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A supervised diagnostic experiment 
of resistance variable multifault 
locations in a mine ventilation 
system
Dong Wang 1,2, Jian Liu 1,2*, Deng Lijun 1,2 & Wang Honglin 1,2

The diagnosis of resistance variable multifault location (RVMFL) in a mine ventilation system is an 
essential function of the mine intelligent ventilation system, which is of great significance to mine-
safe production. In this paper, a supervised machine learning model based on a decision tree (DT), 
multilayer perceptron (MLP), and ranking support vector machine (Rank-SVM) is proposed for RVMFL 
diagnosis in a mine ventilation system. The feasibility of the method and the predictive performance 
and generalization ability of the model were verified using a tenfold cross-validation of a multifault 
sample set of a 10-branch T-shaped angle-joint ventilation network and a 54-branch experimental 
ventilation network. The reliability of the model was further verified by diagnosing the RVMFL of the 
experimental ventilation system. The results show that the three models, DT, MLP, and Rank-SVM, 
can be used for the diagnosis of RVMFL in mine ventilation systems, and the prediction performance 
and generalization ability of the MLP and DT models perform better than the Rank-SVM model. In 
the diagnosis of multifault locations of the experimental ventilation system, the diagnostic accuracy 
of the MLP model reached 100% and that of the DT model was 44.44%. The results confirm the MLP 
model outperforms the three models and can meet engineering needs.

The main function of the mine ventilation system is to provide fresh air to underground places that need wind. 
This dilutes and removes toxic and harmful gases, such as gas, carbon monoxide, and dust. It can also create a 
good working environment to ensure the occupational health of workers and the normal conduct of production 
activities1–3. A good ventilation system can effectively reduce the possibility of accidents, such as gas or coal dust 
combustion and explosion, carbon monoxide poisoning, and asphyxiation, in mines4,5. This shows that a stable 
and reliable ventilation system is extremely important for ensuring the mine’s safe production. However, during 
the production process of a mine, sudden changes in the air volume of the ventilation system inevitably occur, 
such as the blockage of the roadway bubble fall, breakage and failure of dampers, and emptying of the mine silo. 
The essence of these phenomena, which result in sudden changes in roadway air volume, is the sudden change 
in the wind resistance of the roadway. In this case, these phenomena are defined as the occurrence of resistance 
failure in the mine ventilation system6. When a resistance fault occurs in a mine ventilation system, the air volume 
distribution in the ventilation system changes significantly. This most likely leads to a decrease in the air supply 
in the mining and digging working faces, as well as the accumulation of toxic and harmful gases in some breeze 
tunnels. It will cause serious safety hazards and risks to the mine7.

The mine ventilation network has good self-adaptability and robustness, making it suitable for the application 
of artificial intelligence and machine learning methods8. Owing to the rapid development of intelligent technol-
ogy, the traditional method of relying on personnel to identify resistance variable faults in ventilation systems has 
gradually been replaced by intelligent diagnostic methods. The intelligent diagnosis method can save consider-
able human and material resources. Additionally, it saves a lot of time and adapts to the demand for the rapid 
disposal of mine ventilation system faults. Studies have shown that artificial intelligence and machine learning 
algorithms, such as support vector machine (SVM), decision tree (DT), artificial neural network (ANN), random 
forest (RF), genetic algorithm (GA), and multilayer perceptron (MLP), are used to solve single fault diagnosis 
problems in mine ventilation systems9–14. However, owing to the specificity and complexity of underground mine 
conditions, it is common for mine ventilation systems to have resistance variable faults in multiple locations 
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concurrently. Few studies have been conducted on diagnosing and identifying faults in multiple locations of 
mine ventilation systems.

Wang et al.15 first proposed a machine learning–k-nearest neighbor-based (ML–KNN-based) model and 
method for the diagnosis of resistance variable multifault location (RVMFL) in mine ventilation systems. They 
solve the RVMFL diagnosis problem of mine ventilation systems as a multilabel and multi-classification prob-
lem. From the multifault location diagnosis problem, the multilabel classification problem can be transformed 
into multiple single-label classification problems through a conversion strategy. For example, the ventilation 
system RVMFL diagnosis problem can be divided into multiple single-fault location diagnosis problems, but 
this undoubtedly increases the computational complexity16,17. The multilabel classification problem can also be 
solved by applying multilabel classification support and adaptation algorithms, such as DT, MLP, ranking sup-
port vector machine (Rank-SVM), and AdaBoost.MH, ML–KNN18–22. These methods are all supervised machine 
learning algorithms, and Rank-SVM is an improvement of the SVM algorithm. According to the existing studies, 
DT, MLP, and SVM perform well in solving the problem of resistance variable single-fault location diagnosis 
in the mine ventilation system9. In addition, these methods represent an important value in the application of 
classification problems. Formally due to their good classification performance and adaptation to multi-label 
classification problems, the methods for intelligent diagnosis of RVMFL in ventilation systems are improved. In 
this paper, three important and widely used machine learning algorithms, DT, MLP, and Rank-SVM, are used 
to investigate the problem of diagnosing RVMFL in mine ventilation systems.

It is well known that different algorithms exhibit different prediction accuracies, performances, and gener-
alization capabilities. Industrial tests are frequently conducted to confirm whether these algorithms can be used 
in engineering practice, how well they perform in RVMFL diagnosis, and how reliable and valid each diagnosis 
model is. To conduct an industrial field test of a ventilation system failure in a production mine, it is necessary 
to open the dampers in a closed state for a long time or block the tunnel to make a real failure in the mine, par-
ticularly to create a failure in multiple locations. However, such a test is not permitted, particularly in coal mines. 
If the resistance variable fault industrial test is conducted in metal mines, unlike coal mines, metal mines do not 
experience gas disasters and natural coal fires in the mining area while collecting test sample data. It may lead 
the mine ventilation system to a state of failure for a long time, which significantly affects the safety production 
of mines. In summary, conducting industrial tests on actual resistance variable faults in mine ventilation systems 
is difficult and involves certain safety risks. To address the problem of creating resistance variable faults in actual 
mines that affects normal production, a ventilation system resistance variable fault simulation experimental 
system was built. The advantage of this system is that it can simulate any type of resistance variable faults and 
create any degree of resistance variable faults at any location, without being limited by the site’s environmental 
conditions and without safety problems, such as industrial tests in the field.

The main objectives of this study are as follows: (1) Solving the problem of accurate diagnosis of resistance 
variable faults occurring at multiple locations in the mine ventilation system simultaneously. (2) Analyzing and 
comparing the performance of different intelligent algorithms in the problem of multifault location diagnosis 
of resistance variable faults in ventilation systems to find more suitable algorithms and models. (3) Building an 
experimental system for simulating resistance variable faults in the mine ventilation system. Then, using this 
system to verify the reliability and validity of the proposed model through experiments, and solve the problem 
of being unable to conduct realistic industrial tests to confirm the reliability and validity of the algorithms in 
actual production mines. (4) The study results provide a theoretical basis for constructing an intelligent body 
on mine ventilation systems. The research flow of this paper is shown in Fig. 1.

Method and model for RVMFL diagnosis in a mine ventilation system
Diagnosis method for RVMFL in the mine ventilation system.  Mine occurs resistance variable 
multifaults refer to cases in which the mine ventilation system in a normal production period experiences resist-
ance variable faults in two or more different roadways simultaneously. This study considers the case of two 
roadways simultaneously occurring with resistance variable faults as an example and adopts a supervised learn-
ing method to address the problem of mine ventilation system RVMFL diagnosis. Figure 2 shows the flow of 
the diagnosis method for the RVMFL of the mine ventilation system. The essence of the RVMFL diagnosis of a 

Figure 1.   Research flowchart.
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mine ventilation system is to construct a resistance variable fault multilabel classifier. This classifier can quickly 
diagnose and identify the locations of resistance variable multifaults based on the airflow information of the 
ventilation system after the faults occur.

The airflow information of all or the residual branches of the ventilation network is used as an observation 
feature. Based on the values monitored by the mine wind speed sensors, the monitored values are averaged sta-
tistically for time averaging, corrected for single-point wind speed values, and converted into ventilation system 
airflow. The observed feature data of the constructed training sample set are normalized and used as input to the 
classifier for learning and training, and the binary vector of fault labels corresponding to multifault locations 
is used as the output of the classifier to train an RVMFL diagnostic classifier for mine ventilation. Based on the 
changes in air velocity at monitoring points when a ventilation system in normal production has a resistance 
variable multifault, the trained multifault location diagnostic classifier can quickly diagnose the locations of faults.

Supervised machine learning model for RVMFL diagnosis in ventilation systems
DT‑based RVMFL diagnostic model.  The DT algorithm supports multilabel classification problems. The 
process of RVMFL diagnosis is equivalent to constructing a fault label classification tree, which is based on the 
principle of learning multifault samples and inferring simple fault decision rules from data features to predict 
fault location target values23–25. When a wind volume vector xi ∈ Rn, i = 1,…,l and its corresponding fault loca-
tion label vector y ∈ Rl after a resistance variable multifault occur, the classification tree recursively divides the 
feature space so that samples with the same fault label are grouped. For each feature segmentation point, let �m 
denote nm multifault sample data at node m. For a candidate segmentation θ = (j, tm) comprising a fault feature j 
and a domain value tm, segment the data into subsets �a

m(θ) and �b
m(θ) . The segmentation rules are as follows:

The impurity function is used to calculate the number of impurities for one candidate segmentation of node 
m. The Gini index is chosen as the metric function for impurity and is calculated as follows:

where pmk is the proportion of data labeled k at node m.
The parameters that minimize impurities are as follows:

The recursion of subsets �a
m(θ

∗) and �b
m(θ

∗) until the maximum permissible depth is reached ends, which 
in turn generates a classification tree for the RVMFL diagnosis.
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Figure 2.   Ventilation system RVMFL diagnosis method process.
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MLP‑based diagnostic model for RVMFL.  MLP is a supervised learning algorithm that is a feed-for-
ward network and supports multilabel classification problem solving26–28. Given a resistance variable multifault 
feature set and its corresponding fault labels, it can learn to obtain a nonlinear function approximator for mul-
tifault location diagnosis. Between the input and output layers of the multifault location diagnosis MLP model, 
there can be l (l ≥ 1) implicit layers with the following information-processing mechanism:

where O(l)
j  is the output of the jth neuron in layer l, Ol−1

i  is the output of the ith neuron in layer l-1, w(l)
ij  is the 

connection weight of the ith neuron in layer l-1, and the jth neuron in layer l, blj is the bias of the jth neuron in 
layer l, and g(∙) is the activation function using the hyperbolic tangent as the activation function:

The stochastic gradient descent algorithm was chosen and used to train this multifault location diagnosis 
perceptron network using the gradient of the loss function to update the weights w:

where η is the learning rate of the control step in the parameter space search.
The average cross-entropy is used as the loss function for the RVMFL diagnosis model, whose expression in 

the binary case takes the following form:

where ŷ is the predicted fault location, y is the actual fault location, n is the number of samples, α‖w‖22 is the L2 
regularization term of the penalized complex model, and α > 0 is a nonnegative hyperparameter controlling the 
magnitude of the penalty.

Starting with initial random weights, MLP minimizes the loss function by iteratively updating these weights. 
After calculating the loss, backpropagation propagates it from the output layer to the previous layer, updating 
the value of each weight parameter to reduce the loss.

Rank‑SVM‑based RVMFL diagnostic model.  Rank-SVM is a ranking-based multilabel classifica-
tion algorithm that uses a maximization interval strategy and introduces a kernel trick to address nonlin-
ear classification problems29–31. Let the Rank-SVM multifault learning system comprise m linear classifiers 
S =

{(

ωj , bj
)∣

∣1 ≤ j ≤ m
}

 , where ωj is the weight vector corresponding to the jth class of faults and bj is the bias 
corresponding to the jth class of faults. For a given multifault training sample set T = { (xi ,Yi)|1 ≤ i ≤ n} , the 
multifault learning system produces classification intervals for the fault samples (xi, Yi), which can be expressed 
as follows:

Equation (9) represents the distance of the fault samples to the classification hyperplane under each rel-
evant–irrelevant marker pairing. By expanding the entire multifault training sample set T, the classification 
interval of the learning system is given by

The training sample set classification interval is considered positive, and the parameters of the linear clas-
sifier S are scaled. Then, the optimization problem of maximizing the training set classification interval can be 
expressed as follows:

Let the training sample be sufficiently adequate, i.e., for all category markers yi and yk; there exists (x, Y) ∈ T 
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By approximating the max operator with a summation operator and introducing slack variables and using 
Ranking Loss as the loss, the optimization problem is transformed into

where C is the equilibrium coefficient and ξijk is the relaxation variable, ξijk ≥ 0.

Model evaluation metrics.  To compare and evaluate the diagnostic performance of DT, MLP, and Rank-
SVM-based RVMFL diagnosis models for mine ventilation systems, the evaluation metrics were selected consid-
ering the existing literature on multilabel classification problems 32–35. The five metrics of hamming loss, ranking 
loss, coverage, average accuracy, and one-error are the most commonly used and most widely applied metrics. 
These five metrics were selected to evaluate the RVMFL diagnosis models for mine ventilation, as shown in 
Table 1. y ∈ {0, 1}N×M in Table 1 denotes the binary label matrix corresponding to the real labels at multifault 
locations, and f̂ ∈ RN×M denotes the score for each fault label.

The RVMFL diagnosis experiment for ventilation system
Experimental methods.  To verify the feasibility and model reliability of the DT, MLP, and Rank-SVM-
based RVMFL diagnosis method for ventilation systems, as well as to compare and analyze the diagnostic per-
formance of these three models and find the optimal model, experiments were conducted using a 10-branch 
simple T-shaped angle-joint network and a 54-branch network with a multifault location diagnosis experimental 
system. The experimental study process is shown in Fig. 3. Using five evaluation metrics, tenfold cross-validation 
was used to train and validate the multifault location diagnosis sample set. The cross-validation results were 
statistically averaged. Real multifault diagnosis experiments were conducted using a ventilation system to verify 
the reliability of the model.
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)

,

Table 1.   Performance evaluation metrics of the RVMFL diagnosis model.

Evaluation metrics Calculation formula Evaluation criteria
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Figure 3.   The experimental study process for RVMFL diagnosis.
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T‑shaped angle‑joint ventilation network fault diagnosis experiment
T‑shaped angle‑joint ventilation network.  The topology of the T-shaped angle-joint ventilation net-
work, the wind resistance coefficient and the fan characteristic curves in literature 6 are used as references for 
the ventilation system RVMFL diagnosis study. Figure 4 shows a T-shaped angle-joint ventilation network with 
8 nodes and 10 branches, with adjustment at branch e4 and a ventilation fan at branch e8. The characteristic curve 
of the ventilation fan is given as follows:

The branching parameters of the T-shaped angle-joint ventilation network are presented in Table 2.

Construction of a multifault sample set for the T‑shaped angle‑joint ventilation net-
work.  Based on the branch information of the ventilation network during normal production periods, the 
mine ventilation simulation system (MVSS)36 is used to simulate the resistance-increasing faults of the general 
branches, except for the inlet and outlet branches, and the resistance-decreasing faults of the dampers. Assum-
ing that the two branches in the ventilation system fail simultaneously and that the faulted air resistance values 
are generated using a random method, the steps for generating the resistive multifault sample set are as follows:

(1)	 Keeping the topology of the ventilation network and the operating characteristics of the ventila-
tor unchanged when any two branches of the ventilation system ei and ej have faulted simultaneously, 
with resistance variables Δri and Δrj, the wind resistances of the faulty branch become r′i = ri ±�ri and 
r′j = rj ±�rj , respectively.

(2)	 Based on the wind resistance vector R′

(i) =
(

r1, r2, · · · , r
′
i , · · · , r

′
j , · · · rn

)

 of the ventilation network at the 
time of branch ei and ej failures, the ventilation network after the fault is solved once it generates new 
sample data Q′

(i) =
(

q′1, q
′
2, · · · , q

′
n

)

 for the air volume.
(3)	 Construct a multifault sample data space and record the branch numbers ei and ej where the fault occurred 

and the ventilation system branch air volume Q′

(i) as a sample in the fault sample data space.
(4)	 Repeat steps (1)–(3) so that the ei and ej branches occur many times, and the number of fault variables differs 

with each occurrence, resulting in generating the resistance multifault samples on the ei and ej branches. 
Based on the above rules, other branches of the ventilation network generate multifault samples of the 
corresponding branches, forming the ventilation network resistance variable multifault sample set T.

(14)H(q) = 1035.92+ 51.73q− 0.43q2.

Figure 4.   T-shaped angle-joint ventilation network.

Table 2.   The branching parameters of the T-shaped angle-joint ventilation network.

Branch Nodes r/(N s2 m−8) q/(m3 s−1) Branch Nodes r/(N s2 m−8) q/(m3 s−1)

e1 (v1,v2) 0.055 89.798 e6 (v4,v5) 0.110 15.023

e2 (v2,v3) 0.175 34.825 e7 (v5,v6) 0.190 34.834

e3 (v2,v4) 0.075 54.973 e8 (v4,v6) 0.160 39.951

e4 (v3,v7) 4.050 15.014 e9 (v6,v7) 0.115 74.784

e5 (v3,v5) 0.100 19.811 e10 (v7,v8) 0.080 89.798
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Following the above method, a total of 600 sets of resistance variable multifault samples were generated for 
the T-shaped angle-joint ventilation network, as shown in Table 3. The observed features of the multifault sample 
set data were normalized before being input to the multifault location diagnostic classifier.

Parameter setting.  The reasonableness of the hyperparameter settings determines the predictive perfor-
mance of the model’s multifault location diagnosis machine learning model. In this study, the cross-validation 
grid search method is used to determine the hyperparameters of the model. The hyperparameter settings of the 
T-shaped angle-joint ventilation network multifault location diagnosis machine learning model are shown in 
Table 4.

Experimental results.  A sample set containing 600 sets of multifaults was cross-validated. The results are 
shown in Fig. 5. As shown in Fig. 5, the DT-based RVMFL diagnosis model has a hamming loss of 0.061, which 
is the smallest among the three models. The MLP-based RVMFL diagnosis model has a ranking loss, coverage, 
and one-error of 0.067, 1.643, and 0.117, respectively, which are the smallest among the three models, and its 
average accuracy of 0.889 is the highest among the three models, and it has a hamming loss of 0.106. The Rank-
SVM-based RVMFL diagnostic model has the worst predictive metrics of all three models. It can be observed 
that all three algorithms, DT, MLP, and Rank-SVM, can be used to diagnose multifault locations in mine ventila-
tion, and the method is feasible. The MLP model exhibits the best prediction performance, best generalization 
ability, and highest prediction accuracy for the multifault sample dataset of the T-shaped angle-joint ventilation 
network. Furthermore, the DT model is slightly lower than the MLP in all metrics except for hamming loss but 
higher than the Rank-SVM, i.e., the predictive performance and generalization ability of the DT model is slightly 
lower than that of the MLP and much higher than that of the Rank-SVM.

Table 3.   The sample set of multifaults for the T-shaped angle-joint ventilation network.

Number q′
1

q′
2

q′
3

q′
4

q′
5

q′
6

q′
7

q′
8

q′
9

q′
10

ei, ej

1 88.34 36.70 51.64 14.86 21.84 12.63 34.48 39.00 73.48 88.34 e2, e3

2 86.97 37.58 49.40 14.69 22.89 11.16 34.05 38.24 72.29 86.97 e2, e3

3 88.49 33.51 54.98 14.76 18.74 15.51 34.26 39.47 73.72 88.49 e2, e3

… … … … … … … … … … … …

598 35.89 18.32 17.57 28.49 − 10.17 15.16 4.99 2.41 7.4 35.89 e8, e9

599 35.07 18.1 16.97 28.62 − 10.52 14.98 4.45 1.99 6.44 35.07 e8, e9

600 34.50 17.94 16.55 28.71 − 10.77 14.83 4.06 1.73 5.78 34.5 e8, e9

Table 4.   Super parameter settings for the T-shaped angle-joint ventilation network multifault location 
diagnosis model.

Models Parameters

DT
Max depth Criterion Splitter Min samples split Min samples leaf

122 Geni best 2 1

MLP
Hidden layer Hidden layer sizes Max iter Activation function Solver alpha

1 52 5000 tanh lbfgs 0.0001

Rank-SVM
Type Cost Max iter lambda

Linear 1 50 0.000001

Figure 5.   Cross-validation results for RVMFL diagnosis of the T-shaped angle-joint ventilation network.
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Experimental ventilation system multifault diagnosis experiment
Resistance variable multifault diagnostic experimental system.  The experimental ventilation sys-
tem was built using unplasticized polyvinyl chloride (UPVC) pipes with diameters of 200 mm, 160 mm, and 
110 mm. The total length of the experimental system piping is 353 m. There are 14 structures in the experimental 
system, of which seven are completely closed, one is the inlet air branch adjustment, and the remaining six are 
fault-simulated adjustment valves. The system can simulate different types and amounts of faults, and it can bet-
ter simulate situations in which multiple faults occur in the ventilation system. The seven closed dampers posi-
tion can be carried out to simulate the descending resistance fault experiment, and the six regulating valve posi-
tion can be carried out to simulate the increasing resistance fault experiment. The experimental system is shown 
in Fig. 6. The system comprises two inlet and two outlet air pipelines. The inlet air of the system comprised 
UPVC pipes with a diameter of 160 mm, the outlet air of the system comprised UPVC pipes with a diameter of 
200 mm, and the rest of the main part comprised UPVC pipes with a diameter of 110 mm. The data collection 
system of the experiment includes a TSI 9565P ventilation parameter tester and Pitot tube. The accuracy of wind 
velocity testing using a pitot tube is ± 1.5% at 2000 ft/min. The principle of the experiment is to test the velocity 
pressure to get the velocity at the center of the pipeline section and convert it into the average air velocity. The 
velocity of the wind was tested by using TSI to monitor continuously for two minutes and taking the average 
value. Because the pipeline used in the experiment is a relatively smooth industrial UPVC pipe, according to 
Moody diagrams and actual ventilation resistance tests, the calculated flow indices of the ventilation resistance of 
these three pipelines are 1.834, 1.849, and 1.812, respectively. Two centrifugal fans are installed at the end of each 
of the two return air pipes, and airflow control valves are arranged inside the system as airflow control facilities.

The topology of the experimental system is illustrated in Fig. 7. The model 9–26-4A 5.5KW centrifugal fan is 
installed on branch e1, and the model 9–19-5A 7.5KW centrifugal fan is installed on branch e65. The operating 
frequency of both fans is 50 Hz. The plate resistance method is used to increase the resistance of the system, 
and the air volume and pressure of the ventilation fan under different system conditions are tested by using a 
differential pressure meter and pitot tube, and the characteristic curve equation of the fan is obtained by the 

Figure 6.   RVMFL diagnosis experimental system.

Figure 7.   Experimental system topology.
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method of data fitting. By testing, the characteristic curves of these fans are h (q) = 3156.2 + 1323.6 q—1838.7 q2 
and h (q) = 4266.8 + 4515.3 q—4406.1 q2, respectively.

Multifault sample and parameter setting for the experimental ventilation system.  Based on 
the construction method of the T-shaped angle-joint ventilation network resistance variable multifault sample 
set, 500 sets of experimental ventilation network multifault sample sets were generated, as shown in Table 5.

A cross-validation grid search was adopted to determine the hyperparameters of the experimental ventilation 
network multifault location diagnosis model, as shown in Table 6.

Experimental results.  Cross-validation was performed on a 500-group multifault sample set, and the 
results of the cross-validation are shown in Fig. 8. As illustrated in the figure, the MLP-based multifault location 
diagnosis model exhibits the smallest hamming loss, ranking loss, coverage, and one-error among the three 
models, which are 0.012, 0.004, 1.086, and 0.002, respectively, with the highest average accuracy of 0.992. The DT 
model’s hamming loss, ranking loss, coverage, one-error, and precision were 0.014, 0.05, 1.63, 0.056, and 0.916, 
respectively, and they exhibited slightly lower metrics than those of the MLP model. The Rank-SVM model has 
the worst metrics among the three models. It can be observed that the predictive performance and generaliza-
tion ability of the MLP-based RVMFL diagnosis model are better than those of the DT and Rank-SVM models.

In the experimental system, increasing and decreasing the resistance fault simulation point improve the reli-
ability of the multifault location diagnostic model; thus, the ventilation system experiences resistance variable 
multifaults. Owing to the poor predictive performance and generalization ability of the Rank-SVM model for 
multifault sample sets, it is not considered here; only the reliability of the MLP and DT models is considered. 
A fully open regulating valve preset at the simulation point of a resistance-increasing fault in the experimental 
ventilation system is used to create a resistance-increasing fault, and the dampers in the original system are used 
to create a resistance-reducing fault. A total of 9 sets of multifaults were created and tested for the remaining 

Table 5.   Experimental ventilation network multifault sample set.

Number q′
5

q′
7

q′
12

q′
16

q′
20

q′
21

q′
22

q′
25

… q′
63

ei, ej

1 0.09170 0.13742 0.09475 0.09069 0.10337 0.06194 -0.00140 0.03135 … 0.01408 e5, e7

2 0.10827 0.13956 0.09389 0.09032 0.10487 0.06284 -0.00245 0.03179 … 0.01407 e5, e7

3 0.11640 0.14016 0.09364 0.09023 0.10552 0.06323 -0.00290 0.03199 … 0.01406 e5, e7

… … … … … … … … … … … …

498 0.00344 0.06549 0.10942 0.09618 0.08473 0.05050 0.02247 0.02545 … 0.01233 e61, e63

499 0.00344 0.06547 0.10937 0.09613 0.08469 0.05048 0.02294 0.02542 … 0.01222 e61, e63

500 0.00344 0.06546 0.10936 0.09612 0.08468 0.05047 0.02307 0.02541 … 0.01219 e61, e63

Table 6.   Experimental ventilation network multifault location diagnosis model hyperparameter setting.

Models Parameters

DT
Max depth Criterion Splitter Min samples split Min samples leaf

125 Geni best 2 1

MLP
Hidden layer Hidden layer sizes Max iter Activation function Solver alpha

1 36 5000 tanh lbfgs 0.0001

Rank-SVM
Type Cost Max iter lambda

Linear 1 50 0.000001

Figure 8.   Cross-validation results of the experimental system for RVMFL diagnosis.
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branch airflow in each state. After each multifault diagnosis was performed, the system was restored to the origi-
nal ventilation system state to ensure consistency. A sample of the experimental ventilation system multifault 
example tests is shown in Table 7.

The reliability of the MLP and DT models was verified using the multifault sample set in Table 5 as the train-
ing set and the multifault example test sample of the experimental ventilation system in Table 7 as the test set. 
The MLP multifault location diagnosis model was used to diagnose all 9 groups of multifault locations with an 
accuracy rate of 100%. With a diagnostic accuracy rate of 44.44%, the DT multifault location diagnosis model was 
used to accurately diagnose two fault locations in 4 groups, of which one fault location was diagnosed accurately 
in 4 groups and one group was not diagnosed accurately in both locations. Using the existing model of ML-KNN 
to diagnose the multifault locations of the experimental system, the diagnostic accuracy is 88.89% when k = 2 
and 100% when k = 3. The diagnostic accuracy of the MLP model is comparable to that of the ML-KNN model.

Conclusion
This study investigated the concurrent diagnosis of resistance faults occurring at multiple locations in a mine 
ventilation system, proposed three supervised machine learning diagnosis models for RVMFL diagnosis, and 
validated the reliability and effectiveness of the models and methods using a 10-branch T-shaped angle-joint ven-
tilation network and a 54-branch experimental ventilation network. We obtained the following main conclusions:

(1)	 According to the cross-validation results, the DT, MLP, and Rank-SVM supervised machine learning 
methods are feasible for the multifault location diagnosis of mine ventilation systems based on air volume 
characteristics. The diagnostic performances of both the MLP and DT models are better than that of the 
Rank-SVM model, and the MLP model performs the best.

(2)	 In the diagnosis of the experimental ventilation system resistance variable multifault instance, the diagnostic 
accuracy of the MLP model is 100%, while the diagnostic accuracy of the DT model is 44.44%, further 
indicating that the generalization ability of the MLP model is better than that of the DT model. The high 
diagnostic accuracy and reliability satisfy the engineering requirements and can be used as a method of 
RVMFL diagnosis in engineering practice and application.

(3)	 The successful practice of RVMFL diagnosis of experimental ventilation systems shows that the resistance 
variable multifault experimental verification system for mines established in this study can serve as a veri-
fication platform for intelligent fault diagnosis of mine ventilation systems, effectively solving the problem 
that industrial tests cannot be conducted in the field and providing strong support for the construction of 
intelligent ventilation systems for mines.

This study focused on the diagnosis of multifault locations in mine ventilation systems, and further study 
is needed to diagnose the magnitude of faults, i.e., the volume of faults, in ventilation systems where multifault 
locations occur. In this study, only the air volume was used as a single feature as an input to the model, and a 
higher accuracy might be obtained if factors such as the differential pressure of the structure or pressure energy 
of the nodes were considered. Rank-SVM has the worst diagnostic performance among the three models. The 
factors affecting the performance of the Rank-SVM model are the setting of the penalty factor, the selection of 
the kernel, and the sample size and quality. At present, the kernel selected in this paper is a linear kernel and the 
penalty factor set in this paper may lead to the degradation of the diagnostic performance of the model, and the 
subsequent research should focus on the factors affecting the performance of the model in order to find the best 
model setting so as to improve the diagnostic performance of the model.

Data availability
All relevant data are within the paper.
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Table 7.   Experimental ventilation system with a multifault instance test sample.

Number q′
5

q′
7

q′
12

q′
16

q′
20

q′
21

q′
22

q′
25

… q′
63

ei, ej

1 0.09269 0.14028 0.09426 0.09057 0.10384 0.06224 − 0.00177 0.03150 … 0.01407 e5, e7

2 0.00354 0.06723 0.10921 0.10307 0.07496 0.06243 0.02925 0.05186 … 0.01417 e21, e25

3 0.00311 0.05870 0.08679 0.10068 0.14650 0.07325 0.03336 0.03635 … 0.01342 e17, e41

4 0.00349 0.06651 0.11108 0.09773 0.08594 0.05122 0.00363 0.02623 … 0.01427 e49, e61

5 0.00348 0.06626 0.11067 0.09732 0.08566 0.05106 0.01630 0.02593 … 0.01318 e47, e48

6 0.00345 0.06558 0.10956 0.09631 0.08483 0.05056 0.02104 0.02553 … 0.01257 e62, e61

7 0.00344 0.06539 0.10928 0.09596 0.08469 0.05047 0.03256 0.02502 … 0.18318 e47, e63

8 0.00342 0.06518 0.10895 0.09564 0.08447 0.05034 0.03580 0.02479 … 0.01194 e47, e62

9 0.00337 0.05999 0.11029 0.11489 0.13920 0.07010 0.02597 0.03521 … 0.01423 e6, e17
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