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An interpretable and interactive 
deep learning algorithm 
for a clinically applicable retinal 
fundus diagnosis system 
by modelling finding‑disease 
relationship
Jaemin Son 1,6, Joo Young Shin 2,6, Seo Taek Kong 1, Jeonghyuk Park 1, Gitaek Kwon 1, 
Hoon Dong Kim 3, Kyu Hyung Park 4, Kyu‑Hwan Jung 5,7* & Sang Jun Park 4,7*

The identification of abnormal findings manifested in retinal fundus images and diagnosis of 
ophthalmic diseases are essential to the management of potentially vision‑threatening eye 
conditions. Recently, deep learning‑based computer‑aided diagnosis systems (CADs) have 
demonstrated their potential to reduce reading time and discrepancy amongst readers. However, 
the obscure reasoning of deep neural networks (DNNs) has been the leading cause to reluctance in its 
clinical use as CAD systems. Here, we present a novel architectural and algorithmic design of DNNs 
to comprehensively identify 15 abnormal retinal findings and diagnose 8 major ophthalmic diseases 
from macula‑centered fundus images with the accuracy comparable to experts. We then define a 
notion of counterfactual attribution ratio (CAR) which luminates the system’s diagnostic reasoning, 
representing how each abnormal finding contributed to its diagnostic prediction. By using CAR, we 
show that both quantitative and qualitative interpretation and interactive adjustment of the CAD 
result can be achieved. A comparison of the model’s CAR with experts’ finding‑disease diagnosis 
correlation confirms that the proposed model identifies the relationship between findings and 
diseases similarly as ophthalmologists do.

Abbreviations
AMD  Age-related macular degeneration
AUROC  Area under the receiver operating characteristic curve
BRVO  Branch retinal vein occlusion
CAR   Counterfactual attribution ratio
CRVO  Central retinal vein occlusion
CWP  Cotton wool patch
DL  Deep learning
DNN  Deep neural network
DR  Diabetic retinopathy
ICDRDSS  International Clinical Diabetic Retinopathy Disease Severity Scale
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IDRiD  Indian Diabetic Retinopathy image Dataset
REFUGE  REtinal FUndus Glaucoma challengE
RNFL  Retinal nerve fiber layer
RVO  Retinal vein occlusion
SNUBH  Seoul National University Bundang Hospital
t-SNE  t-distributed stochastic neighbor embedding

Ophthalmologists and primary care practitioners often examine macula-centered retinal fundus images for 
comprehensive screening and efficient management of vision-threatening eye diseases such as diabetic retin-
opathy (DR)1,  glaucoma2, age-related macular edema (AMD)3, and retinal vein occlusion (RVO)4. Deep learning 
(DL)  algorithms5 have been developed to automate the assessment of  DR6,7,  glaucoma8,9, and  AMD10,11, as well 
as multiple ophthalmologic  findings12, achieving performance comparable to that of human experts. A major 
obstacle hindering the applicability of DL-based computer-aided diagnosis (CAD) systems in clinical setting is 
its interpretability, that is, the rationale behind its diagnostic conclusions is obscure. Several visualization tech-
niques such as class activation  maps13,14 and integrated  gradients15 have been developed to highlight lesions as 
preliminary solutions. However, the ‘heatmap’ provides only ambiguous regions on the image that contributed 
to the final prediction and cannot explicitly differentiate the lesions that attributed to the final model prediction. 
Therefore, the users may not fully understand which findings contributed to the DL system’s diagnostic predic-
tions. Another limitation of preexisting DL-based algorithms for fundus image analysis is that they are capable 
of examining only a few ophthalmologic findings or diseases (e.g., DR), while more comprehensive coverage of 
multiple common abnormal retinal conditions is necessary for practical deployment of DL-based CAD systems 
to clinical settings.

We present a DL-based CAD system that not only comprehensively identifies multiple abnormal retinal find-
ings in color fundus images and diagnoses major eye diseases, but also quantifies the attribution of each finding 
to the final diagnosis. The training procedure resembles ophthalmologists’ typical workflow, first identifying 
abnormal findings and diagnosing diseases based on the findings present in the fundus image. This DL system 
presents the final diagnostic prediction and their accompanying heatmap just as other available DL systems, 
and also provides the quantitative and explicit attributions of each finding in making the proposed diagnoses, 
which enhances the interpretability of the provided diagnostic decision, to the benefit of physicians in making 
their final decisions for the right treatment or management of ophthalmic diseases. The model’s performance 
was validated on a held-out, in-house dataset as well as 9 external datasets. A novel notion of counterfactual 
attribution ratio (CAR) was used to elucidate the rationale behind our DL system’s decision-making process 
by quantifying the extent to which each finding contributes to its diagnostic prediction. Statistical analysis of 
CAR was performed to evaluate if the DL system’s clinical relations between finding identification and disease 
diagnoses were similar to that of human experts.

Results
Reliability of the DL‑system. The system consists of two major components that are implemented in a 
single neural network: (1) fifteen-finding identification subnetwork is specialized to predict the likelihood that 
each finding is present in a fundus image, and (2) eight-disease diagnosis subnetwork diagnoses retinal diseases 
based on features extracted from the finding-identification network (Fig. 1a). The 15 findings considered in this 
system consist of hemorrhage, hard exudate, cotton wool patch (CWP), drusen, membrane, macular hole, myeli-
nated nerve fiber, chorioretinal atrophy or scar, any vascular abnormality, retinal nerve fiber layer (RNFL) defect, 
glaucomatous disc change, non-glaucomatous disc change, fluid accumulation, retinal pigmentary change, and 
choroidal lesion. The 8 major diseases considered are dry AMD, wet AMD, any DR, referable DR, central retinal 
vein occlusion (CRVO), branch retinal vein occlusion (BRVO)/hemi-CRVO, epiretinal membrane, and glau-
coma suspect.16.

The finding-identification models and disease diagnosis models were trained and tested on data of 103,262 
macula-centered fundus images from 47,764 patients (Supplementary Table 1). All models were evaluated with 
respect to its area under the receiver operating characteristic curve (AUROC), with its 95% confidence interval 
computed using the Clopper-Pearson method. Operating points were chosen to maximize the harmonic mean 
between sensitivity and specificity (i.e. F1-score) on the in-house validation data set except for BRVO/hemi-
CRVO and CRVO whose operating points were set to have approximately 90% sensitivity because only a small 
number of positive cases were available.

Component #1: identification of fifteen abnormal findings. As shown in Table 1, the system iden-
tified findings in retinal fundus images with a mean AUROC of 0.980 across all 15 findings on a held-out, in-
house test set. AUROCs ranged from a minimum of 0.972 for retinal pigmentary change to a maximum of 1.000 
for myelinated nerve fiber layer with respect to the majority consensus of three ophthalmologists as reference. 
Sensitivities ranged from 92.5% for glaucomatous disc change to 100.0% for myelinated nerve fiber and specific-
ity varied between 88.3% for retinal pigmentary change to 100.0% for myelinated nerve fiber (Supplementary 
Table 2, Supplementary Fig. 1). This performance is comparable to human experts as reported in previous lit-
erature.12.

The models were then validated on 4 external datasets without additional tuning to identify findings included 
in each dataset:  MESSIDOR17 (n = 1189) for all 15 findings, e-ophtha18 (n = 434) for hemorrhage and hard exu-
date, IDRiD-segmentation19 (n = 143) for hemorrhage, hard exudate, and CWP, as well as  STARE20 (n = 397) for 
the presence of myelinated nerve fiber. On the MESSIDOR dataset, which consists of external images internally 
annotated by three retinal specialists (PSJ, SJY, KHD), the model achieved an average AUROC of 0.915 with a 
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minimum of 0.804 for retinal pigmentary change to a maximum of 1.0 for macular hole and myelinated nerve 
fiber layer. Sensitivity on the MESSIDOR dataset was rather compromised ranging from 42.5% for drusen to 
100.0% for myelinated nerve fiber and macular hole while specificity was comparable to that of the in-house 
test set ranging from 88.3% for hard exudate to 100.0% for myelinated nerve fiber. On external datasets from 
multiple sources, the model attained AUROCs ranging from 0.964 (e-ophtha, hard exudate) to 1.000 (IDRiD, 
hard exudate). Sensitivity was comparable to that of the in-house test set with a minimum of 85.1% (e-ophtha, 
hemorrhage), but specificity dropped in certain datasets down to a minimum of 65.7% (e-ophtha, hard exudate).

Component #2: diagnosis of eight major eye diseases. The diagnostic performance of the disease 
models trained on top of the finding models reached a mean AUROC of 0.992 across all 8 diseases in the in-
house, held-out test set, ranging from 0.979 for glaucoma suspect to 0.999 for referable DR (Table 1 and Fig. 2). 
This performance carried on to the MESSIDOR and all 6 external datasets: MESSIDOR ( n = 1189 ) with an aver-
age AUROC of 0.959 ranging from 0.938 for dry AMD to 0.983 for referable DR, Kaggle APTOS-2019 challenge 
(n = 3662) with 0.986 AUROC averaged over DR and referable DR, IDRiD-classification19 (n = 3662) with 
average AUROC of 0.968 for the same diseases, 0.951 and 0.967 for glaucoma suspect on  REFUGE21 (training) 
(n = 400) and  REFUGE21 (val, test) (n = 800) respectively, 0.943 for dry and wet AMD on  ADAM22 (n = 400) , 
and 0.964 averaged across CRVO, BRVO/hemi-CRVO, and epiretinal membrane on STARE (n = 397) . The dis-
ease diagnosis models’ receiver operating characteristic curves in Fig. 2 are comparable to that of four physicians’ 
operating points, demonstrating their practicality as a comprehensive CAD system. However, as observed for 
the finding models, diagnostic models exhibited either exclusively high sensitivity or specificity on some data-
sets with a minimum sensitivity of 77.8% (MESSIDOR, glaucoma suspect) and minimum specificity of 69.0% 
(IDRiD, DR).

Figure 1.  (a) Overall architecture of the deep learning-based model. (b) Relationships between ophthalmolgic 
findings and eye diseases computed by aggregate annotations of human experts and the model’s counterfactual 
attribution ratio.
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Quantification of clinical relations between findings and diseases. The unique finding-disease 
network architecture permits the use of a newly defined notion of CAR of each finding-disease pair as detailed 
in the “Methods” Section. CAR quantifies the extent to which the model’s diagnostic prediction attributes to a 
finding by comparing the disease diagnosis model’s predictions under two hypothetical situations in which the 
finding of interest had been present or absent with absolute confidence. This notion is directly comparable to 
the odds ratio calculated for human experts, and can be interpreted as a measure of the clinical relation between 
finding-disease pairs. The similarity of CARs for all finding-disease pairs from our CAD system and odds ratio 
collectively estimated over 57 board-certified ophthalmologists on the in-house test dataset demonstrates how 
both entities generate similar diagnostic opinions (Fig. 1b). The network associated diseases with findings as fol-
lowing: DR and referable DR with hemorrhage and hard exudate that are key clinical findings used to diagnose 
the severity of DR; dry AMD with drusen; wet AMD with fluid accumulation, choroidal lesion, and hemorrhage; 
RVO with hemorrhage, CWP, vascular abnormality; epiretinal membrane with membrane but not macular hole, 
although epiretinal membrane and macular hole frequently occur together as shown in the human’s odds ratio; 
glaucoma suspect with glaucomatous disc change and RNFL defect. The agreement between the model’s CAR 
values and human experts’ odds ratio reveals the similar attribution of identified findings in diagnostic predic-
tions as in medical practice. Figure 3 illustrates how our CAD system can visualize the model’s attribution ratio 
between finding-disease pairs.

To compensate for the inevitable imperfection of deep neural networks (DNNs), a CAD system should ideally 
be interactive when readers disagree with the model’s finding identification or diagnostic prediction partially 
or entirely. Figure 4 shows how a reader can interact with this CAD system to reduce or increase the influence 
of a certain finding on the model’s diagnostic prediction, by modifying the finding’s prediction score between 
values of 0 and 1. For example, if the reader thinks the model missed the diagnosis of glaucoma suspect due to 

Table 1.  Area under receiver operating characteristic curves of the proposed models on the in-house test 
dataset and external datasets. If no positive cases exist, the cells are filled with “–”. AMD Age-related macular 
degeneration, BRVO Branch retinal vein occlusion, CRVO Central retinal vein occlusion, DR Diabetic 
retinopathy, RNFL Retinal nerve fiber layer.

In-house test set External dataset

External datasets[Source]SNUBH test set MESSIDOR

Normality

 Abnormal fundus 0.980 (0.969–0.988) 0.915 (0.876–0.943) –

Finding

 Hemorrhage 0.995 (0.982–0.999) 0.950 (0.913–0.973) 0.979 (0.855–0.999) [e-ophtha],
0.985 (0.805–1.000) [IDRiD]

 Hard exudate 0.990 (0.972–0.998) 0.971 (0.929–0.992) 0.964 (0.661–0.998) [e-ophtha],
1.000 (0.692–1.000) [IDRiD]

 Cotton wool patch 0.998 (0.979–1.000) 0.900 (0.848–0.940) 0.991 (0.735–1.000) [IDRiD]

 Drusen 0.985 (0.973–0.994) 0.866 (0.810–0.908) –

 Membrane 0.997 (0.985–1.000) 0.954 (0.881–0.991) –

 Macular hole 0.993 (0.974–0.999) 1.000 (0.872–1.000) –

 Myelinated nerve fiber 1.000 (0.985–1.000) 1.000 (0.884–1.000) 0.999 (0.541–1.000) [STARE]

 Chorioretinal atrophy 0.997 (0.985–1.000) 0.972 (0.905–0.997) –

 Vascular abnormality 0.993 (0.978–0.999) 0.936 (0.849–0.989) –

 RNFL defect 0.986 (0.970–0.996) 0.895 (0.797–0.957) –

 Glaucomatous disc change 0.981 (0.963–0.991) 0.985 (0.874–0.999) –

 Non-glaucomatous disc change 0.977 (0.956–0.989) 0.865 (0.721–0.947) –

 Retinal pigmentray change 0.972 (0.954–0.985) 0.804 (0.711–0.872) –

 Fluid accumulation 0.980 (0.958–0.993) 0.869 (0.737–0.951) –

chorodial lesion 0.989 (0.967–0.998) 0.892 (0.782–0.967) –

Diagnosis

 Any DR 0.997 (0.984–1.000) 0.957 (0.919–0.982) 0.999 (0.988–1.000) [APTOS],
0.947 (0.879–0.979) [IDRiD]

 Referable DR 0.999 (0.987–1.000) 0.983 (0.946–0.998) 0.974 (0.958–0.985) [APTOS],
0.973 (0.907–0.997) [IDRiD]

 Dry AMD 0.984 (0.969–0.992) 0.938 (0.863–0.976) 0.936 (0.845–0.977) [ADAM]

 Wet AMD 0.997 (0.981–1.000) –

 BRVO/Hemi-CRVO 0.992 (0.975–0.999) 0. 961 (0.842–0.999) 0.965 (0.828–0.999) [STARE]

 CRVO 0.994 (0.970–0.999) – 0.935 (0.792–0.992) [STARE]

 Epiretinal membrane 0.997 (0.984–1.000) 0.970 (0.889–0.999) 0.984 (0.478–1.000) [STARE]

 Glaucoma suspect 0.979 (0.963–0.990) 0.945 (0.851–0.989) 0.951 (0.792–0.992) [REFUGE-train], 0.967 (0.880–0.999) 
[REFUGE-val,test]
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underestimation of the presence of glaucomatous disc change, the reader may simply modify the attribution of 
glaucomatous disc change to 1 and obtain its corresponding diagnostic prediction of glaucoma suspect. This 
‘physician-in-the-loop’ procedure does not require an additional inference step and the re-evaluation incurs 
negligible computation. This is especially useful when the mis-identification is due to sensor error such as a 
stain on the camera’s lens identified as hemorrhage or  CWP15. The interactive diagnosis enabled by the use of 
the CAR framework ultimately makes the models’ diagnostic predictions readily adaptable to noise or ambiguity 
pervasive in practical clinical settings.

Figure 2.  Receiver operating characteristic curves for diseases. Gray boxes are amplified to present the profile 
of the curves in a practical range. Operating points of the models are marked with circles and performance 
of human readers are plotted with cross marks. Receiver operating characteristic curves for ADAM dataset is 
identical for dry AMD and wet AMD.

Figure 3.  Use cases of counterfactual attribution ratio in diagnostic fundus examination. Lesions of top 3 
findings above a threshold (natural constant e) are shown (attribution activation map).
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Hemorrhage feature maps for various different diagnoses. During the annotation process, various 
types of one finding were grouped into a broader super-class to enhance simplicity in the model and also for effi-
ciency in obtaining large-scale labeled  datasets12,16. For example, various sub-types of hemorrhage such as flame-
shaped hemorrhage, dot hemorrhage, splinter hemorrhage, blot hemorrhage, subretinal hemorrhage, preretinal 
hemorrhage, vitreous hemorrhage were all classified as one super-class hemorrhage; however, a fine-grained 
classification of the findings critically effects diagnostic conclusions. A model trained to classify the super-class 
may be unable to discriminate precise patterns corresponding to different sub-findings and consequently yield 
incorrect diagnostic predictions. Figure 5 visualizes the latent spaces of different sub-features by projecting fea-
tures extracted from the in-house test set using t-Distributed Stochastic Neighbor Embedding (t-SNE). Feature 
maps for hemorrhage were extracted for positive cases of DR, RVO, and wet AMD, where positive cases were 
defined as an agreement of more than two independent annotators. Three clusters in large represent each disease 
showing different patterns of hemorrhage. Samples of DR show dot hemorrhage and blot hemorrhage in local-
ized areas, and RVO cases include flame-shaped hemorrhage in a broad area while intraretinal and subretinal 
hemorrhage of all shapes and sizes are possible in cases of wet AMD. Several outliers for wet AMD on the left 
side of the t-SNE plot comprise small amounts of bleeding, resembling blot hemorrhage. From this, it is evident 
that although the model does not have access to fine-grained specifications of types of sub-findings, different 
sub-categories of hemorrhage and their corresponding patterns are well-preserved.

Discussion
A DL-based retinal fundus screening algorithm that comprehensively identifies abnormal retinal findings and 
diagnose major eye diseases performed comparably to expert ophthalmologists on several external datasets. The 
proposed CAR scheme empowers the user to interpret the model’s predictions, as clinical relations between its 
diagnostic predictions and identified findings can be quantified and visualized. A comparison of the model’s 
CAR values with ophthalmologists’ odds ratios measuring how experts associate diseases with individual findings 
demonstrates the similarity in how the model draws diagnostic conclusions from associated abnormal findings. 
Owing to the model’s transparency, physicians can reliably use our DL-based CAD system to make diagnostic 
predictions assured by the fact that predictions are primarily based on findings identified in the fundus image. 
Moreover, a user who disagrees with the model’s prediction of whether a finding is present or absent can freely 
adjust the finding prediction and re-evaluate the diagnostic prediction with negligible computational cost.

Prior works have reported outstanding standalone performance of DL-based models in classifying presence 
of individual ocular diseases in macula centered fundus images. Gulshan et al.6 achieved an AUROC of 0.99 in 
discriminating referable DR on validation datasets which was comparable to ophthalmologists. Ting et al.7 devel-
oped DL systems for DR, AMD and glaucoma, and showed comparable performance to human experts achieving 
high AUROCs ranging from 0.94 to 0.96. Li et al.8 also reported a high AUROC of 0.99 for glaucomatous optic 
neuropathy on their validation dataset. Burling et al.10 achieved AUROCs of 0.94 to 0.96 for AMD classification 
scaling the severity of AMD on in-house cross-validation datasets and  DeepSeeNet11, and achieved an AUROC 
of 0.97 for detecting late AMD.

In attempt to understand the reasoning behind convolutional neural networks, Taylor  decomposition23 and 
Shapley value  estimation24 have been applied to the development of various diagnostic CAD  systems25. Never-
theless, their objective is to acquire a precise heatmap illustrating the feature’s attributions. On the other hand, 
our system identifies explicit and interpretable reasoning behind disease predictions using finding predictions 
from training from a large-scale annotated dataset. Another line of work instead retrieves images to attribute the 
model’s predictions to a similar image from a fixed pool, measuring their proximity as the Euclidean distance 

Figure 4.  Interactive diagnosis using counterfactual attribution ratio and the attribution maps of relevant 
findings. (top) A false-positive diagnosis of diabetic retinopathy can be corrected by suppressing the 
overestimated attribution of hemorrhage. (bottom) A false-negative diagnosis of glaucoma can be corrected by 
increasing the underestimated attribution of glaucomatous disc change.
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between the test and candidate images’  features26. This has been used to interpret the reasoning behind an algo-
rithm diagnosing acute intracranial hemorrhage by displaying similar patterns of images used for  training27.

Kim et.al proposed to utilize a normal vector of a decision boundary for a certain type of pattern, or a con-
cept, to measure the attribution of patterns to the final  prediction28. Technically, they measured the impact of 
changes along the direction of the normal vector to a score of a certain class, where normal vectors are derived 
at multiple hidden layers. CAR parallels with the work of Kim et al. when findings are concepts and classes are 
modified into multiple binary decision for diseases. However, CAR complements this work in two key aspects. 
First, CAR provides exact quantitative values for the attribution in the form of odds ratio, and a direct comparison 
with domain-specific knowledge is possible. In our case, the exact results of CAR allowed us to compare it to a 
collective odds ratio of human experts in a large-scale dataset. Also, CAR relies on normal vectors of the decision 
boundaries at one embedding or feature space hence reducing computation. Our experimental results suggest 
that concepts at the embedding of the last layer of convolutional neural network suffice for attribution analyses.

Also, a linear projection of finding features to disease diagnostic predictions did not compromise perfor-
mance, when comparing its validation and test performances with end-to-end (Image to Disease) architectures 
(Supplementary Table 3). Our disease network’s architecture performing on par with deep, end-to-end architec-
tures shows how finding features convey the overall pathological irregularities and even the simplest regression 
diagnostic model can reach holistic conclusions based on finding features. Predicting various diseases with 
shallow additional layers on top of finding features significantly reduces memory and computation, and our 
finding-disease architecture is expected to be more widely applicable especially in resource-tight environments 
including rural clinics or heavily-loaded cloud systems. Moreover, the simple architecture can be fine-tuned more 
easily with newly available data as only the last layer’s parameters need to be modified.

CAR only requires that the training of classification models on findings and diseases are separated into two 
phases, and is thus applicable to other medical modalities including chest radiographs. To this end, we assessed 
CAR on chest X-ray (CXR) modalities by training finding identification models to identify the following radio-
graphic findings: nodule/mass, consolidation, interstitial opacity, pleural effusion, and pneumothorax. Disease 
diagnostic models were trained on the feature extracted using finding identification models as done previously 
to classify tuberculosis (TB), edema, and pneumonia. All models performed reliably, and applying CAR revealed 
that the model agrees with clinical knowledge, associating TB with nodular and consolidation patterns, edema 
with interstitial opacity and pleural effusion, and pneumonia with consolidation patterns (Supplementary Fig. 2).

It is widely known that DNNs suffer from an opaque low-dimensional representation of high dimensional 
data. Typical qualitative analysis of its resulting latent space includes visualization using techniques such as 

Figure 5.  t-Distributed Stochastic Neighbor Embedding plots of hemorrhage feature maps for positive cases of 
diseases that involve hemorrhage in diagnostic decisions.
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t-SNE. Alternatively, CAR admits a quantification of clinical relations between findings and diseases, and their 
agreement with known clinical association enables a quantitative and interactive analysis of whether the model 
learnt a clinically-meaningful representation of medical data. If not, it is possible to identify diagnostic bias. 
From our experiments on diagnosing DR as in Fig. 1b, we were able to infer that the model was not presented 
with enough CWP or vascular abnormality (e.g., neovascularization) data throughout training. Conclusively, 
CAR testifies the limitations of the underlying classification models.

In the light of interest aimed at building comprehensive neural networks that identify abnormal findings of 
retinal fundus images and their corresponding diagnoses, our algorithmic design and proposed CAR ameliorates 
two properties of existing DL that repel their clinical usage as CAD systems: interpretability and reliability. In 
addition to evaluating a model’s performance on a test set, one can verify whether the model behaves similarly to 
clinical practice by comparing their CAR scores with the odds ratio of domain experts that measure how findings 
atribute to diagnostic decisions in clinical practice. The illuminative interpretability and enhanced reliability of 
DNNs provided by this CAD system can be paramount for real-world deployment.

Methods
Developmental environment. All experiments were conducted on a server with 4 TITAN X (Pascal) 
GPUs, 48 Intel (R) Xeon (R) CPUs (E5-2670 v3@2.30 GHz) and 256 GB memory using the DL frameworks 
Tensorflow 1.14.0 and Keras 2.2.5.

In‑house dataset. The retinal fundus images used to train and test the finding-identification networks were 
acquired from the health screening center and ophthalmology outpatient clinic at the Seoul National University 
Bundang Hospital (SNUBH) from June 1st, 2003 to June 30th, 2016 using various fundus cameras (CF60Uvi, 
CR6-45NM [Canon, Utsunomiya, Japan], VX-10, VX-10α, nonmyd 7, GENESIS-D [Kowa Optimed, Tokyo, 
Japan], etc.)16 Fifty seven board certified ophthalmologists (of which 28 were certified specialists; 16 certified ret-
ina specialists, 9 certified glaucoma specialists, and 3 certified cornea specialists) annotated the fundus images in 
accordance to the guidelines (Supplementary Table 4). The study was conducted in accordance with the tenets of 
the Declaration of Helsinki, and the data used was approved by the institutional review board at Seoul National 
University Bundang Hospital (IRB No. B-1508-312-107). Written consent was waived by the institutional review 
board due to the retrospective nature of the study. All subjects were de-identified by randomly assigning 10-dig-
its and removing all personal data (e.g. patient name, birthdate, study date) except gender and age at the time of 
the study. All data specifications are summarized in Supplementary Table 1.

Subjects were randomly divided into three groups without overlaps: train (85%), validation for hyperparam-
eter tuning (5%), and test (10%) sets, and fundus images corresponding to each subject were assigned to the 
corresponding groups.

Annotation of retinal fundus images. A pool of fifty seven ophthalmologists assessed fundus images 
concerning image quality, abnormality, findings, and diagnoses in a stepwise manner, using an annotation 
tool dedicated to large-scale data  collection12,16. Each fundus image was randomly assigned to three readers 
for assessment. Fundus images assessed abnormal were additionally annotated at the lesion-level for all fif-
teen abnormal retinal findings, and readers reported comprehensive diagnostic opinions regarding eight eye 
 diseases16. During the assessment, readers were informed of gender and age. Each image was assessed indepen-
dently by three different readers, yielding a total of 309,786 readings for 103,262 fundus images. Findings and 
diseases were categorized in a way that reflects prevalent ophthalmic abnormalities in primary care clinics and 
health screening centers. Specifically, the subcategories corresponding to each finding (e.g., flame hemorrhage, 
disc hemorrhage, microaneurysm) were grouped into a single category (e.g., hemorrhage), and subtypes of dis-
eases were categorized in accordance with internationally accepted guidelines as follows: as for AMD, dry AMD 
includes early AMD and geographic atrophy while wet AMD includes cases with choroidal neovascularization. 
For DR, non-referable DR was mild non-proliferative DR while referable DR included moderate or worse non-
proliferative DR or proliferative DR based on the International Clinical Diabetic Retinopathy Disease Severity 
Scale (ICDRDSS). Any DR included any type of DR including both non-referable and referable DR. CRVO was 
categorized separately from BRVO/hemi-CRVO. Other miscellaneous diseases such as retinal artery occlusion, 
retinal detachment, central serous chorioretinopathy, choroidal nevus, hemangioma, and myopic maculopathy, 
were conglomerated into “other” retinal/choroidal diseases/findings and considered abnormalities. Annotation 
guidelines are thoroughly described in Supplementary Table 4. Detailed information regarding the annotation 
processes and the analyses were elaborated in the previous  publications16,29,30.

Image preprocessing. The ocular fundus images were resized to 1024 × 1024 after cropping the black 
background to place the fovea in the center. Random augmentations were performed using rotation, flip, aff-
ine transform, image perturbation (color, contrast, brightness, sharpness, RGB shift, Gamma), noise (blur, ISO 
noise, Gaussian noise, JPEG compression, sunflare), resize, elastic transform, and down-sampling (1024 × 1024 
image to 512 × 512 back to 1024 × 1024) to prevent the network from overfitting. Various Python packages (PIL, 
skimage, albumentation) were used to implement the augmentation methods. Validation and test images were 
not augmented.

Target labels for training and standard reference annotations. For each fundus image, the target 
distribution used to compute the binary cross entropy loss when training the DL models were set using Naïve 
Bayes on annotations provided by the 3 readers. Because readers annotated the data independently without 
viewing others’ labels, the incidence of each finding and disease, as well as the sensitivities and specificities of 
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each reader’s finding identification and diagnostic conclusions were treated as independent random variables. 
Empirical estimates were then used to derive the posterior probability of the reference label used for training. 
Specifically, the conditional probability Pr (Yk = 1|ŷ1,k , ŷ2,k , ŷ3,k) that a fundus image indexed by k contains a 
finding or disease 

(

yk = 1
)

 given 3 readers’ annotations 
(

ŷ1,k , ŷ2,k , ŷ3,k
)

 , where each annotation describes the 
abnormality yk ∈ {0, 1} , is given by

and can be computed using Naïve Bayes: Pr
(

∩a

{

Ŷa,k = ŷa,k

}

|Yk = yk

)

=
∏

a
Pr(Ŷa,k = ŷa,k|Yk = yk)∀y . The 

prior (Pr (Yk = 0), Pr (Yk = 1)) along with the sensitivity and specificity of each annotator were estimated using 
the expectation–maximization  algorithm31.

When readers disagreed on the disease severity, the annotations were assigned such that images with higher 
finding severity were also labeled positive for a less severe finding. In particular, the readers’ assessments for 
an image diagnosed with DR, referable DR, and no signs of DR, used to compute the target label for DR would 
be ŷDR :=

(

ŷ1,DR , ŷ2,DR , ŷ3,DR
)

= (1, 1, 0) whereas the annotations for computing the reference standard label 
for referable DR would be ŷDR = (0, 1, 0) . Images diagnosed with RVO and AMD were also processed in the 
same manner: if the annotations were BRVO/hemi-CRVO, CRVO, and no signs of RVO (similarly dry AMD, 
wet AMD, no AMD), the annotations for BRVO and CRVO would be ŷBRVO = (1, 1, 0) and ŷCRVO = (0, 1, 0) 
( ̂yDryAMD = (1, 1, 0), ŷWetAMD = (0, 1, 0)).

Reference standard in the validation/test sets were chosen in a more conservative manner by assigning posi-
tive (abnormal) when the majority consensus was positive and negative when all readers unanimously submitted 
negative. Any image with only 1 positive and 2 negatives was excluded from the validation/test sets.

Architectural design and training protocol. Fifteen finding identification networks 
(

g1,w1, b1
)

, . . . ,
(

g15,w15, b15
)

 , where gf : X → Z maps a fundus image x ∈ X ⊂ R� with spatial resolution � 
to a latent space z ∈ Z ⊂ RC×�′ and 

(

wf , bf
)

: zf �→ wf zf + bf ∈ R is the final fully-connected layer operating 
on global average pooled features z ∈ RC before the sigmoid activation function σ for prediction, were trained 
using the binary cross entropy loss as a multi-label classification task to separately identify each finding. The 
finding networks were composed of a universal encoder shared among the networks and individual branches 
for each finding.

Eight diagnosis networks (v1, c1), . . . , (v8, c8) ,  each composed of a fully connected layer 
(vd , cd) : (z1, . . . , z15) �→

∑

f

vTd,f zf + cd ∈ R followed by a sigmoid activation function σ for the diagnostic pre-

diction ŷd = σ

(

∑

f

vTd,f zf + cd

)

 on disease d , were then trained to diagnose fundus images from concatenated 

global average pooled features (z1, . . . , z15) extracted at the penultimate layer of the finding networks.
In the implementation of the universal encoder and each finding branch, EfficientNet-B732 was first modi-

fied to have 15 fully connected layers to classify all findings, and trained until the AUROC corresponding to 
different findings on the validation dataset began fluctuating as shown in Supplementary Fig. 3. In response 
to the observation that learning all findings’ features simultaneously results in conflicting gradients, separate 
branches were used for each finding inspired by previous works on multi-task  learning33–35 while sharing low-
level features to preserve information common in all findings. As visualized in the t-SNE  plots36 at different 
layers (Supplementary Fig. 4), features are not distinguished clearly at shallow layers but form clusters at deeper 
layers. This is further quantified in Supplementary Fig. 5 by computing the mean cosine distance between pairs 
of findings 

(

fi , fj
)

∀i �= j computed as

where �(I) denotes the global-average-pooled features extracted from image I at the layer of interest and 
∣

∣fk
∣

∣ is 
the number of images with finding k . We found that the average cosine distance between finding pairs started 
to increase beyond ‘Block5a’ as in Supplementary Figs. 4 and 5, signifying that feature maps at ‘Block4a’ convey 
universal features informative of all findings whereas deeper layers learn discriminative features specific to each 
finding. We thus branched out after ‘Block4a’. The encoder was then frozen to fine-tune finding branches until 
the validation AUROC saturated. Experimentally, the significant performance was not observed between archi-
tectures of different size that that we chose to append top layers of B0, the smallest network in the parameter 
size for each finding branch (Supplementary Table 5). Experimentally, freezing the encoder has minor effect in 
the test and validation AUROC on the in-house dataset (Supplementary Fig. 6).

Target labels were assigned using the aforementioned Naïve Bayes and the model was trained using the sum 
of BCE and guidance  loss29. Training samples were randomly sampled non-uniformly in batches of size 6 such 
that the expected number of positive and negative samples in a batch are equal. The B7-B0 network was trained 
using Nesterov-SGD, with initial learning rate set to 0.001 until the 9th epoch reduced by a factor of 10 at epoch 
10, until the validation AUROC decreased. Both linear projection matrices were trained for a maximum of 10 
epochs with batch size 64 using the same Nesterov-SGD with L2-regularization coefficient 0.0005. Other train-
ing details such as augmentation and sampling ratio were identical to that used for training the B7-B0 network. 

Pr
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The learning curves are illustrated in Supplementary Fig. 7. In the experiment on predicting whether a fundus 
is normal, this final architecture did not show any degradation in AUROC compared to end-to-end models and 
other models with addition parameters (Supplementary Table 3).

Quantifying clinical relations between finding‑disease pairs. To understand how our DL-based 
CAD system infers its diagnostic predictions, CAR was defined as a measure of how much a specific finding 
contributed to diagnosing a certain disease by comparing its prediction with what its prediction would have 
been in a hypothetical situation in which the finding under consideration is present or absent. Before defining 
CAR, we first define instance-dependent counterfactual attribution which can be computed for all finding-dis-
ease pairs 

(

f , d
)

 in a fundus image x . First notice how the finding features zf  can be decomposed as 
zf = zf ,||wf

wf
∥

∥wf

∥

∥

+ zf ,⊥wf
 with a component zf ,||wf

 parallel to wf  and its orthogonal counterpart zf ,⊥wf
:

The odds O(d; x) of disease d given a fundus image x is defined as the ratio between the model’s prediction 
for disease d being present and absent:

Let the latent vector z\f =
(

σ−1(ǫ)− bf
) wf
∥

∥wf

∥

∥

+ zf ,⊥wf
 be the hypothetical feature map had the feature corre-

sponding to finding f  not been present in the image. The instance-dependent counterfactual attribution of finding 
f  in diagnosing disease d from a fundus image x is the odds after removing the diagnostic prediction’s depend-
ency on finding f  , hence its name counterfactual:

For a finding-disease pair 
(

f , d
)

 and finding prediction  ŷf  on a fundus image x , the instance-dependent 
counterfactual attribution ratio (I-CAR) RI−CAR

(

f , d; x
)

 is the ratio between the odds and the counterfactual 
attribution:

where σ−1 is the inverse sigmoid function and ǫ ∈ (0, 1/100) is a small positive number. If a user wishes to modify 
the attribution due to some finding prediction, the diagnostic prediction of diseases is modified accordingly by 
changing ŷf  in zf  . This is useful when a user wants to reject model’s finding prediction in case of false positives 
and false negatives.

The two quantities described above establish the key intuition behind our main notion of CAR used to under-
stand the decision-making process behind the DL-based CAD system. Replacing the prediction ŷf  in I-CAR 
with a high confidence of 1− ǫ is the finding-disease CAR, comparing two hypothetical situations in which a 
finding is present surely and absent with high confidence:

The confidence level ǫ was chosen to be the 5-percentile ordered statistic of prediction values on benign cases 
in the in-house validation dataset.

Given a finding-disease pair, an attribution activation map that quantifies the influence of each finding f  in 
diagnosing disease d can be visualized by modifying the class activation  map13 as

Computation of odds ratios for human experts. Odds ratio of human experts were computed as fol-
lowing. Let S and I denote the set of annotator and image indices. Every image xi indexed by i is associated with 
a finding f si  and disease dsi  label indicating its presence of finding/diagnosis assigned by reader s ∈ S . All annota-
tions were accumulated into a single 2× 2 matrix N as

zf = wT
f zf
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where ∧ is the Boolean And operation and 1{·} is the indicator function. The odds ratio was then computed as

External datasets. The proposed models were tested on 9 external datasets with their summary statistics 
described in Supplementary Table 6. Two datasets, MESSIDOR and STARE, contain both findings and disease 
annotations, whereas 2—e-ophtha and IDRiD-segmentation—contain only finding annotations and 5 contain 
disease annotations: Kaggle-APTOS (2019), IDRiD-classification, REFUGE (training), REFUGE (val, test), and 
ADAM.

MESSIDOR consists of 1200 macula-centered images taken by TOPCON TRC NW6 digital fundus camera 
[TOPCON, Tokyo, Japan] with a 45-degree field of view. The dataset provides DR grades in a scale of 4, from 0 
to 3, which does not align with the 5-scale grading in ICDRDSS. Three retinal specialists (SJP, JYS, HDK) who 
participated in annotating the in-house data independently assessed the images in the dataset regarding 15 find-
ings and 8 diseases and adjusted the annotations to be compatible with the ICDRDSS grading. Images considered 
ungradable by any of the 3 specialists were excluded from our study.

All the other 8 external datasets are public datasets available online. Assessments provided with the datasets 
were used as-is when the decisions were binary (present/absent or positive/negative). Annotations in ICDRDSS 
scales in Kaggle-APTOS and IDRiD—classification datasets were converted to binary annotations for DR for 
grades ≥ 1 and referable DR for grades ≥ 2 . Binary labels in the ADAM dataset indicate the presence of AMD 
without subcategorizing as dry or wet AMD, and the two subcategories were grouped into a single AMD class 
with annotations assigned positive/present if either dry or wet AMD was present and absent otherwise. The 
higher of predictions on dry and wet AMD were used to evaluate the model. The laterality of an image was 
derived by the center of the optic disc using a segmentation network for optic  disc37, e.g. right eye if the disc 
center is on the right side.

Comparison with readers performance. To compare with human readers’ performance, 150 fundus 
images corresponding to 150 distinct subjects were sampled at the health screening center and ophthalmology 
outpatient clinic at SNUBH from July 1st, 2016 to June 30th, 2018. The images were captured with various fun-
dus cameras including VX-10α, nonmyd 7, nonmyd WX [Kowa Optimed, Tokyo, Japan] with varying resolu-
tions of (2144, 1424), (2992, 2000), (2464, 1632), (4288, 2848), and the data were annotated in disease names. 
Average age was 59.4 with standard deviation of 11.9 and there were 74 females (49.7%). The sampled data 
included cases of 25 DR (14 referable DR), 27 AMD (17 dry AMD, 10 wet AMD), 20 RVO (10 CRVO, 10 BRVO/
hemi-CRVO), 13 glaucoma suspect, and 18 epiretinal membrane. We measured the performance of 4 physicians, 
and compared the performance with that of the DL algorithm. This dataset is denoted as ‘Reader Study’ and the 
operating point of each reader is shown in Fig. 2.

Data availability
Although public datasets are available at their respective repositories, SNUBH dataset is only available upon 
reasonable request to corresponding authors with the permission of the institution due to patient information 
protection law in Republic of Korea.

Code availability
We used the scikit-learn (https:// scikit- learn. org) and statsmodels (https:// www. stats models. org) packages to 
conduct the statistical tests in computing the AUROCs using the exact Clopper-Pearson method and confidence 
intervals. The machine-learning models were developed by using standard model libraries and scripts in Ten-
sorFlow and Keras. Custom code was specific to our computing infrastructure and mainly used for data input/
output and parallelization across computing nodes. Proprietary codes for training and the deployment of the 
CAD system are not publicly available but some boilerplate code may be available for research purposes from 
the corresponding author upon reasonable request.
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