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Eco‑morphodynamic carbon 
pumping by the largest rivers 
in the Neotropics
Luca Salerno 1*, Paolo Vezza 1,3, Paolo Perona 2,3 & Carlo Camporeale 1

The eco-morphodynamic activity of large tropical rivers in South and Central America is analyzed to 
quantify the carbon flux from riparian vegetation to inland waters. We carried out a multi-temporal 
analysis of satellite data for all the largest rivers in the Neotropics (i.e, width > 200 m) in the period 
2000–2019, at 30 m spatial resolution. We developed a quantification of a highly efficient Carbon 
Pump mechanism. River morphodynamics is shown to drive carbon export from the riparian zone 
and to promote net primary production by an integrated process through floodplain rejuvenation 
and colonization. This pumping mechanism alone is shown to account for 8.9 million tons/year of 
carbon mobilization in these tropical rivers. We identify signatures of the fluvial eco-morphological 
activity that provide proxies for the carbon mobilization capability associated with river activity. We 
discuss river migration—carbon mobilization nexus and effects on the carbon intensity of planned 
hydroelectric dams in the Neotropics. We recommend that future carbon-oriented water policies on 
these rivers include a similar analysis.

Rivers are not simply passive and static conveyance systems that deliver water and sediments from the headwaters 
to the oceans, but instead, they actively affect the global carbon budget1,2. Although the carbon lateral export 
from terrestrial ecosystems is recognized to be a key pathway in the biogeochemical carbon cycle3, the quanti-
fication of carbon mobilization by river dynamics has generally been overlooked4–7. By exploring the sediment 
load—river dynamics—carbon flux nexus of tropical regions of America, we show that river morphodynamics 
is central to carbon fluxes between terrestrial systems, river corridors and the atmosphere.

Through a global-scale assessment of the dynamics and vegetation density within the Aquatic-Terrestrial 
Transitional Zone (ATTZ), we demonstrate that the largest tropical rivers in the Neotropics annually recruit 
8.90 ± 0.84 million tons of carbon as biomass from live woody riparian vegetation. Through the exploration of an 
eco-morphodynamic-Carbon-Pumping mechanism, we identify that this recruitment may promote a virtuous 
cycle for carbon sink, mostly deposited in floodplains but probably even farthest, in oceans.

Under the classical view of the River Continuum Concept8, the coarse particulate organic matter exported 
from floodplains is fragmented and decomposed as it moves downstream, with the consequent transformation 
into a Particulate and Dissolved Organic Matter (POM and DOM respectively), and then outgassing. However, 
the fate of LWD recruited by stream waters is far from being fully explained. For example, rivers with high 
sediment loads have been demonstrated to easily bury wood at least at the same rate as the wood exported to 
estuaries9. Several studies have provided evidence that, once recruited by the channel, LWD can persist buried 
in the alluvium for extraordinarily long times10,11. This suggests that some processes are overlooked in river 
carbon budgeting7. Indeed, riverine sediment storage is a key aspect of biogeochemical cycling12, since part of 
bio-spheric organic carbon is stored in terrestrial reservoirs over millennial timescales before reaching ultimate 
depocenters in marine basins13.

Like the biological carbon pump14, whereby phytoplankton net production and its ultimate marine fall drive 
carbon from the atmosphere to ocean interior and seafloor sediments, we conjecture that photosynthetic fixa-
tion by riparian vegetation, the recruitment of riparian vegetation, its transport, and burial, fit together in an 
integrated nexus in which rivers drive a carbon pump from the atmosphere to long-term stocks (i.e. floodplains 
and ocean). We conjecture that carbon mobilization is triggered by a two-step pumping mechanism. The first 
step refers to the eco-morphodynamic Carbon Export from floodplains (synthetically referred to in the following 
as eCE), whereas the second step, namely the Enhanced Net Primary Production (ENPP), consists of C-fixation 
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promoted by vegetation encroachment on bare riparian areas generated by the morphodynamic activity. We, 
therefore, define the eco-morphodynamic Carbon Pump (eCP) as the combination of these two processes, that 
work in cascade, and that are mainly energized by channel migration in meandering rivers (Fig. 1b) and by over-
flow and flooding in multi-thread rivers. The former are single channels with a sinuous planform comprising a 
series of regular curves (meanders) moving and evolving in time. Meander migration is due to bank erosion on 
the outside bank of curved channels and point bar and floodplain generation on the inside bank. The latter are 
characterized by the occurrence of several interconnected channels separated by mid-channel bars or islands 
encroached by vegetation.

River systems store organic carbon in four interconnected compartments15: (a) Standing riparian biomass; 
(b) Large downed wood (> 10 cm in diameter and 1 m in length); (c) Sediments, litter humus, and soil organic 
carbon (SOC); (d) In-stream biomass which decomposition process produces Particulate Organic Matter (POM) 
and Dissolved Organic Matter (DOM). In this paper, we refer to carbon fluxes of live woody vegetation as the 
wood directly recruited from compartment (a) and delivered to the other compartments through bank erosion, 
flooding, uprooting and burial. We do not focus on SOC, whose dynamics have already been well explored 
elsewhere16,17.

Notably, a quantification gap can be highlighted in the latest calculations of the carbon cycle budget, whereby 
the LWD component of the aquatic-floodplain-estuarine flux remained unexplored4–7. In fact, the global estimates 
(Fig. 1, Supplementary Table S1) of about 2.9–8.3 PgC/year of the carbon terrestrial export from fluvial sediments 
and riparian vegetation to inland waters were obtained by subtracting the out-fluxes—i.e., out-gassing (2.1–3.9 
PgC/year, Ref.7,18), burial (0.6–4.2 PgC/year, Ref.7,17), and the oceanic export ( 1 PgC/year, Ref.19)—from the in-
fluxes, i.e., bed-rock weathering (0.5 PgC/year, Ref.20) and in-stream autochthonous photosynthetic fixation (  
20% of the out-fluxes, Ref.19). However, this budgeting overlooks LWD recruitment in the export, since it is rea-
sonable not assuming that the whole woody input is decomposed and reduced to micrometric size (traditionally 
considered < 20 µ m) during the transit time in the fluvial system, and hence not stating that transported wood 
is transformed into the fine fraction of POM or it is mineralized. Furthermore, recent assessments of global CO2

-evasion rates18,21 and inland water surfaces22 do not consider in the budget the vegetation recruitment to flow 
downstream, transport, deposition, and burial in the floodplain6,10. Since the main source of LWD arises from 

Figure 1.   The eco-morphodynamic Carbon Pumping mechanism and global carbon budget of the aquatic-
terrestrial transitional zone in rivers, with fluxes reported in PgC/year (global esteems, not only tropical). (a) 
Red-to-blue arrows represent woody vegetation recruited through river morphodynamic activities (eCE), 
estimated in the present work to 8.9 TgC/year for large tropical rivers (width > 200 m) in the Neotropics (i.e., 
South and Central America). Yellow-to-red arrows refer to ENPP (see main text). SCW: atmospheric CO2 
uptake from Silicate and Carbonate Weathering; ICW Inorganic Carbon input from Weathering; Bu: Burial; 
PF: Photosynthetic fixation; RZ: Riparian Zone. Meaning, definitions, source literature of fluxes F1–F4 and of 
all other arrows are reported in Supplementary Table S1. (b) In meandering rivers, channel-migration-driven 
capture of woody biomass is exported from the outer bank into the stream (eCE). Young biomass then colonizes 
the inner newly deposited point bar, driving further CO2-fixation from the atmosphere (Enhanced Net Primary 
Production - ENPP), stabilizing the bar and promoting further river migration (feedback effect). Hydraulic 
energy (dashed blue arrows) drives morphodynamics and channel migration, while solar energy (dashed yellow 
arrows) drives the consequent CO2-fixation from the atmosphere. The output of the pump is the mobilization 
of LWD and POM, which is eventually stored in river channel sediments downstream (sediment spiralling) or 
farthest in oceans.
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plant uprooting due to overflow and bank erosion, logs tend to be routed during floods, and floating logs can be 
buried in the stream and alluvial sediment surviving for millennia before decomposing11. The organic carbon in 
the form of POM or LWD can be deposited under anoxic conditions and long-term stabilized23,24. In addition, 
the high migration rates in lowland meandering rivers (e.g., 0.03–0.05 channel width per year25) may reduce the 
residence time of floodplain-stored material13, and therefore limit the time available for oxidation26. Although a 
fraction of the carbon recruited by the river returns to the atmosphere through processes of decomposition27 and 
out-gassing28, there is a part that is permanently stocked within river corridors as sedimentary organic carbon13, 
or delivered to coastal zones and deep oceans19. Due to these processes, large lowland floodplain systems have 
been in fact recognized to be significant carbon sinks29. On the other hand, LWD does not necessarily remain 
on a consistent downstream journey in the river and may spend significant time in logjams or deposited onto 
the floodplain30. A quantification of the role of LWD in the carbon budget of the aquatic-terrestrial transitional 
zone seems to be needed31 and a knowledge gap and the uncertainties in the fluxes reported in Fig. 1 were already 
remarked7. Three aspects deserve further investigation: (1) The recruitment of LWD flux seems to be gener-
ally underestimated at the global scale, although it is strongly associated with river morphodynamic processes 
nevertheless; (2) Periodic rejuvenation of the riparian vegetation triggers a yet unexplored enhancement of the 
net primary production of the fluvial corridor, with a direct effect on the carbon budgeting; (3) The fate of LWD 
fluxes after the recruitment from the riparian zone still lacks a quantitative global estimation6, in particular con-
cerning the effect of burial in tropical floodplains10,15, in lakes and estuaries32. By conjecturing and quantifying 
the Eco-morphodynamic Carbon Pump (eCP), the present work quantitatively addresses point (1) and discusses 
the effects on point (2) for the Neotropical region (namely the most C-active in the world).

The first step of the pumping mechanism comprises the stream-induced biomass recruitment of LWD from 
standing riparian vegetation by erosion and flood-induced uprooting. This biomass is uprooted and/or trans-
ported into the water stream (or it remains downed in situ) and either stocked somewhere through burial in 
the fluvial floodplains or delivered to the oceans. The second step ENPP is C-fixation promoted by vegetation 
encroachment and primary production on new bare riparian areas. These two steps involve two mutually com-
pensating carbon fluxes crossing the riparian zone, respectively outgoing and incoming.

Results
Study design.  We analyzed the dynamics of tropical rivers in the Neotropics wider than 200 m in the period 
2000–2019 and previously classified as free-flowing33, i.e., weakly disturbed by anthropic activities. This resulted 
in a dataset of 80 large rivers embedded in 235 regions of interest (ROI), with a total fluvial length of 59,000 km 
and a total analyzed floodplain area of 302,000 km2 (i.e., one-sixth of the global extent of floodplains, accord-
ing to Ref.34). Through remote sensing analysis of satellite datasets developed on the cloud computing platform 
Google Earth Engine (Supplementary Table S2) we focused on the area in the river corridor that had a vegetation 
loss due to river dynamics. With a probabilistic classification mapping (“Methods”), starting from a 30m resolu-
tion Landsat-based product35, this area was estimated to be 12,125 ± 286 km2 in the period 2000–2019, which 
corresponds to an average annual forest loss of 638 ± 15 km2/year.

Carbon export in the Neotropics.  Forest losses were combined with biomass densities to assess the 
strength of the Eco-morphodynamic Carbon Export (eCE) and its value per unit ROI area: eCEA (“Methods”). 
We estimated that large tropical rivers in the Neotropics export 8.90 ± 0.84 TgC/year of woody biomass carbon 
from riparian corridors (eCEA= 29.5 ± 0.36 MgC/km2year, Fig. 2, Table 1). Overall, 57% of the total carbon 
export is due to just five rivers (6%)—Big exporters—each contributing eCE > 0.3 TgC/year. The areas dynami-
cally affected by these rivers occupy 35% of the total area considered. They include: (1) Extensive Exporters 
(eCEA < 50 MgC/ km2 year), which are major contributors due to their large fluvial corridors, such as the Rio 

Table 1.   Estimates of Eco-morphodynamic Carbon Export (eCE) and River-Driven Forest Loss Area ( ARDFL ) 
for the largest tropical rivers. Values in parentheses indicate the percentage error while values in square 
parentheses are the percentage relative to total eCE = 8.9 Tg C/year. Uncertainty analysis is described in 
“Methods”.

Basins

AROI ARDFL eCE ARDFL

[103 km2] [km2/year] [TgC/year]

America

 Upstream Amazon 75.2 295 ± 7.36 (± 2.5 %) 4.28 ± 0.1 (± 2.3 %)

 Central Amazon 160.2 212 ± 10.83 (± 5.1 %) 3.13 ± 0.09 (± 2.9 %)

 Downstream Amazon 35.6 94 ± 5.75 (± 6.1 %) 1.08 ± 0.05 (± 4.6 %)

 Others 31.0 37 ± 4.67 (± 12.6 %) 0.41 ± 0.03 (± 7.3 %)

Big Exporters (eCE > 0.3 TgC/year)

 River eCE [TgC/year] River eCE [TgC/year]

 Amazon 2.6 [29.2%] Purus 0.38 [4.3%]

 Ucayali 1.4 [15.7%] Maranon 0.31 [3.5%]

 Rio Negro 0.42 [4.7%]
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Negro; (2) Intensive Exporters (eCEA > 90 MgC/ km2 year) with less extensive fluvial corridors but high migra-
tion rates (Mr > 4 ×  10−2 channel widths per year, Ref.25) such as the Ucayali River.

As pointed out by Ref.25, the whitewater rivers in the Andean-foreland basin—Ucayali, Huallaga, Beni and 
Maranon—are highly dynamic due to the high suspended sediment load they carry (0.23 ± 0.16 Mt/year). In 
fact, the suspended load in these catchments was found to be positively correlated with river migration rates37 
because sediment transport increases the buildup of fluvial bars, which enhances the topographic steering of 
longitudinal flow38 and thus promotes shear stress and bank erosion39. Such a key phenomenon, combined with 
the nutrient-rich sediment and high biomass density (8–16 GgC/km2 ) of fluvial corridors in the Andean-foreland 

Figure 2.   Eco-morphodynamic Carbon Export (eCE) and carbon signature of the largest rivers in Tropical 
America. The eCE in (a) South America, (b) Paraguay-South Brasil, (c) Central America. Carbon signature in 
(d) South America, (e) Central America. Point size is proportional to eCE, colors show eCEA (a–c, f, h) and 
signature (d, e). Blue reaches indicate free-flowing streams (CSI index > 95%, after Ref.33). See Supplementary 
Discussion for details about the analysis of an additional group of rivers (defined as moderately altered by Ref.33, 
not considered in the main analysis). (f) Magnified view of Andean-foreland forest basin and distribution of 
planned new large hydroelectric dams (>1 MW, see Ref.36) shown by pink triangles. (l) Correlation between 
sediment transport, migration rate, and carbon export (data on migration rate and sediment transport from 
ref.25, in the river marked with * the migration rate was derived from the relationship Mr = 0.043.TSS0.28 , as 
suggested by Ref.25, where TSS is the total suspended sediment. (h) The longitudinal sequence of signatures 
in the frequency distribution (FD) for Amazon River corridor biomass density (NS, negatively skewed; MM, 
multimodal; PS, positively skewed.)
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basin, makes it the most active basin in the Neotropics for carbon transport (48.1% of the total eCE of large 
tropical rivers in the Neotropics). Our reanalysis of 14 selected rivers of the Amazon basin, whose migration rate 
per unit width Mr was already known, further suggests that eCE is positively correlated with Mr and/or the total 
suspended sediment TSS (Fig. 2g) and supports our hypothesis of morphodynamically driven carbon export.

Catchment scale analysis of carbon export.  The Amazon basin and the corresponding tributaries can 
be divided into three geomorphologically homogeneous sub-regions (Supplementary Fig. S1). The upstream 
region, corresponding to the Peruvian-Bolivian Amazon basin, is the most dynamic (eCE = 4.3 TgC/year) with 
high levels of sinuosity, bank erosion rate and channel migration. The lowland rainforests in such a region are 
heavily influenced by lateral erosion of meandering rivers and new sequential succession forest develops on 
scroll bars very rapidly, while most of the (mature) mosaic vegetation loss is on the outer bank or in the short-
lived islands40.

The middle region (eCE = 3.1 TgC/year) is characterized by a lower erosion rate and more stable channel 
banks. Meandering rivers (e.g., such as Purus, Jurua, Jutai) have migration rates lower than 0.2 channel-widths/
year25, due to the low levels of sediment transport (Fig. 2g) and eCEA = 1.4–100 MgC/km2/year. The Ama-
zon River corridor of this region is characterized by an increase in the recurrence of low-waters, with green 
grass and shrubs species colonizing a rising portion of wetlands with the consequent reduction of woody plant 
communities41. For instance, the Negro River corridor (a tributary of the Amazon River in Central Amazonia) 
is characterized by relatively lower biomass density where swamp forest (Igàpo) and white sand vegetation 
populate stable islands42.

The downstream subregion (e.g., Jurunea, Rio Mapuera) provides the lowest levels of carbon export in the 
Amazon basin (eCE=1.1 TgC/year, eCEA = 19.4 MgC/km2 year). The Amazon River corridor is here populated 
by dish-shape lakes in the floodplain and herbaceous vegetation is widespread. Carbon recruitment is domi-
nated by recurrent floods, so vegetation remains at an immature stage and biomass density is usually low (< 5.3 
GgC/km2 ). However, the amount of carbon exported remains high due to high river-land connectivity (0.8 TgC/
year, in the Amazon river corridor alone) while eCEA is lower than the upstream zone. Other rivers outside the 
Amazon Basin (Orinoco basin) and the rivers of Central America sequestrate 0.41 TgC/year with eCEA that 
ranges between 1 and 102 MgC/km2 year (mean value: 17 MgC/km2 year).

Carbon signature.  From a planimetric point view, large unconfined fluvial systems that are characterized 
by river dynamics can be broadly divided into two groups: (1) multi-thread; (2) single-thread systems43. The 
former group refers to braided and wandering rivers that are elevation-dominated, whereby flooding removes or 
buries vegetation through large elevation change rates related to deposition/erosion. This maintains the fluvial 
system in a juvenile, but highly productive stage, in accordance with the Intermediate Disturbance Hypothesis44 
and the Flood Pulse Concept27. The latter, single-thread systems, refer to sinuous/meandering streams that are 
planimetry-dominated, whereby lateral erosion and deposition act antithetically, thus producing vegetation real-
location in the fluvial corridor.

We observed that the eco-morphodynamic Carbon Export leaves a morphology-dependent footprint in bio-
mass distribution, because of the downstream gradients in the waterlogging duration (also called hydroperiod) 
and fluvial planforms. Through the analysis of the WHRC Carbon Stock dataset45, and the use of a new clustering 
algorithm (“Methods”, Supplementary Fig. S2, Supplementary Table S3), we identified four signatures of fluvial 
biomorphological activity evident in biomass distributions within ROIs (Fig. 2d, e, h, Supplementary Table S3): 
negatively-skewed (NS, 47.9% of observations), positively-skewed (PS, 29.9% ), multimodal (MM, 16.2% ), bell-
shaped (BS, 6.0% ). We observed that fluvial corridors follow the NS-MM-PS longitudinal sequence fairly closely 
with increasing the Horton-Strahler number46, a scenario that is evident in the Amazon River (Fig. 2h). Such 
signatures are a proxy for the export capacity of rivers and demonstrate the link between sediment transport, 
flood pulses, river morphodynamics, and carbon pumping.

In single-thread sinuous/meandering rivers with high migration rates, lateral erosion removes the mature for-
est, while sediment deposition provides new fertile ground for juvenile vegetation colonization. The hydroperiod 
(i.e., the mean duration of seasonal floods) is short enough to allow the forest to reach the mature condition and 
store a high amount of carbon. Instead, the point bars and bare banks are rapidly vegetated by seedlings and 
young trees with high sequestration capability but low carbon density. Thus, the carbon distribution is negatively-
skewed with a peak representing the mature forest and a left tail due to seedlings (Supplementary Fig. S8a). In 
multi-thread (braided/wandering) rivers, intermediate-to-high fluvial disturbances affect the vegetation that 
populates islands and banks. At weakly disturbed conditions (short hydro-period), a mature forest populates 
islands, or central bars, in the inner cores while young trees develop along the banks. Such a mixture of mature 
and young vegetation is recognizable as a multi-modal distribution in carbon density (Supplementary Fig. S8b). 
With the increase of the Horton-Strahler order, the hydro-period typically increases, the development of mature 
vegetation in the island cores is progressively inhibited and the system remains at a juvenile stage, so inducing 
a positively-skewed carbon density distribution (Fig. 2h, Supplementary Fig. S8c).

Discussion and conclusions
Similar to the C-sink triggered by erosion of topsoil layers47, we here claim that river morphodynamics induces 
the recruitment of Large Woody Debris (LWD) from riparian vegetation through erosion and uprooting and 
promotes colonization and rejuvenation of the riparian zone48. The more the carbon export induced by river 
dynamics, the larger area is freed, and the higher the colonization of new vegetation, thus fostering further NPP. 
If for any reason, lateral erosion, uprooting, and overflow are interrupted, then C-export would be reduced, and 
rejuvenation of the floodplain inhibited. The enhancement of the net primary production is a direct effect of the 
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carbon export (Fig. 1b), and it represents a valuable ecosystem service of the Aquatic-Terrestrial Transitional 
Zone. Unlike the eCE, a direct assessment of the ENPP at the continental scale is awkward through remote sens-
ing techniques. However, in the long term (roughly longer than the time required by vegetation successional 
pattern to reach the state of mature forest), and under stationary hydro-morphological conditions, neither veg-
etation biomass removal nor production prevails and eCE and ENPP should equalize each other. In fact, from 
a first-order analysis of carbon balance in lowland floodplains, Ref.12 demonstrated that lateral carbon fluxes 
(erosion and deposition) have the same order of magnitude of vertical carbon fluxes (primary production and 
respiration).

A similar concept of enhanced-NPP was proposed for headwaters catchments of the Southern Alps in New 
Zealand, through a 70 m resolution analysis, where high frequent landslide in steep lands mobilize soil and above-
ground biomass49. In this way, an unusual proportion of vegetation was shown to be in an early successional 
stage, with NPP higher than mature forest12. We have instead considered the triggering of ENPP in the context 
of lowland tropical floodplains at a continental scale and, by focusing on the nexus between ENPP and river 
eco-morphodynamics, we have emphasized a carbon pumping mechanism (eCP) that remained unexplored so 
far. For instance, this nexus is evident in the Amazon basin, that, during the observation period (19 years) has 
lost 11,420 km2 of vegetated area for erosion and uprooting, with an overall carbon export of 161 TgC. When 
referring to the estimates provided by Ref.50, this quantity is 25 times larger than the net primary production 
that a tierra-ferma mature forest would have produced over the same area, and in the same period, in the case of 
no bank erosion or uprooting. Since it is well-known that the total floodplain biomass and forest cover remains 
roughly constant at the multi-decadal time scale in unaltered or unregulated rivers51, this excess must be com-
pensated with a NPP of riparian forest dramatically higher than tierra-ferma mature forest51. Notice that this 
key aspect is usually overlooked in the literature since proof of such a balance from NPP direct measurements 
would require a period of observation typically larger than the satellite image availability. This explains why a 
recent attempt in estimating carbon accumulation in the Ucayali River has been misinterpreted as a strong and 
unphysical imbalance between accumulation and export52.

In terms of areal efficiency, the eco-morphodynamic Carbon Pump of lowland tropical rivers is a high-
performance machine. In the Amazon basin, the carbon exported annually per unit area of river-driven forest 
loss may be computed as eCE/ARDFL  = 218–275 MgC/km2 year (Table 1). This value is higher than other widely 
known fluxes of the carbon cycle, such as POC fluxes from eroded peatlands (< 78 MgC/km2 year, Ref.53), the 
rate of carbon storage in upland blanket peatland (55 MgC/km2 year, ref.54) and mass wasting in tropical steep 
lands (3–39 MgC/km2 year, Ref.55). Furthermore, by examining the mineral weathering of silicate soils, we may 
refer to angiosperm-deciduous systems, which induce an estimated average loss rate of calcium ions of 4 Mg/km2 
year56. This corresponds to 2.4 MgC/km2 year for the Urey reaction stoichiometry, a value 100 times smaller than 
the present process. Net oceanic upwelling C-flux per unit area due to thermohaline and Ekman circulations is 
instead a thousand times smaller57.

As suggested by Ref.12, coarse material is typically not sampled by standard POC collection approaches. It is 
therefore reasonable that a consistent fraction of the 8 TgC/year of eCE herein assessed for the Amazon basin 
must be added to the current estimate of organic carbon flux from the Amazon River to the ocean (about 31 
TgC/year from Ref.58).

It is evident that eco-morphodynamic carbon pumping is a process closely linked to the ability of river systems 
to recruit vegetation and sustain the rejuvenation of the riparian corridor. However, the river activity—carbon 
export nexus is broken when fluvial connectivity is undermined by anthropogenic activities. For example, dams 
and reservoirs impact the frequency and duration of flood pulses in the river network59 and can reduce the input 
of bedload and suspended sediment to the downstream reaches60, resulting in channel narrowing and incision61. 
Lower flood pulses and sediment supply can also greatly alter riparian vegetation dynamics62 by reducing seedling 
establishment, increasing vegetation encroachment, and leading to even-aged riparian forests63,64. Furthermore, 
greenhouse gas (GHG) emissions from the decomposition of organic matter transferred or produced within 
the reservoir as aquatic biomass, can mine the so-called Carbon Intensity of dams, namely the CO2-equivalent 
emissions per unit of electricity generated. Consequently, 10% of the world’s existing hydropower plants emit as 
great a quantity of GHGs as would equivalent fossil-fuel power plants65.

From the above considerations, it follows that the current policies on environmental flows (e-flow) assessment 
for the Neotropics require modification because they are merely based on water flow requirements in downstream 
reaches59. Strategic planning implies the enforcement of operational rules aimed at lessening the overall effect 
on hydrological and geomorphological processes, including dynamic flow releases66, flood pulses, and sediment 
dynamics, when specifying e-flows67. Pure hydrology-based methodologies for e-flows assessment68 incompletely 
capture changes in channel morphology and vegetation dynamics.

Our analysis suggests that such actions should be recommended in dam design, involving at least the head-
waters of the big sequestrators, which account for 28.2% of the total eCE (excluding the Amazon River, Table 1). 
A carbon budget approach to managing regulated rivers in the Neotropics is therefore essential to determine 
whether hydropower can be considered a clean energy source in the future.

The present result shows that neglecting the eCE could underestimate the current aquatic-terrestrial carbon 
flux by up to 8.9 TgC/year in the large rivers of the Neotropics alone (about 23% of current estimates of organic 
carbon flux to the ocean from major rivers in the Neotropics58). Furthermore, the result of the eCE in Neotropics 
has been conservatively underestimated. We in fact focused the main considerations on Neotropics watercourses 
with channel widths greater than 200 m, due to the resolution of the datasets adopted. The analysis could be 
globally extended to all natural large rivers.

Instead, nothing can be said for rivers smaller than 200 m, but it is worth remarking that they globally rep-
resent about 99.5% (in length) of the waterways69. In addition, headwaters are recognized as conveyors of coarse 
woody material and producers of POC12. Not considering them in a global estimate is therefore a further source 
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of underestimation. Finally, to get a more comprehensive evaluation, in the spirit of the REgional Carbon Cycle 
Assessment Project (RECCAP2) initiative of the Global Carbon Project, and since the procedure is based on a 
freely available satellite imaging algorithm that does not require any calibration, it is recommended to extend 
the present assessment to non-tropical regions.

Methods
Definition of the regions of interests (ROIs).  Each analyzed river was divided into Regions of Interest 
(ROIs) characterized by homogeneous morphological behaviour. The ROI represents the elementary unit for the 
calculation of eCE and is characterized by longitudinal and lateral boundaries. The changes in Horton-Strahler 
order46, sinuosity, transitions from single-thread to multi-thread or vice versa, or sudden changes in channel 
width22 were considered as geomorphological criteria longitudinal divides between two consecutive ROIs (sensu 
Ref.70). The main channel of the analyzed rivers has a width greater than 200m, when referring to the mean 
annual discharge, according to the analysis by22. The lateral extent of ROIs comprises the land adjacent to the 
stream where vegetation is influenced by river dynamics and/or flooding. Such an active lateral area was identi-
fied in two steps.

First, it was considered the spatial gradient in biomass density. The areas frequently involved by flooding 
or river dynamics are featured by vegetation adapted to survive and are characterized by a successional pattern 
with specific biomass distributions51. An analysis of a high-resolution biomass map allowed us to identify edges 
between floodplain forest and land forest (e.g., defined as tierra-ferma in Amazonian basins, Supplementary 
Fig. S3)

Second, where the lateral boundaries were not evident by biomass map, we also considered the water surface 
occurrence by using the GSW dataset71, n.4 in Supplementary Table S2. Accordingly, the identification of sites 
ever detected as water over the last 35 years in the GSW dataset enabled us to identify the aquatic-terrestrial 
transitional zone.

Nevertheless, short-lived events are not always correctly detected by GSW because such events must be con-
current with cloud-free satellite observations. Because of the extreme cloud contamination that characterizes 
the tropical area (particularly the eastern Amazon Basin), many short but intense events cannot be included in 
the event map developed by71, making our estimates of the lateral boundaries of the ROIs further conservative.

Data filtering.  To ensure the quantification of carbon exported that was strictly based on River-Driven For-
est Loss (RDFL), a three-step selection procedure was used to identify and exclude non-RDFL cases, e.g., rivers 
impacted by anthropic activities.

Step 1: All evident sources of anthropic alteration were identified by visual inspection from Landsat images, 
such as physical infrastructures in the river channel or along the surrounding floodplain, presence of river 
channelization, check dams, weirs, fords, embankments, bank protection, revetments, and mining activities.

Step 2: Rivers classified as not free flowing through the CSI index by33—i.e., rivers in which fragmentation 
and regulation or alteration in water quality and temperature compromise fluvial connectivity (CSI index < 95% , 
dataset n.8 in Supplementary Table S2)—were also excluded.

These first two steps excluded 89% of 551,000 km overall length of all tropical reaches with Horton-Strahler 
index ≤ 4.

Step 3: A probabilistic classification model was used to define the likelihood P that river-driven forest loss 
(RDFL) occurred for each pixel within the ROIs. Extreme likelihood values are P = 0 (no forest loss or forest 
loss unquestionably due to causes other than river dynamics), and P = 1 (forest loss unquestionably due to river 
geomorphic activity).

To assess intermediate probabilities, the Global Forest Change dataset35 was combined with three potential 
causes of non-river-driven forest loss: (1) population density; (2) forest fires; (3) land-cover changes (source 
datasets are described in Supplementary Table S2). For any pixel k of ROI j in which forest loss occurred, the 
model assessed the likelihood that the forest cover change was not due to urbanization ( P(u)jk  ), wildfire ( P(wf )jk  ) 
or man-made land-cover changes ( P(lc)jk  ), thus yielding three probability maps (see next section). The overall 
likelihood map was obtained by multiplying the three probability maps, since they refer to independent events, 
namely Pjk = P

(u)
jk · P

(wf )
jk · P

(lc)
jk  . In this way, an average annual area of 115 ± 15 km2 in the tropical wetlands of 

large rivers was classified as non-RDFL and therefore excluded from the whole analysis. This corresponds to 
18% of the annual cover loss detected in the ROIs. The results of the filtering procedure for three example cases 
are shown in Supplementary Fig. S5. The data used in this study refer to the HydroRIVERS data layers—n.9a in 
Supplementary Table S272—providing vectorized line network of all global rivers with a catchment area greater 
than 10 km2 or an average river flow larger than 0.1 m3/s, and were derived from HydroSHEDS data—n.9b in 
Supplementary Table S273—based on a grid resolution of 15 arc-seconds. River order was expressed using the 
Horton-Strahler ordering system. Following this system, the first order represents headwater streams and when 
two streams with the same order meet, they form a river of one order greater.

Probabilistic classification model.  A probabilistic classification model was used to define the likelihood 
(P) that a River-Driven Forest Loss (RDFL) had occurred for each pixel within the ROIs. To this aim, the Global 
Forest Change dataset35 was filtered by considering three potential causes of no river-driven forest losses: (1) 
population density; (2) forest fires; (3) land-cover changes (datasets n.5-7 of Supplementary Table S2). Accord-
ingly, for any j-th pixel of the k-th ROI wherein forest loss occurred, the model assessed the likelihood that the 
forest cover change is not due to urbanization P(jku) , wildfire P(wf )jk  , or man-made land-cover changes P(lc)jk  , thus 
producing three probability maps.
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The values reported in the map P(u)jk  , decrease with the population density (PD). According to a relationship 
between the human pressure score and the population density for sparsely populated areas suggested by Ref.74, 
we set:

Human population density (PD) was retrieved from the dataset WorldPop Project Population (86–88, 91) at 100 
m resolution (n.6 of Supplementary Table S2)

To define the maps P(wf )jk  and P(lc)jk  , the probability that the forest loss in a given year has not been caused by a 
non-River-Driven Event (henceforth referred non-RDE) was expressed as a function f(�t), where � t is the time 
gap (causal relation principle) between the forest loss and non-RDE occurred in the same region (wildfires or 
land cover changes). The function f(� t) (the probability that the loss has been caused by a non-RDE) follows a 
piecewise dependence on time, as reported in Supplementary Fig. S4.

Essentially, if the forest loss and the non-RDE belong to the same year (i.e., � t =0), the causal connection is 
guaranteed, so the function f takes the maximum (f =1). Cases with �t < 0 mean that the non-RDE anticipated 
a forest loss. In this case, a positive causal connection may be possible for several reasons. For example: (1) the 
non-RDE might have not caused a detectable forest loss in the same year, e.g., a wildfire that irreversibly dam-
aged the vegetation which however died in the following months/years; (2) extreme cloudiness of tropical region 
caused a delay in the forest loss detection. In the cases with �t > 0 , forest loss anticipated the non-RDE. Albeit 
counter-intuitive, even in this case, a positive causal connection can be possible. For example, a slow land con-
version (e.g., from forest to cropland) that takes some years to cover a portion of territory observable through a 
MODIS-based dataset (coarse resolution 500 m) while was suddenly detected as forest change in the Landsat-
based products (resolution of 30 m). In each plot performing a forest loss during the observation window, fire 
events were detected by using the MODIS-based dataset75. We set

where N is the number of fires observed during 2000–2019 in the pixel. Where no fires were observed, P(wf )jk  =1. 
We remark that this filter excludes the capture of recalcitrant LWD generated by the incomplete combustion of 
biomass during fires, so-called black carbon as analyzed in76. This aspect may be an additional source of under-
estimation of the present eCE assessment.

The map P(lc)jk  , namely the likelihood that forest loss is not due to land cover change caused by human activity, 
is generated by using the dataset n.7 in Supplementary Table S2, MODIS Land Cover Type MCD12Q177. Fol-
lowing the classification of the Annual International Geosphere-Biosphere Programme (IGBP, Supplementary 
Table S4), four land cover macro-classes were identified: Natural with High vegetation density (NHV), Natural 
with Low vegetation density (NLV), Anthropic (AN) and Water/Unvegetated (UV). A per-pixel analysis at 
MODIS scale was performed in ROIs and each yearly variation in land cover macro class was detected and clas-
sified. In each pixel, the variations from NHV to NLV, from NHV to AN and from NLV to AN were considered 
due to human activities while all the other changes were attributed to river morphodynamic processes (i.e., 
RDFL). The probability that the forest loss at pixel k of ROI j was not due to human–induced land cover change 
is therefore defined according to the same equation as Eq. (2) where N is intended as the number of land cover 
transitions observed during the 2000–2019 in the same pixel, while � t is intended as the time difference between 
the forest loss and the land cover change. When no human-induced land cover variations were detected, P(lc)jk =1.

For the above reasons, a conservative choice in terms of eCE estimation was to assume that when forest loss 
and non-RDE occurred within the temporal window of 5 years they were causally connected, so f =1. The result 
of the filtering procedure for three example cases is shown in Supplementary Fig. S5.

Computation of the eco‑morphodynamic carbon export (eCE).  The eCE of j-th ROI, reported as 
the TgC exported per year (in the form of woody biomass), was computed as

where ρj,k is the biomass density [TgC/km2 ] and Lj,k is the annual mean RDFL [ km2/year] for the period 
2000–2019, and for pixel k of ROI j. In order to statistically exclude non-fluvial causes, Lj,k was computed as the 
product between the surface Aj,k of the cell and the likelihood Pj,k of loss being RDFL (see the section “Probabil-
istic Classification Model”). For the assessment of biomass density, we adopted four different methods (M1–M4).

Method M1: ρj,k was taken from the WHRC Carbon Stock dataset developed by78 for the above-ground living 
woody biomass density at 30 m resolution for the year 2000 (n.2 of Supplementary Table S2). In this case, the 
carbon density of a single cell was assumed constant during the entire period of analysis, neglecting the pos-
sibility that plots, where the loss occurred after the year 2000, might have experienced an increase in the carbon 
content due to growth in the time between 2000 and the year of loss.

Method M2: The value of carbon density of each pixel was adjusted considering the amount of vegetation 
that had grown between the year 2000 and the year of loss, by using a calibrated logistic growth model (see next 
section).

Methods M3 and M4: The value of carbon density of each pixel was approximated using the spatial average 
over the whole ROI (i.e., ρj,k =

∑

k ρj,k/Nj , being Nj the number of pixels in ROI j) by using the WHRC Carbon 

(1)P
(u)
j,k =

{

1− 0.333 · log ( PD +1), for PD < 1, 000 people/km2

0 for PD ≥ 1, 000 people/km2

(2)P
(wf)
j,k =

N
∏

i=1

1− fi(�t),

(3)eCEj =
∑

k

eCEj,k =
∑

k

Lj,k · ρj,k
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Stock datasets by78 for M3 and45 for M4 (datasets n.2 and n.1 of Supplementary Table S2, respectively). These 
datasets describe biomass in tropical regions for only a limited period (the year 2000 for n.2 and the period 
2007–2008 for n.1).

Tropical rivers are highly dynamic systems that during an inter-decade evolution likely visit most of their 
geomorphological configurations (e.g., the Ucayali River, a tributary of the Amazon River, shows migration 
rates of up to 100 m/year). For methods M3 and M4, we, therefore, adopted an ergodic-like hypothesis79, which 
allowed the temporal mean of carbon density in a single plot to be inferred from its spatial average over the 
whole ROI. It is worth noting that spatial averaging in methods M3 and M4 induces a slight underestimation 
of the eCE (see Supplementary Table S5), since the erosion mechanism and the consequent capture of biomass 
usually involve the mature bank, where vegetation is at a higher level of growth.

Since the considered datasets only report the above-ground biomass (AGB) density, the belowground biomass 
(BGB) was assessed as BGB = 0.489 · AGB0.89 (Ref.80), and the total carbon was estimated as 50% of the total 
biomass (AGB+BGB). From the estimates of eCE, we also estimated the carbon sequestrated per unit ROI area 
and per river length:

where Sr is the ROI surface, and lr is the length of river reaches within the ROI. We remark that the relative 
differences of the eCE estimation among methods M1-M4 does not exceed 3.3% (Supplementary Table S5). 
Quantitatively, the four different methods, therefore, perform in a very similar way, despite they are based on 
different datasets. For simplicity, the results reported in the main text refer to Method 2. A graphical summary 
of the whole methodology is reported in Supplementary Fig. S6.

Calibration of the logistic growth model update in Method M2.  In method M2, the increase in the 
carbon content, due to vegetation growth between the acquisition time (year 2000, ref.78) and the time of forest 
loss, was considered by calibrating a simplified logistic biomass growth model63,81,

where ρ is the biomass carbon density, t is time, V is the carrying capacity, i.e., the maximum sustainable biomass 
carbon density, and α is the species-dependent growth rate, while subscript i refers to the generic i-th cell. By 
setting the initial condition ρ0,i  = ρ(t0) , that corresponds to the biomass reported by the dataset78 at year t0 = 
2000, the formal solution of equation (6) at time t = t0 +�t , for a generic species community reads

where we have defined Ai = eViαi�t . Through the following procedure, we have locally calibrated the function 
Ai and the parameter Vi , in order to use the Eq. (7) to update the value of carbon biomass density from t = t0 = 
2000 to the time of the cover loss ( t = t0 +�t ), in any cell. The calibration procedure relies on the comparison 
of carbon biomass as reported by two different datasets with acquisition times eight years apart (Ref.78 and Ref.45 
referring to 2000 and 2008, respectively n.2 and n.1 in Supplementary Table S2). The comparison of these two 
datasets is possible since they were generated by the same methodology, albeit with different resolutions (30 
mpx for Ref.78 and 500 mpx for Ref.45). In the following, the two datasets will be tagged with subscripts 30 and 
500 , respectively. Firstly, all cells in the 30 m resolution dataset were resampled to the 500 m resolution within 
blocks corresponding to the pixel boundaries of the second dataset. Secondly, for each j-th block, we imposed the 
matching between the mean of the values ρ30,i within the block (updated at t = 2008) and the value ρ30,i , namely,

which, after using Eq. (7), becomes

where Nj is the number of 30 m resolution cells in the j-th 500 m resolution block. Third, it was assumed that 
all cells within each block share the same value of Ai and V, so Ai  = A is a constant which can be taken out from 
the summation in Eq. (9). Furthermore, since 1/ρ0,i (A–1) ≈ 1/ρ0,i ≫ 1/V, as a first order approximation we get

where ρM  = N−1
j

∑Nj
i=1 ρ0,i . By iterating and substituting Eq. (10) in Eq. (9), one gets a second-order 

approximation

(4)eCEA = eCE/Sr [kg C/m2year],

(5)eCEL = eCE/l [kg C/m year],

(6)
dρi

dt
= αiρi(Vi − ρi)

(7)ρi =
Aiρ0,iVi

(Ai − 1)ρ0,i + Vi

(8)
1

Nj

Nj
∑

i=1

[

ρ30,i
]

t=2008
= ρ500,j

(9)
1

Nj

Nj
∑

i=1

Aiρ0,iVi

(Ai − 1)ρ0,i + Vi
|�t=8 years = ρ500,j ,

(10)A|�t∗ ≈
ρ500,j

ρM
,
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By recursion, it is evident that further approximations lead to a cumbersome formula containing a continued 
fraction in the denominator of Eq. (11), and for numerical convenience, it suffices to stop at the second step. 
The carrying capacity was cautiously assumed constant throughout the ROI and equal to the maximum value 
of ρM (namely, V = ρmax

M ).
By replacing in Eq. (7), and after recalling that, by definition,

where �t∗  = 8 year is the time lag between the two datasets, one finally gets the relationship for the carbon 
density updated at time t, for each cell:

An example of use of Eqs. (11)–(13) is reported in Supplementary Fig. S7.

Identification of the biomass distribution signatures.  The analysis was performed using a set of Java 
APIs (Application Programming Interface), that are optimized for the analysis of big data. Due to the lack of an 
efficient and simple procedure for multi-modality detection82, we also developed an ad-hoc signature classifica-
tion algorithm that is able to distinguish four patterns in the biomass density distributions (negatively skewed, 
positively skewed, multi-modal, bell-shaped). The procedure combines the statistical parameters of the carbon 
density distribution across the ROI: mode (M), median (Med) and skewness (Sk). These parameters were cal-
culated using a set of GEE-native geo-statistical functions, applied to the WHRC Carbon Stock Dataset45. The 
minimum bin of histograms was fixed to 200 MgC/km2 (the accuracy reported by45 is 100 Mg C/ km2).

Firstly, the algorithm (Supplementary Fig. S2) separates uni-modal from multi-modal distributions. To this 
aim, two sub-samples are extracted from the dataset of each ROI, by considering a cutoff at the median value of 
the carbon density distribution, referred to as the left—(L) and right—(R) sub-samples. ROIs’ distributions are 
classified as multi-modal (MM) if two conditions are both satisfied: 

	 (i)	 The frequency of the mode of the left ( FML ) or right ( FMR ) sub-samples exceeds more than ± 10% the 
frequency of median value of the whole sample ( FMed);

	 (ii)	 Left (ML) or right (MR) modes are distant enough to the main median (Med), namely: 
| ML,R −Med| > 400 MgC/km2.

If conditions (i) and (ii) are both false, the skewness Sk of the main distribution is considered: positive skew-
ness (Sk > 0.4) provides PS, negatively skewed (Sk > − 0.4) provides NS, whereas moderate skewness (− 0.4 < 
Sk < 0.4) provides BS distributions. If only one of either (i) or (ii) is satisfied (i.e., just one sub-sample mode is 
detected to be distant from the median) the difference D = FMR − FML is computed to distinguish between NS 
(D < 0) and PS (D > 0) distributions. If the condition related to D is not satisfied the algorithm uses again Sk to 
classify biomass density distributions in NS, PS or BS classes.

The algorithm was tested on a subset of 10% of the ROIs, randomly selected as a possible validation dataset, 
which showed a total accuracy of 95% (correctly classified distributions). An example of application on three 
rivers is reported in Supplementary Fig. S8. The Matlab code is reported in the Online supplementary material 
(Figshare repository).

Uncertainty analysis.  The aggregated continental assessment of eCE for the largest tropical rivers was 
obtained as the sum of the values calculated in each ROI of the continent. The uncertainty (namely the standard 
deviation, henceforth referred to with symbol σ ) at the pixel level may be computed from probability theory. The 
eCE is in fact the product of two quantities both affected by error (i.e., river-driven forest loss area and biomass 
carbon density) so they can be considered as random processes. According to the filtering procedure described 
above, for each pixel, forest loss can be associated with a discrete random variable χj,k that takes only two val-
ues: 1 with probability Pj,k (RDFL) or 0 with probability 1–Pj,k (non-RDFL). This corresponds to a Bernoulli 
process83—i.e., repeated coin flipping—, which has the mean equal to Pj,k and variance equal to

The carbon density is instead a continuous random variable, with mean ρj,k (from methods M1–M4) and standard 
deviation σ(ρj,k ). By using Goodman’s expression84 for the variance of a product of two uncorrelated random 
variables, the error variance of the eCE of pixel (j,k) reads

(11)
A|�∗ ≈

Njρ500,j
∑Nj

1
1

ρ500,j
ρM

−1

V + 1
ρi

(12)A|�t = (A|�t∗ )
t

�t∗

(13)ρi(t) =
(A|�t∗ )ρ0,iρ

max
M

[

(A|�t∗ )
t

�t∗ − 1
]

ρ0,i + ρmax
M

(14)σ 2
(

χj,k
)

= Pj,k
(

1− Pj,k
)

.

(15)σ 2
(

eCEj,k
)

= A2
j,kPj,k

[

σ 2
(

ρj,k
)

+
(

1− Pj,k
)

ρ2
j,k

]

,
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where Aj,k is the pixel area. Per-pixel values for σ(ρj,k) are not reported in the raw datasets herein considered, so 
we adopted different conservative assumptions, based on the observation that residuals are proportional to the 
mean, as also suggested in ref.45. Accordingly, in M1 and M2, we set

with the coefficients of variation cV assuming different values ranging between 0.5 and 1.25.
In M3 and M4, σ(ρj,k) was set equal to a constant value throughout the ROI, corresponding to the standard 

deviation of all the carbon densities measured inside the ROI, as reported in the WHRC Carbon Stock datasets78 
for M3, and in the dataset by Ref.45 for M4.

As a further step, the propagation of the uncertainty from the pixel to the continental scale requires the assess-
ment of the spatial correlation of the errors, otherwise per-pixel errors cancel out and the overall uncertainty may 
be largely underestimated. In the present case, standard use of spatial variograms (sensu ref.45) is precluded by 
the spatial patchiness of ROIs, the heterogeneity of biomass due to river dynamics and in addition, because it is 
computationally prohibitive (even when encoded in GEE). Following Ref.45, we therefore adopted two empirical 
autocorrelation length-scales (ALS) - ALS1 equal to 500 m and ALS2 equal to the ROI area—and we conserva-
tively assumed that the pixels are perfectly correlated at a distance smaller than the ALS and uncorrelated at 
larger distances. The dataset was divided into independent blocks by using squares (for ALS1 ) or ROI polygons 
(for ALS2) and an upper conservative estimate of the uncertainties was calculated for each block by exploiting 
all the values of σ ( eCEj,k ) provided by aforementioned Goodman’s formula within the block. For each method 
M1–M4, the uncertainty in the eCE at the continental scale σcont,ALS was calculated for both ALS, by summation 
of the variance associated with each block within the continent:

where N is the number of blocks in a continent and σ 2
i,ALS is the variance error associated with each block.

For methods M3 and M4, the errors were assessed only with ALS2 , since in both scenarios the carbon den-
sity was derived from a spatial average at the ROI scale. In each block, the variance was calculated by taking its 
supremum over the block, i.e.,

By combining methods M1–M4 with the two auto-correlation length scales and considering the four values of 
cv for methods M1 and M2, eighteen different configurations were considered for the uncertainty assessment 
(Supplementary Table S5). The most conservative configuration (maximum uncertainty) gives a standard devia-
tion (in TgC/year) and a percentage error of 0.84 (9.44% ) for Neotropics. The results reported in the main text 
refer to this conservative configuration.

Code availability
The Java script for the GEE platform generating the row dataset, and the Matlab scripts generating the definitive 
data set are deposited in https://​figsh​are.​com/s/​6b534​7f0e1​ad3d9​2a486, and freely available after publication.
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