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Myopia prediction for children 
and adolescents via time‑aware 
deep learning
Junjia Huang 1, Wei Ma 2*, Rong Li 3, Na Zhao 4,5 & Tao Zhou 1,5*

This is a retrospective analysis. Quantitative prediction of the children’s and adolescents’ spherical 
equivalent based on their variable‑length historical vision records. From October 2019 to March 
2022, we examined uncorrected visual acuity, sphere, astigmatism, axis, corneal curvature and axial 
length of 75,172 eyes from 37,586 children and adolescents aged 6–20 years in Chengdu, China. 80% 
samples consist of the training set, the 10% form the validation set and the remaining 10% form the 
testing set. Time‑Aware Long Short‑Term Memory was used to quantitatively predict the children’s 
and adolescents’ spherical equivalent within two and a half years. The mean absolute prediction 
error on the testing set was 0.103 ± 0.140 (D) for spherical equivalent, ranging from 0.040 ± 0.050 
(D) to 0.187 ± 0.168 (D) if we consider different lengths of historical records and different prediction 
durations. Time‑Aware Long Short‑Term Memory was applied to captured the temporal features in 
irregularly sampled time series, which is more in line with the characteristics of real data and thus has 
higher applicability, and helps to identify the progression of myopia earlier. The overall error 0.103 (D) 
is much smaller than the criterion for clinically acceptable prediction, say 0.75 (D).

Myopia is a global public health concern. It is estimated that 57% of countries will have a myopia prevalence of 
more than 50% by  20501. The World Health Organization reported in 2019 that at least 2.2 billion people have 
a vision impairment, of whom at least 1 billion have a vision impairment that could have been  prevented2. As 
myopia is currently difficult to be cured completely, it is vital to prevent its onset and progression. An early and 
appropriate intervention can effectively mitigate the risks and consequences related to  myopia3. The spherical 
equivalent (SE) is the basis for screening and diagnosing  myopia4. Quantitative prediction of SE can indicate the 
specific changes in the progression of myopia, and help in designing targeted interventions in advance. Previous 
studies have reported a number of risk factors for the onset or progression of myopia, including age, gender, 
heredity, outdoor activities, etc.5–7. Matsumura et al.8 suggested that the historical progression of myopia is 
associated with future changes in visual acuity. Therefore, we believe that the historical vision records, together 
with other demographic information, can be used to quantitatively predict SE.

In recent years, a growing body of research has considered the prediction of myopia or high myopia in differ-
ent  populations9. Most known studies used traditional models like linear regression, support vector machines, 
decision trees, and so  on10–17. In comparison, deep learning can be trained with complex and nonlinear param-
eters to learn data  structures18, and is deemed to perform better than traditional models in a variety of medical 
prediction  tasks19–22. However, there are only few applications of deep learning in myopia prediction.

Spadon et al.23 argued that the temporal dynamics provides valuable information in addition to static symp-
tom observation. However, in usual vision records, the uneven distribution of time intervals between historical 
records makes the extraction of temporal features very difficult. This paper uses Time-Aware Long Short-Term 
Memory (T-LSTM) to capture the temporal features in irregularly sampled time series, and to quantitatively 
predict children’s and adolescents’ SE based on their variable-length historical vision records. The proposed 
method is widely applicable.
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Methods
Data description. The dataset for this study contains 232,244 historical vision records from 37,586 school-
aged children and adolescents (aged 6–20 years) in Chengdu, China. They were collected by Eye See Inc. from 
October 2019 to March 2022 through unscheduled refractive screening in schools. Eye See Inc. is a company 
in Chengdu, China, providing medical services for myopia prevention and control. As of December 2022, Eye 
See Inc. has completed myopia screening for more than 1,600,000 children and adolescents in more than 2000 
schools. Tumbling E Logarithmic Visual Acuity Chart (under the National Standard of the People’s Republic 
of China No. GB11533-2011), Slit Lamp Microscope (SL-3G, Topcon), Auto Kerato-Refractometer (KR-800, 
Topcon), and Optical Biometer (AL-Scan, Nidek) were used for data collection. Inclusion criteria: elementary, 
middle and high school students between the ages of 6 and 20. Exclusion criteria: students who did not obtain 
consent from their parents or their guardians, students who were unable to cooperate with the examination 
or did not complete the examination due to intellectual or physical reasons. The following examinations were 
performed based on the standard clinical protocols: (1) distant vision examination; (2) slit-lamp microscope 
examination; (3) pre-cycloplegic objective refractive examination; (4) axial length measurement.

The myopia diagnostic criteria associated were developed in accordance with the Consensus on Myopia 
Management for Asia 2021, published by the Asia Optometric Management Academy (AOMA) and Asia Opto-
metric Congress (AOC)4. Based on SE when the eye is relaxed, the criterion of myopia is SE ≤ − 0.5 (D) , and 
the level of myopia is classified as follows: (1) low myopia: −3.0 (D) < SE ≤ − 0.5 (D) ; (2) moderate myopia: 
− 6.0 (D) < SE ≤ − 3.0 (D) ; (3) high myopia: SE ≤ − 6.0 (D).

The cleaned dataset contains 75,172 eyes (samples) of 37,586 children and adolescents. Each sample is asso-
ciated with 2–6 records. The number of samples with 2, 3, 4, 5 and 6 records is 27,015, 18,732, 25,109, 4,314 
and 2, respectively. The interval time between the first record and the last record for any sample ranges from 
1 ( < 1 quarter ) to 10 ( ≥ 9 quarters,< 10 quarters ). Each record is associated with 16 features, as described in 
Table 1. Figure 1 shows distributions of these features. A possible time-series data for an adolescent is shown 
in Table 2.

Data preprocessing. Firstly, in order to exclude the interference between categories of the original sequen-
tial encoding, one-hot encoding was performed for the unordered categorical features, say correction method 
and gender. It creates unit vectors for each option within the categorical feature, where the dimensionality of the 
vector equals the number of  categories24. For example, a possible one-hot encoding for gender, as above, is male: 
(1, 0), and female: (0, 1).

After one-hot encoding, the features were standardized except for Id and Check date to speed up the conver-
gence of the model. The standardization rescales the sample mean to zero ( µ = 0 ) and variance to unit ( σ = 1

)25, as

(1)x′ =
x − µ

σ
.

Table 1.  Feature description. Discrete variables: value (percentage). Continuous variables: mean ± standard 
deviation, [min, max]. Axis values follow a bimodal distribution, so the mean value and standard deviation 
are less meaningful. Therefore, we treat it as a quasi-categorical variable with three classes: with-the-rule 
astigmatism ( Axis < 30◦ or Axis > 150◦ ), against-the-rule astigmatism ( 60◦ ≤ Axis ≤ 120◦ ), and oblique 
astigmatism ( 30◦ ≤ Axis < 60◦ or 120◦ < Axis ≤ 150◦ ). Detailed distribution is shown in Fig. 1.

Features Statistics

Id

Check date

School age groups 1 (69.3%): elementary school, 2 (23.7%): middle school, 3 (7.0%): high school

Gender 0 (48.5%): female, 1 (51.5%): male

Age (years) 10.38 ± 2.90, [6, 20]

Correction method 0 (65.0%): uncorrected, 1 (35.0%): spectacles glasses

Uncorrected visual acuity 0.31 ± 0.32, [− 0.3, 1]

Sphere (D) − 1.21 ± 1.75, [− 11.25, 8.75]

Astigmatism (D) − 0.71 ± 0.65, [− 6.75, 0.00]

Axis ( ◦) With-the-rule astigmatism (87.5%), against-the-rule astigmatism (4.5%), oblique astigmatism (8.0%), [0, 180]

Corneal curvature K1 (D) 42.54 ± 1.36, [37.05, 48.63]

Corneal curvature K2 (D) 43.87 ± 1.51, [37.58, 50.00]

Axial length (mm) 23.99 ± 1.14, [18.59, 29.86]

Myopia 0 (46.5%): no myopia, 1 (53.5%): myopia

The level of myopia 0 (46.5%): no myopia, 1 (37.8%): low myopia, 2 (14.5%): moderate myopia, 3 (1.2%): high myopia

SE − 1.57 ± 1.85, [− 12.63, 8.25]
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To increase the sample size, the historical records of a child or an adolescent were split into several samples, 
ensuring that all input data used for training and predicting is recorded before the label (i.e., the SE value). For 
example, a child’s or an adolescent’s 4 records (a, b, c, d) can be split into 11 samples as shown in Table 3.

The number of samples in the dataset increased to 490,420 after the data preprocessing. The sample sizes are 
277,035, 162,348, 46,709, 4,326 and 2 for sequence lengths of 1, 2, 3, 4 and 5, respectively. Particularly, sample 
with sequence length 5 is too few to be included in the training. The dataset was then divided into layers by the 
lengths of sequences. Each layer was further divided into training set (80%), validation set (10%) and testing 
set (10%).

LSTM. Recurrent Neural Network (RNN) is a neural network structure that can effectively link contextual 
information to achieve long term memory, but suffer from the problem of gradient vanishing or  exploding26,27. 
To solve this challenge, Hochreiter et al.28 proposed the method named Long Short-Term Memory (LSTM), 

Figure 1.  The distributions of features. Particularly, as children and adolescents grow taller over time, the size 
of eyeballs will gradually elongate, so the overall distribution of axial lengths is divided to three distributions, 
each corresponds to one age group.

Table 2.  The time-series data for an adolescent whose Id is 1. The headers of the table are id, check date, 
school age groups, gender, age, correction method, uncorrected visual acuity, sphere, astigmatism, axis, corneal 
curvature K1, corneal curvature K2, axial length, myopia, the level of myopia, SE in that order.

1 2019-10-21 1 0 11 0 − 0.1 0 − 0.5 159 43.16 45.06 23.16 0 0 − 0.25

1 2020-9-27 2 0 11 0 0.1 − 0.25 − 0.75 165 43.32 45.06 23.38 1 1 − 0.625

1 2021-4-28 2 0 12 0 0.4 − 1.25 − 0.75 164 43.21 45.24 23.74 1 1 − 1.625

1 2021-11-4 2 0 13 0 0.2 − 1.5 − 0.5 162 43.53 45.15 23.91 1 1 − 1.75

1 2022-3-9 2 0 13 0 0.3 − 1.25 − 0.75 170 43.32 45 23.85 1 1 − 1.625



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5430  | https://doi.org/10.1038/s41598-023-32367-0

www.nature.com/scientificreports/

which is a variant of RNN, combining short-term memory with long-term memory through gate control. LSTM 
solves the problem of gradient vanishing to a certain extent and allows for the learning of long-term dependent 
information.

Standard LSTM unit (Fig. 2a) consists of a forget gate, an input gate, an output gate and a cell state. The cur-
rent state ht is influenced by the previous state ht−1 and the current input xt.

Forget gate:

Input gate:

Output gate:

Cell state:

where σ and tanh represent the activation functions, and W, U and b are the learnable parameters.
The standard LSTM assumes that the time intervals between sequential elements are uniformly distributed, 

and thus cannot handle the problem with irregular time intervals.

T‑LSTM. T-LSTM (Fig. 2b) introduces time interval information based on the standard LSTM, and attenu-
ates the short-term memory according to the time intervals in order to capture the temporal dynamics of the 
sequential data with temporal  irregularity29. T-LSTM accepts two inputs: the current record and the current time 
step elapsed. T-LSTM differs from the standard LSTM primarily in the subspace decomposition of the previous 
time step, which adjusts the short-term memory according to the time intervals between records. The subspace 
decomposition method does not change the effect of the current input on the current output, but changes the 
effect of the previous memory on the current output. Specifically, T-LSTM adds the following features to the 
standard LSTM: (1) Short-term memory CS

t−1 , obtained through the memory of the previous time step, as

(2) Discounted short-term memory ĈS
t−1 , obtained by weighting CS

t−1 with time elapsed, as

(3) Long-term memory CT
t−1 , which is the supplementary subspace of short-term memory, as

(4) Adjusted previous memory C∗
t−1 , obtained through combining discounted short-term memory and long-

term memory, as

(2)ft = σ
(
Wf xt + Uf ht−1 + bf

)

(3)it = σ(Wixt + Uiht−1 + bi)

(4)C̃t = tanh(Wcxt + Ucht−1 + bc)

(5)ot = σ(Woxt + Uoht−1 + bo)

(6)ht = ot · tanh(Ct)

(7)Ct = ftCt−1 + it C̃t

(8)CS
t−1 = tanh(WdCt−1 + bd).

(9)ĈS
t−1 = CS

t−1 · g(�t).

(10)CT
t−1 = Ct−1 − CS

t−1.

Table 3.  The enhanced samples from a child’s or an adolescent’s 4 records (a, b, c, d). The time interval [ab] 
means the interval between record a and record b, in quarter.

Input data Label Time interval

[a] [b] [ab]

[a] [c] [ac]

[a] [d] [ad]

[b] [c] [bc]

[b] [d] [bd]

[c] [d] [cd]

[a, b] [c] [ab, bc]

[a, b] [d] [ab, bd]

[a, c] [d] [ac, cd]

[b, c] [d] [bc, cd]

[a, b, c] [d] [ab, bc, cd]



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5430  | https://doi.org/10.1038/s41598-023-32367-0

www.nature.com/scientificreports/

Application of T‑LSTM in myopia prediction. The input of each cell of T-LSTM is the current record 
xt and the time interval �t between xt−1 and xt . The output is the current state ht . In the myopia prediction 
model proposed in this paper, the input of each cell is changed to the current record xt and the time interval 
�t+1 between xt and xt+1 . There are two kinds of inputs, namely records and time intervals. The record of an 
individual is an n× 16 matrix containing n checks, and in each check there are 16 features (after the one-hot 
encoding, the number of features related to gender and correction method becomes 4). Correspondingly, the 
time intervals of this individual is a vector containing n time interval values. The last time interval value is the 
same to the prediction duration. The output is the next state ht+1 . The final prediction is the output of the last 
step which is passed through the fully connected neural network. The structure of the model is shown in Fig. 2c. 

(11)C∗
t−1 = CT

t−1 + ĈS
t−1.

Figure 2.  The structure of LSTM, T-LSTM and T-LSTM in myopia prediction, where x denotes the temporal 
input data, C is the cell state representing the long-term memory, h is the hidden state representing the short-
term memory, �t is the time interval between records xt and xt−1 , σ is the sigmoid activation function, and tanh 
is the tanh activation function.
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When performing myopia prediction, the values of visual acuity at any future moment can be predicted by 
changing the value of the last time interval. The training parameters of the model are as follows: Learning Rate 
= 0.0001, Batch Size = 256, Optimizer is Adam Optimizer, Epochs = 500, RNN Layers = 1, T-LSTM Hidden Size 
= 1024, and Early Stopping Patience = 10.

Metrics. The model’s cost function is the mean square error (MSE) of SE, often referred to as the loss. The 
MSE lies in the range [0,+∞) , as

where yi is the actual value, ŷi is the predicted value, and m is the number of samples. Equation (12) is a smooth, 
continuous and everywhere derivable function, and thus being convenient for the gradient descent algorithm. 
The prediction performance of the model is evaluated by the mean absolute error (MAE), which is the average 
of the absolute deviations, as

It takes values in the range of [0,+∞) . A smaller MAE indicates a better model.

Ethics declarations. The experimental protocol was established, according to the ethical guidelines of the 
Helsinki Declaration and was approved by the Human Ethics Committee of University of Electronic Science and 
Technology of China (No. 106142022101324706). Written informed consent was obtained from individual or 
guardian participants.

Results
After 405 training iterations, the model converges with the loss (i.e., MSE) of the training process displayed in 
Figure 3. The MAE of future SE is 0.103 ± 0.140 (D) on the testing set. The stratified MAE is shown in Table 4. 
When sequence lengths are 1, 2, 3 and 4, the corresponding MAE ranges from 0.115 (D) to 0.187 (D) for 2 to 
10 quarters, 0.082 (D) to 0.109 (D) for 2 to 6 quarters, 0.071 (D) to 0.079 (D) for 2 to 4 quarters and 0.040 (D) 
for 2 quarters, respectively. When the levels of myopia are no myopia, low myopia, moderate myopia and high 
myopia, the corresponding means and standard deviations of MAE are 0.116 ± 0.127 (D), 0.100 ± 0.136 (D), 
0.094 ± 0.147 (D) and 0.153 ± 0.237 (D), respectively. When the age groups range from 6 to 8, 9 to 11, 12 to 14, 
15 to 17 and 18 to 20, the corresponding means and standard deviations of MAE are 0.121 ± 0.156 (D), 0.099 
± 0.132 (D), 0.091 ± 0.128 (D), 0.088 ± 0.134 (D) and 0.056 ± 0.074 (D), respectively. Four case examples are 
shown in Fig. 4. The prediction curves well capture the trend of the SE changes while there are some unstable 
fluctuations that may be resulted from sparse records. Overall speaking, the longer the sequence length and the 
shorter the prediction duration, the smaller the prediction error. The MAE of SE within 0.75 (D) is considered to 
be a clinically acceptable  prediction13. Based on the accuracy and robustness of the model, as well as the variance 
of the prediction performance, the model provides a clinically valuable prediction of children’s and adolescents’ 
vision in the short and medium term.

The result of the T-LSTM, standard LSTM, Random Forest (RF), and Linear Regression (LR) is shown as 
Table 5. Since LSTM, RF and LR do not specifically deal with time intervals, the time intervals are treated as 

(12)MSE =
1

m

m∑

i=1

(
yi − ŷi

)2
,

(13)MAE =
1

m

m∑

i=1

∣∣(yi − ŷi
)∣∣.

Figure 3.  The change of MSE in the model. An epoch means training the neural network with all the training 
data for one cycle.
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Figure 4.  Four case examples of prediction using T-LSTM. In each example, the curve except the starting point 
means the predicted value, and the data points denote the true values.

Table 4.  The MAE of SE in the testing set for T-LSTM. a A value i means the duration ranges from i − 1 
quarters to n quarters. b *Represents that the sample size is too small ( < 100 ) to be a solid reference.

Prediction  durationa

The MAE of SE for different sequence lengths (mean ± standard deviation (sample size))b

Summary1 2 3 4

1 *0.231 ± 0.195 (8) *0.047 ± 0.064 (6) *0.045 ± 0.046 (4) *0.128 ± 0.162 (18)

2 0.115 ± 0.160 (4706) 0.082 ± 0.115 (6450) 0.071 ± 0.080 (3656) 0.040 ± 0.050 (432) 0.088 ± 0.124 (15244)

3 0.109 ± 0.145 (9269) 0.093 ± 0.142 (5239) 0.073 ± 0.089 (516) *0.041 ± 0.000 (1) 0.102 ± 0.142 (15025)

4 0.118 ± 0.154 (4106) 0.088 ± 0.132 (3340) 0.079 ± 0.110 (494) 0.103 ± 0.143 (7940)

5 0.112 ± 0.136 (4339) 0.086 ± 0.130 (694) 0.109 ± 0.136 (5033)

6 0.130 ± 0.151 (3669) 0.109 ± 0.161 (505) *0.040 ± 0.000 (1) 0.127 ± 0.152 (4175)

7 0.185 ± 0.197 (330) *0.059 ± 0.000 (1) 0.184 ± 0.197 (331)

8 0.150 ± 0.153 (172) 0.150 ± 0.153 (172)

9 0.185 ± 0.187 (563) 0.185 ± 0.187 (563)

10 0.187 ± 0.168 (542) 0.187 ± 0.168 (542)

Summary 0.119 ± 0.151 (27704) 0.088 ± 0.130 (16235) 0.072 ± 0.085 (4671) 0.040 ± 0.050 (433) 0.103 ± 0.140 (49043)

Table 5.  Comparison of the MAEs of different models.

Model

The MAE of SE for different sequence lengths (mean ± 
standard deviation)

Summary1 2 3 4

T-LSTM 0.119 ± 0.151 0.088 ± 0.130 0.072 ± 0.085 0.040 ± 0.050 0.103 ± 0.140

LSTM 0.172 ± 0.193 0.084 ± 0.138 0.076 ± 0.101 0.051 ± 0.078 0.133 ± 0.175

RF 0.156 ± 0.176 0.111 ± 0.141 0.099 ± 0.113 0.106 ± 0.106 0.135 ± 0.161

LR 0.325 ± 0.302 0.250 ± 0.230 0.212 ± 0.195 0.226 ± 0.180 0.289 ± 0.273
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one additional feature added to the input records, and thus the input record of an individual in those models is 
an n× 17 matrix. Because RF and LR can only handle fixed-length sequences, separated models were trained 
for different length sequences. As shown in Table 5, the overall MAE of T-LSTM is much better than the other 
three models. The reason why T-LSTM and LSTM outperform RF and LR lies in the fact that the former two 
models have the ability to capture long-term dependencies in data, and the reason why T-LSTM outperforms 
LSTM is that the former model can better capture temporal tendency by separately process temporal features.

Conclusions
As the symptoms of myopia are not typical, they are often ignored by parents in the early stages of development. 
However, if low myopia is not controlled, it can lead to high myopia and very serious blinding ocular complica-
tions, such as posterior scleral and macular degeneration, as well as a substantially higher chance of developing 
cataracts and  glaucoma30,31. The earlier the onset of myopia, the more likely the eye axial length will elongate, the 
faster myopia will progress, and the higher the final  diopter32. This paper can quantitatively predict the children’s 
and adolescents’ SE within two and a half years, and help to identify the progression of myopia earlier so that 
targeted interventions and corrective measures can be taken. This is of great significance for the prevention and 
control of myopia.

As the development of myopia is affected by a number of complex factors, such as heredity, environment, and 
 behaviors33,34, to achieve accurate myopia predictions is challenging. Deep learning is able to infer new features 
from the limited sets of features contained in the training set, while avoiding complex feature engineering. This 
paper applied T-LSTM to captured the temporal features in irregularly sampled time series, which is more in 
line with the characteristics of real data and thus has higher applicability.

Discussion
To the best of our knowledge, only a very small number of studies include quantitative predictions of future 
visual acuity. Among them, Lin et al.13 achieved quantitative prediction of future SE in a study of nearly 130,000 
people in Guangdong, China, 2018, where the MAE for 1 to 8-year SE prediction ranges from 0.253 to 0.799. 
This paper achieves higher prediction accuracy on a smaller dataset. In usual vision records, the uneven distri-
bution of time intervals between historical records and the variable lengths of records make the utilization of 
temporal information very difficult for traditional methods. The proposed T-LSTM model is capable to handle 
data of indefinite sequence lengths, and can well capture temporal tendency by separately processing temporal 
features, even if the time intervals are irregular. This study can indicate the trend of refraction and visual acuity 
in the next two and a half years. The results are interesting not only for medical institutions to make statistics, 
but also for parents to see the level of vision loss more intuitively. In this way, it will guide guardians to take their 
children for timely myopia correction and early myopia prevention and control, which is more important and 
proactive than the post intervention by medical institutions and will contribute to the prevention and control of 
early myopia in children and adolescents.

The current study has some limitations. Firstly, This is a short follow-up period to analyze via T-LSTM. How-
ever, the visual test datasets with long time periods are rare and the current dataset is hard-won. In addition, even 
with the short period, the T-LSTM show remarkable advantage compared with other benchmark methods, and 
even the standard LSTM outperforms the linear regression. Secondly, the sample area is concentrated, and thus 
the representation is insufficient. Thirdly, the depth of longitudinal data still needs to be enhanced. Fourthly, 
myopia progression is related to many factors. For example, Juntae et al.35 have found that retinal factors also 
contribute to myopic progression. However, our dataset only contains visual screening records and fundus images 
was not available in this study. Multimodal learning involving both fundus images and screening records may 
further improve the prediction accuracy.

Data availability
The data that support the findings of this study are available from Eye See Inc. but restrictions apply to the avail-
ability of these data, which were used under license for the current study, and so are not publicly available. Data 
are however available from the authors upon reasonable request and with permission of Eye See Inc.
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