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Altered brain structural 
and functional connectivity 
in cannabis users
Najme Soleimani 1, Kamran Kazemi 1*, Mohammad Sadegh Helfroush 1 & Ardalan Aarabi 2,3

Cannabis is one of the most used and commodified illicit substances worldwide, especially among 
young adults. The neurobiology mechanism of cannabis is yet to be identified particularly in youth. 
The purpose of this study was to concurrently measure alterations in brain structural and functional 
connectivity in cannabis users using resting-state functional magnetic resonance images (rs-fMRI) 
and diffusion-weighted images (DWI) from a group of 73 cannabis users (age 22–36, 19 female) in 
comparison with 73 healthy controls (age 22–36, 14 female) from Human Connectome Project (HCP). 
Several significant differences were observed in local structural/functional network measures (e.g. 
degree and clustering coefficient), being prominent in the insular and frontal opercular cortex and 
lateral/medial temporal cortex. The rich-club organization of structural networks revealed a normal 
trend, distributed within bilateral frontal, temporal and occipital regions. However, minor differences 
were found between the two groups in the superior and inferior temporal gyri. Functional rich-club 
nodes were mostly located within parietal and posterior areas, with minor differences between the 
groups found mainly in the centro-temporal and parietal regions. Regional network measures of 
structural/functional networks were associated with times used cannabis (TUC) in several regions. 
Although the structural/functional network in both groups showed small-world property, no 
differences between cannabis users and healthy controls were found regarding the global network 
measures, showing no association with cannabis use. After FDR correction, all of the significant 
associations between network measures and TUC were found to be insignificant, except for the 
association between degree and TUC within the presubiculum region. To recap, our findings revealed 
alterations in local topological properties of structural and functional networks in cannabis users, 
although their global brain network organization remained intact.

Cannabis is one of the most commonly used illicit drugs worldwide, and its consumption has been on the rise in 
recent years, coinciding with its legalization in many  countries1. Research has shown that dependence on can-
nabis is associated with a range of neurocognitive deficits, including impaired episodic  memory2, engagement 
in risky behaviors, and poor performance on cognitive tasks that require executive  function1,3.

In the past decades, morphometry and network analyses have been commonly used in most studies to inves-
tigate the association between cannabis use and brain structure and function. The morphometry based approach 
is used to study changes in the local concentration (volume/thickness) of brain  tissues4. Early studies found no 
significant morphological alterations in the brain associated with chronic cannabis  use5. However, recent studies 
have shown that the use of cannabis may lead to hippocampal, parahippocampal and lateral  atrophy6–9. Altera-
tions in brain function and structure may not be merely due to local changes in brain morphology, it can be also 
a result of changes in interactions between brain regions.

Through modeling the brain as a  network10, several studies have explored alterations in brain functional and 
structural connectivity attributed to chronic cannabis use using resting-state functional and diffusion weighted 
imaging  data11–14. Previous studies on large-scale brain networks have reported heterogeneous findings regarding 
the association of cannabis with brain structural and functional connectivity patterns in cannabis users. Initial 
findings suggested less efficient structural brain networks in addition to altered local structural connectivity in 
the cingulate region in a group of cannabis users using graph theoretical  measures12. One of the first studies 
examining the impact of long-term cannabis use on axonal connectivity found impaired structural connectivity 
in the splenium of the corpus callosum, fornix and commissural  fibers15. Regular cannabis users were found to 
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have increased structural fractional anisotropy, which then decreased alongside heavy  use3. Other  studies16–18 
have found no significant differences in the global properties of brain structural networks between cannabis 
users and controls.

Long-term cannabis use is shown to be associated with a wide variety of changes in functional connectivity, 
although most studies focused on distinct brain regions using cognitive  tasks19,20. A few studies investigated 
resting-state functional connectivity across large-scale brain  networks16,21. Manza et al.11 found increased local 
functional connectivity in the ventral striatum, midbrain, brainstem and lateral thalamus. Whilst, using seed-
based connectivity analysis, they reported no significant differences in whole-brain functional connectivity 
between cannabis users and healthy controls using the aforementioned regions as seed. Ramaekers et al.22 found 
a broad state of hyperconnectivity within the major brain networks such as dorsal attention, limbic, subcortical 
and cerebellum network in chronic cannabis users in comparison with acute users. Using the graph theoretical 
analysis, no differences in global and regional properties of resting-state functional networks were found between 
cannabis users and non-users21.

In recent years, there has been growing interest in identifying densely-connected hubs (so-called “rich club”) 
in brain networks, shown to play a critical role in information integration across structural and functional brain 
 networks23,24. Few studies have examined the rich club organization of structural brain networks in cannabis 
users in comparison with non-users16,17. Despite the bulk of studies, alterations in both functional and structural 
connectivity of brain networks have not been fully explored in cannabis users.

In the present study, we aimed at exploring alterations in brain functional and structural connectivity and the 
rich club organization of structural and functional brain networks using graph theoretical metrics in cannabis 
users in comparison with healthy controls. We further assessed the association between times used cannabis 
and network measures.

Materials and methods
Subjects. This study included 146 subjects from the HCP dataset (final release, https:// www. human conne 
ctome. org/ study/ hcp- young- adult/ docum ent/ 1200- subje cts- data- relea se)25. All the participants provided writ‑
ten informed consents. From this cohort (n = 1206; aged 22–36; 54% female), 109 individuals met the DSM-IV 
criteria for cannabis dependence and had both rs-fMRI and DWI imaging data. From this subgroup, individuals 
with comorbid alcohol dependence, outliers on DSM levels of anxiety and depression (> 3 SD from the mean of 
all 1206 HCP subjects) in addition to those individuals with low quality outlier images were  excluded19. The final 
sample included 73 cannabis users. Since it is recommended to match groups based on demographic and life-
style factors, a critical step to minimize the potential confounding effects of these  factors11, a group of 73 healthy 
control group was selected from 1096 healthy subjects included in the HCP, well matched with the cannabis 
group on age, sex, education, BMI, alcohol and tobacco  usage11 using the MatchIt function in R with (p > 0.1). 
Subjects’ socio-demographic information is provided in Table 1.

Neuroimaging data. From each subject, imaging data were acquired on a Siemens 3T scanner with a 
32-channel coil at Washington University as described  in26. The 3D T1- and T2- weighted MR images were 
acquired at 0.7  mm isotropic resolution (FOV = 224  mm, matrix = 320, 256 slices). The diffusion-weighted 
images (DWI) were acquired with a high spatial resolution of 1.25 mm isotropic (TR/TE = 5520 ms/89.5 ms) 
using a high-angular resolution diffusion imaging (HARDI) approach, including six runs and three differ-
ent shells of b = 1000, 2000 and 3000 s/mm2 with 270 q-points distributed over the three shells. The rs-fMRI 
data were acquired in two sessions and two runs of approximately 15 min each (one LR and another RL phase 
encoding) in each session with an EPI sequence (Multiband factor = 8, TR/TE = 720 ms/33.1 ms, flip angle = 52°, 
FOV = 208  mm, spatial resolution = 2 × 2 × 2  mm). For rs-fMRI, participants were instructed to lie with eyes 
open, to relax and look at a white cross on a dark background, think of nothing and not to fall asleep.

Data preprocessing. The T1w images were minimally preprocessed for spatial distortion and motion correc-
tion, and normalization in the MNI  space27. The diffusion weighted images were also preprocessed for b0 inten-
sity normalization, EPI distortion correction, eddy current and motion correction, and gradient nonlinearity 
 correction28. We used all rs-fMRI data in the “CIFTI” format, that is, combinations of cortical gray matter data 
modeled on surfaces and subcortical gray matter data modeled in volumetric parcels included in one image. 
All functional images were minimally preprocessed for gradient unwarping, EPI distortion correction, motion 
correction, registration to T1w scans, high pass filtering with a cut-off of 2000 s used for linear detrending, ICA-
based denoising in order to automatically remove artifactual, bad and very low-frequency components, and 
non-linear normalization to MNI space, described in detail  elsewhere28. In the HCP pre-processing pipeline, 
the independent component analysis (MELODIC, FSL-FIX) was used to remove artifactual and "bad" compo-
nents, as well as non-neural spatiotemporal components from 15-min high-pass filtered rs-fMRI data. To avoid 
removing variance of interest from the data, a conservative non-aggressive approach was further used with a 
cut-off of 2000 s shown to be more appropriate than 200 s for ICA-FIX29. The rs-fMRI images were also cross-
registered across subjects using “MSMall”  algorithm30, which aligns functional networks using features derived 
from myelin, resting state networks, and rs-fMRI visuotopic maps for better registration of functional cortical 
areas in comparison with legacy  pipelines30,31.

Tractography. The tractography for each individual was performed using the deterministic generalized 
Q-sampling imaging (GQI) fiber tracking  algorithm32 with DSI Studio (http:// dsi- studio. labso lver. org/). The 
optimal value for diffusion sampling length ratio was set to 1.25 to better model cross fibers in regions like the 
lateral corpus callosum. For each subject, 1,000,000 fibers were generated and quantitative anisotropy (QA) 

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
http://dsi-studio.labsolver.org/
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was computed for the orientation distribution function (ODF) in each  voxel33. The QA is a robust index with 
less sensitivity to the partial volume effect of crossing fibers besides higher resolution compared to FA-aided 
 tractography33. Streamlines shorter than 30  mm and longer than 300  mm were discarded as suggested  in34. 
Finally, the topology-informed pruning  algorithm35 was applied to remove false positive connections.

Network construction. To construct functional and structural brain graphs, we used the Glasser  atlas30 
containing 360 regions (180 areas per hemisphere). Since subcortical regions have been commonly included in 
addiction  studies11, we used the modified version of this atlas of 379 parcels including 19 subcortical regions. The 
parcellation scheme was based on alterations in cortical architecture, function, connectivity and topography of 
the brain in 210 young healthy adults from  HCP30.

For each participant, a structural connectivity matrix with N × N elements representing the normalized 
QA between regions was constructed. The optimal threshold was set to 0.1% of the maximum value (default 
threshold in DSI Studio) of structural connectivity for each individual. A weighted group structural matrix was 
then computed for each group by averaging the connectivity matrix elements for connections present in at least 
75% of the  subjects23.

Furthermore, a functional connectivity matrix was constructed for each individual by calculating the pairwise 
Pearson’s correlation coefficient of the average time courses of 379 regions. The functional connectivity matrices 
were then  thresholded27 using an optimal threshold of 0.2, preserving 20% of the strongest connections. The 
optimal threshold was obtained based on the trade-off between density and global  efficiency36. A binary group 
functional matrix was also computed for both groups by averaging the individual matrices by preserving 20% 
of the strongest connections. The whole procedure is depicted in Fig. 1.

Network topological properties. To explore the association of cannabis use with brain structural and functional 
connectivity, the topological properties of both the structural and functional networks were computed at the 
single subject and group levels using the Brain Connectivity Toolbox (BCT, http:// www. brain- conne ctivi ty- toolb 
ox. net/). To characterize the brain network topology, metrics of network integration (characteristic path length, 
global efficiency and degree), segregation (clustering coefficient and modularity) as well as small-worldness were 
computed for each network. Detailed information about each property can be found  in37  and10.

Rich‑Club organization. We further investigated the effect of cannabis on the rich-club organization of the 
brain using the method described  in23,24. To this end, an unweighted rich-club coefficient was computed for the 
average functional network of each group. For each k in the range of [1, maximum degree in network] the rich 

Table 1.  Summary of socio-demographic and substance use characteristics of the subjects included in the 
study. a Age range = 22–36 years.

Cannabis users Healthy controls p-value t-statistic df

N of total 73 73

Mean  Agea (SD) 28.58 (3.69) 27.72 (3.56) 0.1352 1.51 72

Gender (N of Male (%)) 54 (73.97%) 59 (80.82%)

Mean BMI (SD) 26.99 (4.91) 27.06 (4.54) 0.9309 − 0.087 72

Education (Years of education completed)

 < 11 6 (8.21%) 3 (4.10%)

0.8163 − 0.233 72

12 9 (12.32%) 15 (20.54%)

13 11 (15.06%) 4 (5.47%)

14 10 (13.69%) 13 (17.8%)

15 6 (8.21%) 5 (6.84%)

16 22 (30.13%) 25 (34.24%)

17 + 9 (12.32%) 8 (10.95%)

Times used Cannabis (lifetime)

0 (never used) – 41 (56.16%)

2.2014e−43 31 72

1 (1–5 times) – 23 (31.5%)

2 (6–10 times) – 9 (12.32%)

3 (11–100 times) 13 (17.8%) –

4(101–999 times) 20 (27.39%) –

5 (> 1000 times) 40 (54.79%) –

Age at first use of cannabis

1 (< = 14) 23 (31.5%) –

2 (15–17) 32 (43.83%) –

3 (18–20) 15 (20.54%) –

4 (> = 21) 3 (4.10%) –

Mean Alcohol use (SD) 0.31 (0.51) 0.32 (0.55) 0.9489 − 0.064 72

Mean Tobacco use (SD) 0.24 (0.78) 0.15 (0.59) 0.4566 0.748 72

http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/
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club coefficient ϕ(k) was computed as the ratio of the number of connections in the subgraph defined by nodes 
with degree less than k, relative to the total number of possible connections in the subgraph.

where Ek is the number of connections with a degree less than k, and Nk(Nk − 1) is the total number of possible 
connections.

(1)φ(k) =
2Ek

Nk(Nk − 1)

Figure 1.  Processing pipeline for brain structural and functional Network Analysis. A structural connectome 
was constructed for each individual using fiber tractography and a parcellation scheme. A functional 
connectome was also constructed for each individual by calculating the pairwise Pearson’s correlation coefficient 
of the average time courses of 379 regions. A graph-theoretical analysis was then performed to investigate 
the topological properties and rich-club organization of the structural and functional brain networks in both 
healthy controls and cannabis users.
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Following a similar procedure, a weighted rich-club coefficient φw

k
 was computed for each group structural 

network. After ranking all weights of the structural network ( wranked ), φw(k) was computed as follows:

where wk is the sum of weights on the links in the subgraph of nodes with a rank greater than k, and wranked is a 
vector of all link weights in the structural network, ranked from largest to smallest weight.

The normalized rich-club coefficient ϕnorm(k) of structural and functional networks for each group were then 
computed with respect to ϕrandom(k), which was computed as the average rich-club coefficient over 1000 random 
networks of equal size and similar connectivity  distribution23 to test whether the rich club of the actual network 
significantly exceeded that of a null model or not by with p < 0.05. For the structural and functional networks 
of cannabis users and healthy controls, ϕnorm(k) greater than 1 within a range of k with p < 0.05 revealed the 
presence of rich-club nodes. In the present study, we chose the k level in a way that 30% of the network nodes 
identified as rich-club nodes.

Statistical analysis. Differences in global and local graph metrics between cannabis users and healthy 
controls were assessed via t-test. Furthermore, a linear regression analysis at the nodal level was used to examine 
the relationship between the structural/functional network measures (degree and clustering coefficient) and 
times used cannabis (TUC) in cannabis users. We presented our findings using a range of statistical significance 
thresholds (p < 0.05, p < 0.02, p < 0.01, and p < 0.005), both uncorrected and corrected for multiple comparisons 
using the false discovery rate (FDR), mainly because corrections for multiple comparisons can be overly con-
servative when dealing with a large number of nodes.

Informed consent. Informed consent was obtained from all subjects involved in the study.

Results
Graph measures. As reported in Table 2, no significant differences (p > 0.05) were found in global network 
measures (global efficiency, characteristic path length, modularity and small-worldness) for either structural or 
functional networks between cannabis users and healthy controls.

Figure 2 and Tables S1–S4 show significant differences (with p < 0.05, p < 0.02, p < 0.01 and p < 0.005, uncor‑
rected) in nodal degree and clustering coefficient for structural and functional networks between the groups. As 
illustrated, the structural networks in cannabis users compared to controls displayed lower (p < 0.01, uncorrected) 
degree centrality within the left frontal opercular, posterior opercular cortex, inferior parietal cortex, and in right 
lateral temporal, posterior cingulate and visual areas. Few nodes in the left parieto-occipital regions including 
V3CD showed increased structural degree in cannabis users relative to controls. In the functional networks, the 
left frontal operculum showed significant decreases (p> 0.005, uncorrected) in degree in cannabis users.

Cannabis users further exhibited higher local segregation (clustering coefficient, p< 0.01 uncorrected) within 
the frontoparietal regions including the premotor cortex, frontal opercular and inferior frontal cortices for 
structural networks. Few regions in posterior areas including the ventral stream visual cortex and V3CD showed 
lower clustering coefficients in cannabis users.

The functional networks in cannabis users were also characterized by increased clustering coefficient in the 
left inferior frontal cortex, ventral stream visual cortex, FST, and area TG dorsal. Compared to controls, the 
cannabis group exhibited lower local functional segregation within the right hemisphere in the dorsolateral 
prefrontal cortex, ParaHippocampal area 2 and Diencephalon ventral area.

Overall, none of the aforementioned significant differences between the cannabis users and healthy controls 
survived after FDR correction.

Rich-Club organization of structural and functional networks. Figure 3 and Tables S9, S10 show 
the spatial distribution of structural and functional rich-club nodes for both groups. As shown, the structural 
rich club nodes were mostly distributed within left bilateral frontal, temporal and centro-occipital areas as well 
as in deep brain structures for both groups. Compared to controls, the structural networks in cannabis users 
showed higher and lower number of rich-club nodes within the superior and inferior temporal gyri, respectively.

(2)φw(k) =
wk

∑Ek

l
w
ranked

l

Table 2.  Average values (mean ± SD) of structural and functional network properties for each group.

Topological characteristic

Structural network Functional network

Cannabis users Healthy controls p-value t-statistic df Cannabis users Healthy controls p-value t-statistic df

Global efficiency 0.3185 ± 0.0215 0.3184 ± 0.0223 0.99 − 0.007 144 0.4864 ± 0.0292 0.4938 ± 0.0265 0.11 1.60 144

Characteristic path length 0.8234 ± 0.0652 0.8176 ± 0.0650 0.58 − 0.54 144 1.9604 ± 0.055 1.9538 ± 0.047 0.43 − 0.77 144

Modularity 0.3308 ± 0.0227 0.3222 ± 0.0280 0.05 − 2.03 144 0.2616 ± 0.0530 0.2697 ± 0.0459 0.33 0.97 144

Small-worldness 1.5792 ± 0.0928 1.5563 ± 0.1092 0.17 − 1.35 144 1.3042 ± 0.1939 1.3483 ± 0.1916 0.16 1.40 144

Degree 77.76 ± 5.21 78.53 ± 5.54 0.38 0.86 144 75.59 ± 1.43 75.59 ± 1.43 1 0 144

Clustering coefficient 0.2862 ± 0.02 0.2855 ± 0.0207 0.83 − 0.20 144 0.6257 ± 0.0183 0.6265 ± 0.0188 0.79 0.25 144
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Figure 2.  Regions showing differences in degree and clustering coefficient between cannabis users and healthy 
controls in (a) structural networks and (b) functional networks. The color of nodes indicates significant 
increases (red) or decreases (blue) in degree and clustering coefficient for cannabis users (CB) compared to 
healthy controls (HC). The size of nodes represents between group differences with p < 0.05, p < 0.02, p < 0.01 and 
p < 0.005 (uncorrected) with larger nodes showing smaller p values.

Figure 3.  Rich club organization of (a) structural networks and (b) functional networks for cannabis users and 
healthy controls. The common rich club nodes in two groups are shown in blue. Few rich club nodes were only 
found for healthy controls (in red) or cannabis users (in green).
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The functional rich-club nodes were mostly located within parietal and posterior areas for both groups 
showing minor differences. Cannabis users showed slightly fewer and more rich-club nodes within the centro-
temporal and parietal areas, respectively.

Post hoc analysis. Figure 4 and Tables S5–S8 show the regression results illustrating regions whose graph 
measures were significantly (p < 0.05, uncorrected) associated with TUC in structural (SN) and functional (FN) 
networks. In this figure, nodes represent a rate of change (β coefficients) in nodal degree and clustering coefficient 
higher than mean + 2SD with increasing TUC. Several regions in posterior areas showed a significant decrease 
in degree centrality with increasing TUC for structural networks (within the bilateral inferior frontal cortex, left 
temporo-parieto-occipital junction, right V3CD) and functional networks (within left parahippocampal area, 
left ventro-medial visual area, left superior parietal cortex, left inferior parietal cortex, right hippocampus, right 
medial temporal cortex). The degree of a few regions in SN (within left dorsolateral prefrontal cortex) and FN 
(within the right inferior frontal cortex, right premotor cortex) showed positive correlations with TUC. The 
clustering coefficient of several nodes within frontal and occipital areas was also positively correlated (p < 0.01, 
uncorrected) with TUC for functional and structural networks, respectively. The left intra-parietal sulcus area in 
SN and left presubiculum and anterior cingulate and medial temporal cortices in FN were found to be negatively 
associated (p < 0.01, uncorrected) with TUC. The left inferior frontal cortex and right intraparietal area in SN and 
right orbital and polar frontal cortex, right frontal opercular area, and left caudate in FN showed an inverse trend 
(Table S5). None of the aforementioned significant associations between network measures and TUC survived 
after FDR correction. Only significant association between degree and TUC within the presubiculum region 
survived after FDR correction.

Discussion
Despite the high prevalence of cannabis use worldwide, little is known about its potential effect on the human 
brain. This study investigated the association of cannabis use with brain structural and functional connectiv-
ity using graph-theoretical analysis in a relatively large sample of cannabis users in comparison with healthy 
controls. Our results showed: (1) a small world topology and rich-club organization for brain structural and 

Figure 4.  Regions showing significant association with times used cannabis in (a) structural and (b) functional 
networks. Nodes in red and blue show a negative (NEG) and positive (POS) association with times used 
cannabis, respectively. The node size represents the significant level (p < 0.05, p < 0.02, p < 0.01 and p < 0.005, 
uncorrected) with larger nodes showing smaller p values. After FDR correction, only the PreS region was found 
to be statistically significant.
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functional networks in cannabis users and healthy non-users, (2) no significant differences in global network 
measures between the groups, (3) significant decreases and increases in local integration and segregation of the 
structural/functional networks, respectively, in cannabis users compared to healthy controls, and (4) significant 
association between local measures of st ructural/functional networks and times used cannabis. Taken together, 
our findings showed altered regional properties of brain structural and functional networks in cannabis users.

Consistent with prior  findings9,12,16, our results showed no significant alterations in global network proper-
ties of structural and functional brain networks in cannabis users in comparison with healthy controls (p > 0.05, 
uncorrected). The small-world properties of both functional and structural networks were also found similar 
across the two groups, in line with previous  studies38 on healthy individuals.

Our findings showed some regional alterations in structural networks associated with cannabis use especially 
in the  cingulate12,  dorsolateral16, frontal/posterior opercular, frontal medial cortex, insular and temporal regions. 
The structural connectivity alterations observed in these regions may be related to local changes in cortical 
gray matter thickness and the heterogeneous distribution of cannabinoid receptors across the brain associ-
ated with substance use  disorder32,39–42. As more segregated networks tend to have high clustering  coefficient37, 
the increase in clustering coefficient in some regions may suggest potential differences in the local processing 
capacity of these  networks12. These different patterns of global and local metrics might reflect different sample 
characteristics in studies.

In the present data, we found rich-club nodes largely distributed in cortical and subcortical regions, in line 
with previous  findings19,23,34,43. The structural rich club nodes were mainly found within bilateral frontal, tem-
poral and centro-occipital areas and deep brain structures for both groups, whilst those of functional networks 
were mostly located within parietal and posterior areas. Compared to controls, our results revealed higher and 
lower numbers of rich-club nodes within the superior and inferior temporal gyri, respectively, for structural 
networks in cannabis users. This finding is in contrast with other  studies16 reporting no differences in the rich-
club organization of structural networks between cannabis users and healthy controls.

Our results showed that the functional rich-club nodes were mostly located within parietal and posterior 
areas for both groups displaying minor differences in number of rich-club nodes. Compared to controls, cannabis 
users showed slightly fewer and more rich-club nodes within centro-temporal and parietal areas, respectively. 
Few nodes within dorsal area showed a high level of rich-clubness for functional networks in cannabis users. 
This area has been reported to play an important role in habit formation in addictive  behaviors44. These findings 
suggest potential aberrant connectome associated with cannabis use.

Our findings further showed significant associations between the nodal degree/clustering coefficient of struc-
tural/functional networks and the number of lifetime uses of cannabis. Consistent with previous  findings41, 
clustering coefficients (measure of segregation) of structural connectivity showed positive associations with 
lifetime cannabis use mostly in the medial temporal cortex and negative associations in some regions including 
the dorsolateral prefrontal cortex. We also found a negative association between local parameters (degree of 
structural network, clustering coefficient of functional network) and TUC in the presubiculum region, located 
in the medial temporal cortex. The negative association between degree of functional network and times used 
cannabis was mostly found in the medial temporal cortex, the temporal-parietal-occipital junction and hip-
pocampus. The hippocampus is one of the brain regions with the highest levels of expression of CB1  receptors45. 
The CB1-related structural and functional changes have been frequently found in this region in both human and 
animal  models16. However, positive associations between the clustering coefficient of functional network and 
TUC were mostly observed in the anterior cingulate and medial prefrontal cortex. Some  studies16,21 reported no 
significant association between the duration of cannabis use, times used cannabis, age of onset, and the detri-
mental effect on brain networks while others believe that an earlier onset or longer cannabis use may affect brain 
 networks15,46. These inconsistencies may be due to differences in self-reported scores, cannabis user population 
across different studies and differences in methodology.

The current study has several limitations. First, the HCP database is a cross-sectional database which provides 
limited information about cannabis use and addiction. The existing measures like the age of onset are level-based 
and not exact. The alterations in connectivity patterns found in cannabis users might be due to patterns of daily 
use or chronicity. Second, in this cross-sectional database, only young adults aged 22–36 years were included. 
Longitudinal data are required to better characterize within-sample changes in connectivity patterns over time. 
Finally, rs-fMRI and functional connectivity are now widely considered to be dynamic over time, therefore 
a dynamic connectivity analysis might better illustrate time-varying patterns of connectivity associated with 
cannabis use.

Conclusions
The present study investigated association between cannabis use and brain structural and functional connectivity. 
A graph-theoretic analysis was performed on whole-brain functional and structural networks of cannabis users 
and healthy controls in order to identify alterations in brain connectivity associated with cannabis use. Brain 
networks of both groups exhibited small-world properties. Furthermore, our findings suggested regional effects 
on network segregation and integration measures, being more significant in the insular, frontal opercular and 
lateral/medial temporal cortices. However, the global properties of the brain networks remain intact. The rich-
club analysis of both structural and functional network indicated a typical pattern, although some minor differ-
ences were observed between the two groups. A negative association was observed between times used cannabis 
and regional structural and functional network measures in certain regions, including the hippocampus and 
presubiculum, which have been found in other studies to exhibit a high concentration of CB1-receptors. In future 
work, we will investigate time-varying changes in resting state functional connectivity patters in cannabis users.
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