  efficiency18–21. The oxidation of aromatic sulfides 
to generate their corresponding sulfones followed by their subsequent removal by extraction in a typical ODS 
 process15,22–24.  H2O2 is the most used oxidant in ODS because of its strong reactivity, low cost, and environmental 
 compatibility25–28. Flammable and volatile organic solvents are typically used as extractants, which may generate 
further safety and environmental problems. The development of EDSmethods is constrained by the requirement 
of a high solvent-to-oil ratio and the lack of environmentally friendly extraction  solvents2,29,30. Organic solvents 
can be used as extraction media in EDS; however, they have significant limitations due to their high volatility, low 
selectivity toward sulfur compounds, and high  toxicity31. Therefore, new environmentally friendly i.e., biodegrad-
able, nonvolatile, and nontoxic, extraction solvents must be developed. Using ionic liquids (ILs) for EDSis an 
environmentally friendly method that is increasingly used to remove refractory S-compounds8. ILs are salts with 
low melting points, usually with melting points less than 100 °C. ILs exhibit unique characteristics such as con-
trollable physicochemical characteristics, strong thermal stability, low volatility, and long-term stability. Because 
of their unique properties, they are used as green solvents for chemical synthesis, fuel desulfurization, and bio-
separation32,33. Furthermore, ILs have a high ability to form complexes with aromatic sulfur compounds and 
are immiscible with fuel  oils34. Zhang et al.  200435 employed l-alkyl-3-methylimidazolium [AMIM] tetrafluor-
oborate, hexafluorophosphate, and trimethylamine hydrochloride, (TMAC) in  (AlCl3–TMAC) as ionic liquids. 
 EMIMBF4 (E = ethyl),  BMIMPF6 (B = butyl),  BMIMBF4, and the heavier  AMIMPF6 exhibited good selectivity, 
particularly toward aromatic sulfur and nitrogen compounds, in extractive desulfurization and denitrogenation 
of transportation fuels. The used ionic liquids are easily regenerated by distillation or water displacement of the 

OPEN

1Refining Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomor St., Nasr City, 
Cairo 11727, Egypt. 2Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed 
El- Zomor St., Nasr City, Cairo 11727, Egypt. 3Chemistry Department, Faculty of Science, Al-Azhar University, Nasr 
City, Cairo 11884, Egypt. *email: H.Y.Mostafa@epri.sci.eg

http://orcid.org/0000-0003-0476-3438
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-32539-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6198  | https://doi.org/10.1038/s41598-023-32539-y

www.nature.com/scientificreports/

absorbed molecules. The aromatic S-containing compounds that were absorbed can be also quantitatively recov-
ered. Organic compounds with a greater aromatic π electron density are absorbed more efficiently. As a result 
of a steric effect, the alkyl substitution on the aromatic rings significantly decreases the absorption capacity. The 
size and structure of cations and anion in ILs affect their absorption capacity of aromatic compounds. Without 
mutual hindrance, the extraction of S- and N-containing compounds can be obtained at low concentrations. 
Typically,  AlCl3-TMAC ILs exhibit high absorption capacities for aromatic compounds. To eliminate sulfur 
compounds from light oils, Lo et al.36 used room temperature ILs (RTILs), i.e., 1-butyl-3-methylimidazolium 
tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate, through a combination of solvent 
extraction and chemical oxidation. In light oils, sulfur compounds can be extracted using RTILs, and the cor-
responding sulfones can be then produced through S-oxidation  (H2O2-acetic acid) in a one-pot operation. The 
simultaneous oxidation and extraction of sulfur compounds from light oil increase the desulfurization yield. 
RTILs can be then reused and recycled without losing their activity.

In this work,  N1,N3-dibenzyl-N1,N1,N3,N3-tetramethylpropane-1,3-diaminium chloride was prepared, and its 
structure was confirmed using several characterization techniques such as Fourier transform infrared spectros-
copy (FT-IR) and 1H nuclear magnetic resonance (1H-NMR). In the ODS of gas oil, the developed IL was used 
as a catalyst in the occurrence of  H2O2 as the oxidant, and the optimal composition of IL was determined. The 
optimum conditions of the desulfurization process were obtained by investigating the effects of various operat-
ing parameters, including the reaction time, temperature, IL to gas oil volume ratio, and oxidant dosage, on the 
process. The efficiency of IL toward sulfur removal from gas oil and its recyclability were also investigated, and 
the thermodynamic parameters of the ODS reaction were determined.

Experimental methods
Materials. Benzyl chloride (99%), N,N,N,N-tetramethyl-1,3-propanediamine, and  H2O2 (50 wt%) were 
obtained from Sigma Aldrich. Ethyl alcohol and acetonitrile (HPLC grade) were obtained from Morgan and 
Merck chemicals, respectively. All chemicals were of analytical grade and were used directly without further 
treatments. Gas oil was collected from Cairo oil refining company, Egypt.

Preparation of the  N1,N3‑dibenzyl‑N1,N1,N3,N3‑tetramethylpropane‑1,3‑diaminium dichlo‑
ride ILc. N,N,N,N-tetramethyl-1,3-propanediamine (0.01 mol) was dissolved in acetonitrile. Benzyl chlo-
ride (0.02 mol) was then added after that the mixture was refluxed at 80 °C for 2 h. Product crystallization was 
performed 3 times using ethanol with a yield of 80% at a melting point of 70 °C. Figure 1 shows a summary of 
the preparation process. The structure of the synthesized compound was confirmed using FT-IR spectroscopic 
analysis with KBr pellets on Perkin Elmer in Egyptian Petroleum Research Institute. 1H-NMR spectroscopy was 
carried out in dimethyl sulfoxide (DMSO) using a Varian Gemini-200 MHz system.

Desulfurization experiments. At atmospheric pressure, the experiments were conducted in a closed 
round-bottle flask with a magnetic stirrer and a thermometer. Gas oil (25 ml) was used with different volumes of 
 H2O2 (5–20 ml) to study their effects on the process. Similarly, the effect of ILc dose of 0.1–0.5 g, a reaction tem-
perature range of 30–80 °C, and a reaction time of 30–240 min on the desulfurization efficiency was investigated. 
After each treatment, the phase separation was achieved using two layers, an aqueous layer and an oil layer, in a 
separating  funnel37, and the treated oil phase was extracted using acetonitrile at a 1:1 (v/v) ratio.

The oil and solvent phases were separated, and the desulfurization efficiency (R) was calculated using Eq. (1).

where  Ci (ppm) and  Cf (ppm) are the initial and final sulfur concentrations in the gas oil, respectively.

(1)R =

Ci − Cf

Ci

× 100

N+ N+

Cl- Cl-

N1,N3-dibenzyl-N1,N1,N3,N3-tetramethylpropane-1,3-diaminium chloride

NN
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+

CH2CN
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Figure 1.  Preparation of the ionic liquid.
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Analytical methods. Samples in the upper oil phase were collected for the analysis at different time inter-
vals (30–240 min). A viscometer (Stabinger, Model SVM 3001, Anton Paar) was used for the determination of 
dynamic viscosity, kinematic viscosity, and density of the samples before and after the treatment according to 
ASTM D 7042, ASTM D 445, and ASTM D 4052, respectively. The total sulfur concentration of gas oil was deter-
mined using a sulfur analyzer according to the standard test method for sulfur in petroleum oil and petroleum 
products by energy dispersive X-ray fluorescence spectrometry (ASTM D 4294).

Figure 2 reports the different stages involved in the preparation of ionic liquid ILc and desulfurization process 
in the present work.

Results and discussion
The main objective of this study is to remove sulfur compounds, which are usually attached to the aromatic 
compounds in petroleum fractions, from gas oil by a new IL using an extractive–catalytic ODS process. The 
physicochemical properties of the gas oil were examined according to the ASTM standard test methods. The 
results are tabulated in Table 1.

Confirmation of the ILc structure. FT‑IR. The infrared spectra of the purified ILc prepared in this 
study are presented in Fig. 3. The characteristic FT-IR bands of Fig. 3 are listed in Table 2. We noted that for 
ILc band appear at 3001 and 3050 could be due to Aromatic (–CH–) groups. The peak at about 2969  cm−1 due 
to Aliphatic (–CH–) groups. The peak at 1634  cm−1 is assigned to the stretching vibration of C=C Aromatic. In 
addition to peak appear at 1220  cm−1 is assigned to C–N. Finally, the FT-IR analysis indicates the presence of the 
IR bands that related to the chemical structures of new ILc.

Figure 2.  Representation of the experimental steps involved in the preparation of ionic liquid ILc and 
desulfurization process.

Table 1.  Physicochemical properties of the gas oil.

Test Result Standard test method

Density at 15.56 °C, g/cm3 0.8264

ASTM D–4052Specific gravity at 15.56 °C 0.8272

API 39.56

Pour point, °C  − 9 ASTM D–97

Kinematic viscosity at 40 °C, cSt@100 °C 2.6915
15.83 ASTM D–445

Dynamic viscosity at 40 °C, cP@100 °C 2.1773
15.83 ASTM D–7042

Sulfur content, ppm 2400 ASTM D–4294

Color 1 ASTM D–1500

Ash content, wt% Nil ASTM D–482

Carbon residue, wt% Nil ASTM D–524

Flash point, °C 80 ASTM D–93

Aniline point, °C 78 ASTM D–611

Calorific value, mJ/kg 462,554 ASTM D–240
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1H‑NMR. The chemical structure of the novel investigated ILc was determined by 1H NMR spectroscopy. The 
detailed spectra shown in Fig. 4 agreed with the designed structure. Table 3 lists the changes in chemical shifts 
for several sorts of protons in the novel investigated ILc. Aromatic protons, (A, B and C), appeared at (9.07, 7.81 
and 7.73) respectively. Aliphatic proton (D, E, F and G) appears at (4.75, 3.40, 3.38 and 3.10). No impurities were 
observable in 1H spectra.

Effect of the reaction temperature. The impact of temperature on the desulfurization efficiency is a 
critical factor in defining the potential of the synthesized ILc. Typically, increasing the temperature accelerates 
the decomposition of  H2O2 in water to generate nascent oxygen atoms, or (OH) ions, which oxidize sulfur com-
pounds to varying degrees. To investigate the effect of the reaction temperature on the desulfurization efficiency, 
experiments were carried out at 30 °C, 50 °C, 60 °C, 70 °C, and 80 °C (Fig. 5 and Table S1). The increase in the 
temperature from 30 to 80 °C was accompanied by a decrease in the yield from 97.31 to 91.5 wt%, respectively 
(Fig. 5a). Density and refractive indices decreased (Fig. 5b,c)39, and on the other hand diesel indices increased 
because of the increase of the aromatic recoveries (Fig. 5e). The aromatic and sulfur recoveries exhibited differ-
ent degrees of increase. At an operation temperature of 30 °C, the desulfurization efficiency could only reach 
47.54%, which indicates that the ILc could not catalyze the reaction efficiently at a relatively low temperature. 
However, when the temperature increased to 50 °C, 60 °C, and 70 °C, the desulfurization efficiency remarkably 
increased to 61.58%, 70.42%, and 84.58%, respectively, (Fig. 5d). Sulfur removal was restricted by the unproduc-

Figure 3.  FT-IR spectra of the prepared ILc.

Table 2.  FT-IR bands of  N1,N1,N3,N3-tetramethyl -N1,N3-diphenylpropane-1,3-diaminium dichloride. N.B: 
The bands observed at 3450  cm−1 were assigned to the stretching vibrations bands of the hydrogen-bonded 
 H2O  molecules38.

Cpd CH–H2O Aromatic C–H Aliphatic C–H Aromatic C=C C–N

IL 3450 3001–3050 2969 1634 1220

Figure 4:.  1H-NMR spectra of the prepared ILc.
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Table 3.  Chemical shifts in the prepared IL. N.B.: s: singlet, d: doublet, and t: triplet.

N+ N+

Cl
-

Cl
-

b e c
a

a

c f

e
g

d

Chemical shifts of different types of protons (ppm)

Cpd A B C D E F G
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Figure 5.  Effect of temperature on yield, density, refractive index, desulfurization efficiency, and diesel index of 
gas oil treated with the ILc.
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tive decomposition of  H2O2 at elevated temperatures. The loss of  H2O2 due to its decomposition to  H2O and  O2 
at high  temperatures40 may restrict the effective formation of active oxidation species. Similarly, the  H2O impu-
rity generated by the thermal decomposition of  H2O2 hindered the catalytic activity of ILc, leading to a reduction 
in the desulfurization  efficiency41. Therefore, the desulfurization efficiency did not significantly improve when 
the temperature increased from 70 to 80 °C. Thus, the optimal reaction temperature was selected to be 70 °C.

Effect of reaction time. The selectivity of the oxidation process determines the utility of the desulfuri-
zation system. The sulfur compounds should be rapidly and selectively oxidized. Thus, the oxidation time of 
the gas oil was determined. To determine the minimum reaction time for complete desulfurization of sulfur 
compounds at 70 °C, the performance of the ODS process using ILc was assessed at different times (0.5, 1, 2, 3, 
and 4 h). Figure 6 and Table S2 show the desulfurization efficiencies and their associated species yields, densi-
ties, refractive indices, and diesel indices of the oxidized gas oil.  H2O2 (10 ml) and ILc (0.5 g) were used for this 
test at an oxidation temperature of 70 °C, which is the optimal temperature selected in the previous step. The 
results presented in Fig. 6 indicate that the increase in the reaction time from 0.5 to 3 h was associated with a 
continuous sharp decrease in the yield, refractive indices, and density (Fig. 6a–c). This was accompanied by a 
continuous increase in the desulfurization efficiency and diesel indices (Fig. 6d,e). This can be attributed to the 
continuous increase in the reaction time, which can increase the π–π interaction between the ILc molecules and 
sulfur compounds in the reaction media. This enhanced the extraction of the sulfur compounds and enable the 
oxidizing agent  (H2O2) to produce the prior species in the media to complete the ODS process. Further elonga-
tion of the reaction time to 4 h showed no significant increase in the desulfurization efficiency or the associated 
characteristics. Therefore, 3 h was considered a suitable reaction time.
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Figure 6.  Effect of the reaction time on the yield, density, refractive index, desulfurization efficiency, and diesel 
index of gas oil treated with the ILc.
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Effect of the ILc dosage. Figure 7 and Table S3 show the effect of the ILc dosage on the process of extrac-
tive–ODS process and its subsequent relevant changes in the yield, physical characteristics, desulfurization effi-
ciency, and diesel indices of the produced gas oil. Four doses of ILc (0.1, 0.3, 0.5, and 1 g) were used during this 
step. The optimal conditions, i.e., reaction temperature = 70 °C and reaction time = 3 h, selected in the previous 
steps were employed in the current test using  H2O2 (10 ml). The increase in the ILc dosage can be an efficient 
strategy to improve the desulfurization efficiency. The desulfurization efficiency significantly increased from 
70.53 to 73.73% (Fig. 7d) when the ILc dosage increased from 0.1 to 0.5 g. Because ILc was used as both a cata-
lyst and an extractant, the increase in the ILc dosage could enhance the extraction efficiency and increase the 
catalytic active sites, which significantly improve sulfur removal. Nevertheless, no significant differences were 
observed in the characteristics of the produced gas oil at higher ILc dosage (1 g). That is, nearly the same per-
centages of desulfurization efficiency were observed. Thus, a lower ILc dosage (0.5 g) was considered the optimal 
dosage for industrial applications from an economic point of view.

Effect of the  H2O2 dose. H2O2 is a potent, environmentally friendly, and inexpensive oxidizing agent. 
The impact of using  H2O2 was also tested (Fig.  8 and Table  S4). The experiments in this stage were carried 
out under the optimal conditions selected above (ILc dosage = 0.5 g, reaction time = 3 h, and oxidation tem-
perature = 70 °C). Four  H2O2 dosages (5, 10, 15, and 20 ml) were evaluated in this step. Figure 8 indicates that 
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Figure 7.  Effect of the ILc dosage on the yield, density, refractive index, desulfurization efficiency, and diesel 
index of gas oil treated with the ILc.
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when the oxidizing agent dose increased from 5 to 10 ml, the yield (Fig. 8a) significantly decreased, showing 
a clear improvement in the refractive indices and density (Fig. 8b,c). This was accompanied by a simultaneous 
increase in the desulfurization efficiency (Fig. 8d) and diesel indices (Fig. 8e) until approximately fixed values 
were detected when the  H2O2 dose increased from 10 to 15 then to 20 ml. This verifies that the excessive use of 
 H2O2 is not desirable because it results in the dilution of ILc and increases the cost. Therefore, a  H2O2 dose of 
10 ml was chosen as the optimal dose in this study.

Thermodynamics of the oxidative desulfurization of diesel fuel. The thermodynamic parameters 
of the ODS reaction were estimated as follow:

The standard entropy change (ΔS°, J/(mol K)), standard enthalpy change (ΔH°, kJ/mol), and standard free 
energy change (ΔG°, kJ/mol)42 were calculated using Eqs. (2) and (3).

where T is the absolute temperature (K), Kd is the distribution coefficient (L/g), and R is the perfect gas con-
stant = 8.314 J/mol K.

The thermodynamic parameters of the reaction can be calculated using Eqs. ((2) and (3)), the results are listed 
in Table 4 and Fig. 9 show thermodynamic behavior of the oxidative desulfurization reaction.
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Figure 8.  Effect of the  H2O2 dosage on the yield, density, refractive index, desulfurization efficiency, and diesel 
index of gas oil with ILc.
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As shown in Table 4, the values of ΔH°, ΔS°, and ΔG° are positive, suggesting that the reaction is endothermic 
with increase in the temperature. Thus, the efficiency of the oxidation and randomness of the reaction increased, 
and the reaction was nonspontaneous. The low values of the standard free energy mean that the reaction can 
proceed  easily43.

Recycling of the ILc. From environmental and economic standpoints, ILc regeneration and recycling are 
vital processes. Repeated trials of eliminating sulfur compounds from heavy gas oil under optimal conditions 
were conducted to verify the recycling performance of ILc. A biphasic system was observed in the reactor after 
repeating each cycle. The upper phase was carefully removed from the system by decanting, and the ILc phase 
was dried under vacuum to remove any remaining water and  H2O2. The reactor was then charged with fresh gas 
oil and  H2O2 for the next cycle.

After six repeated cycles, the desulfurization efficiency only dropped from 84.71 to 83.97% (Fig. 10). This 
slight drop could be attributed to one of two factors. First, trace losses of ILc during the separation and drying 
processes are unavoidable. Second, the oxidative products of the sulfur compounds concentrated in the system 
and coated the surface of ILc, reducing its phase transfer capabilities. Nonetheless, based on these results, ILc 
shows good recyclability through a low-cost regeneration approach and may be suitable for industrial applica-
tions. In addition, FT-IR analyses of both fresh and recycled ILc (Fig. 11) were performed to investigate the 
stability of ILc during the desulfurization process. There was no discernible difference between before and after 
the reactions.

Desulfurization mechanism. Gas oil is desulfurized through a very effective and selective process using 
the developed Gimini ionic liquid ILc as a catalyst (Fig. 12). That the ILc contains two positive active sites, which 

Table 4.  Thermodynamic parameters of the oxidative desulfurization reaction.

ΔH° (kJ/mol) ΔS° [J/(mol K)]
ΔG° at different T (kJ/
mol)

31 0.08
303 K 333 K 353 K

4.5 1.8 0.09

R² = 0.9925
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Figure 9.  Thermodynamic behavior of the oxidative desulfurization reaction.
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combine with two molecules of hydrogen peroxide and produce active species, which perform their beneficial 
role in completing the oxidation process. The effect of ILc increases the rate of decomposition of  H2O2 to 2OH*, 
which is unstable and undergo O–H bond break to generate  H2O* and O*, which are the most active species for 
an ODS reaction because of their low activation energy. The effectiveness of the desulfurization process is signifi-
cantly impacted by the π–π interactions between the aromatic sulfur compounds and aromatic  ILc44.

Our Gemini ionic liquid ILc performs more catalytically than its mono-cationic version and this difference 
can be related to the fact that Gemini ionic liquids have two basic sites, whilst mono-cationic ionic liquids only 
have one. Gemini ionic liquids have two basic sites that are close to one another and work well in tandem to 
increase the catalytic efficiency. As Gemini ionic liquids have stronger basic sites than mono-cationic ILc, oxi-
dation process proceed more quickly. They display greater stability and more potent alkalinity because of their 
more powerful and concentrated basic sites.

In Table 5, the performance of the novel introduced N1,N1,N3,N3-tetramethyl-N1,N3-diphenylpropane-
1,3-diaminium dichloride was compared with certain previously referred ILs for further studs.

In addition to the declared factors, the type of the catalyst itself would be effective as well. In Table 5, the 
novel ILc is contrasted with existing types of ionic liquids employed in the same application—oxidative desul-
furization process—to show off its excellent catalytic performance. As a consequence, Gemini ionic liquid ILc 
performed superior than the other ionic liquid types described in terms of both results and efficiency. So, for the 
oxidative desulfurization process, the ILc with the best and most competitive performance (84.7%) for real gas 
oil (2400 ppm sulphur content) is chosen. This is due to the using of a very little amount of the catalyst ratio—
oil:ILc = 1:0.02—and the ILc helped on a huge reduction in the amount of the oxidizing agent—H2O2:Oil = 0.4:1—
which makes the process very cost-effective when applied in the industrial field.
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Figure 11.  FT-IR analysis of the (a) fresh ILc and (b) recycled ILc.

Figure 12.  Desulfurization mechanism.
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Conclusion
In this study a novel Gemini IL (N1,N1,N3,N3-tetramethyl-N1,N3-diphenylpropane-1,3-diaminium dichlo-
ride) was successfully synthesized and characterized using 1H-NMR and FT-IR spectroscopy. It was then used 
as a catalyst in ODS of real gas oil with a sulfur content of 2400 ppm. The N1,N1,N3,N3-tetramethyl-N1,N3-
diphenylpropane-1,3-diaminium dichloride IL exhibited a high desulfurization efficiency of 84.7% under optimal 
conditions  (H2O2:Oil = 0.4:1, IL:Oil = 0.02:1, reaction temperature = 70 °C, and reaction time = 3 h). Based on 
the thermodynamic analysis of the ODS process, the values of ΔH° indicated that the reaction is endothermic 
with increase the temperature. The IL can be directly reused, and they exhibited good recyclability for six times.

Data availability
All data generated or analysed during this study are included in this published article (and its supplementary 
information files).
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