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Analysis of cardiac single‑cell 
RNA‑sequencing data can 
be improved by the use 
of artificial‑intelligence‑based tools
Thanh Nguyen 1, Yuhua Wei 1, Yuji Nakada 1, Jake Y. Chen 3, Yang Zhou 1, Gregory Walcott 2 & 
Jianyi Zhang 1,2,4*

Single‑cell RNA sequencing (scRNAseq) enables researchers to identify and characterize populations 
and subpopulations of different cell types in hearts recovering from myocardial infarction (MI) by 
characterizing the transcriptomes in thousands of individual cells. However, the effectiveness of 
the currently available tools for processing and interpreting these immense datasets is limited. We 
incorporated three Artificial Intelligence (AI) techniques into a toolkit for evaluating scRNAseq data: 
AI Autoencoding separates data from different cell types and subpopulations of cell types (cluster 
analysis); AI Sparse Modeling identifies genes and signaling mechanisms that are differentially 
activated between subpopulations (pathway/gene set enrichment analysis), and AI Semisupervised 
Learning tracks the transformation of cells from one subpopulation into another (trajectory analysis). 
Autoencoding was often used in data denoising; yet, in our pipeline, Autoencoding was exclusively 
used for cell embedding and clustering. The performance of our AI scRNAseq toolkit and other 
highly cited non‑AI tools was evaluated with three scRNAseq datasets obtained from the Gene 
Expression Omnibus database. Autoencoder was the only tool to identify differences between the 
cardiomyocyte subpopulations found in mice that underwent MI or sham‑MI surgery on postnatal 
day (P) 1. Statistically significant differences between cardiomyocytes from P1‑MI mice and mice that 
underwent MI on P8 were identified for six cell‑cycle phases and five signaling pathways when the 
data were analyzed via Sparse Modeling, compared to just one cell‑cycle phase and one pathway when 
the data were analyzed with non‑AI techniques. Only Semisupervised Learning detected trajectories 
between the predominant cardiomyocyte clusters in hearts collected on P28 from pigs that underwent 
apical resection (AR) on P1, and on P30 from pigs that underwent AR on P1 and MI on P28. In another 
dataset, the pig scRNAseq data were collected after the injection of CCND2‑overexpression Human‑
induced Pluripotent Stem Cell‑derived cardiomyocytes (CCND2hiPSC) into injured P28 pig heart; only the 
AI‑based technique could demonstrate that the host cardiomyocytes increase proliferating by through 
the HIPPO/YAP and MAPK signaling pathways. For the cluster, pathway/gene set enrichment, and 
trajectory analysis of scRNAseq datasets generated from studies of myocardial regeneration in 
mice and pigs, our AI‑based toolkit identified results that non‑AI techniques did not discover. These 
different results were validated and were important in explaining myocardial regeneration.

Cardiomyocytes comprise most of the cardiac  mass1 but are among the least proliferative cells in adult  mammals2; 
thus, cardiac disease or injury frequently progresses to heart failure because the heart cannot regenerate dam-
aged myocardial  tissue3. However, cardiomyocytes are robustly proliferative during the fetal  development4–7, and 
when myocardial infarction (MI) was induced on postnatal day (P) 1 in newborn piglets, the animals recovered 
completely by P30 with no decline in contractile performance and negligible myocardial  scarring6. Furthermore, 
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although this residual fetal/neonatal capacity for cardiomyocyte proliferation is normally lost by postnatal day 
2–3 (P2-P3), cardiomyocytes in pigs that underwent apical resection surgery (AR) on P1 retained a latent 
capacity of the active cardiomyocyte cell cycle for at least four weeks afterward. They completely regenerated the 
myocardial tissue that was lost to secondary acute myocardial infarction to a left anterior descending coronary 
artery (LAD) occlusion on  P288,9. Collectively, these observations suggest that a thorough characterization of 
how cardiomyocyte gene expression changes in response to AR on P1  (ARP1), MI on P28  (MIP28), or both  ARP1 
and  MIP28 could provide key insights into the mechanisms that govern cardiomyocyte proliferation and how 
they may be manipulated to improve recovery from myocardial  disease3,10–12.

The heart is composed of numerous cell types, and individual cells within a single lineage likely respond dif-
ferently to myocardial injury. High-throughput single-cell RNA sequencing (scRNAseq) can accommodate this 
heterogeneity by enabling researchers to characterize the transcriptomes for thousands of individual cells, but 
the dimensionality of the resulting dataset is immense. Furthermore, even in regenerating hearts that responded 
to myocardial injury, only a very small proportion of cardiomyocytes are proliferating at any given time point. 
In contrast, others are likely apoptotic or hypertrophic, and individual cardiomyocytes can transition from one 
subpopulation to another over time. Thus, adequate interpretation of an scRNAseq  dataset9,13–18 requires the 
application of bioinformatics tools that can (1) separate data from different cell types and subpopulations of cell 
types (i.e., "cluster" analysis)19, (2) identify which genes and signaling mechanisms are differentially activated 
between subpopulations (i.e., "pathway/gene set enrichment" analysis)20–23, and (3) track the transformation of 
cells from one subpopulation into another (i.e., "trajectory" analysis)24–27.

When scRNAseq data from studies conducted in a pig cardiac double-injury  (ARP1 followed by  MIP28) model 
was processed with current state-of-the-art bioanalysis tools, ten distinct cardiomyocyte subpopulations were 
identified, one of which reverted to a more perinatal-like phenotype characterized by increases in cell-cycle 
activity and  proliferation9; however, the regulatory molecules and signaling pathways responsible for activating 
cardiomyocyte proliferation could not be identified. Thus, we have constructed a bioinformatics toolkit incorpo-
rating several techniques from the field of Artificial Intelligence (AI)28 and then tested it with scRNAseq datasets 
obtained from the Gene Expression Omnibus (GEO) database and one obtained from the Human Heart Cell 
 Atlas17. The results presented in this report suggest that our AI-based approach was more effective than other 
highly cited non-AI bioinformatics techniques for processing and interpreting scRNAseq data.

Methods
scRNAseq datasets. The scRNAseq analytic techniques were tested with datasets obtained from studies 
conducted in mouse (GEO dataset number GSE130699)14 and pig (GEO dataset number GSE185289)9 models of 
myocardial infarction (MI). Mice underwent MI induction surgery on P1 or P8 (P1-MI or P8-M1, respectively) 
or Sham surgery on P1 or P8 (P1-Sham or P8-Sham, respectively), and cardiac tissues were collected 1 (D1) or 
3 (D3) days later (Table 1). Data were analyzed for a total of 31,586 cells, including cardiomyocytes, endothelial 
cells, fibroblasts, and immune cells. Pigs underwent  ARP1,  MIP28, both  ARP1 and  MIP28  (ARP1MIP28), or neither 
surgical procedure (CTL). Tissues were collected from the border zone of the infarcted  MIP28 and  ARP1MIP28 
animals on P30, P35, P42, and P56, or from the corresponding region of hearts in  ARP1 and CTL animals on P28 
and P56. Tissues were also collected from CTL animals on P1 and from fetal pig hearts. Data were analyzed for 
a total of 250,700 pig cells, including cardiomyocytes, smooth muscle cells, endothelial cells, fibroblasts, skeletal 
muscle cells, and immune cells.

Third, we downloaded the scRNAseq data from the Heat Cell  Atlas17 (https:// www. heart cella tlas. org/), which 
is publicly available at the European Nucleotide Archieve accession number PRJEB39602. The dataset contained 
486,134 cells, was divided into 154 samples, and was collected from 14 donors with unremarkable cardiovascular 
 history17. For each donor, cells from the left ventricle, right ventricle, left atrial, right atrial, and apex regions 
were obtained. There are five cell lineages in the dataset: cardiomyocyte (ventricular and atrial cardiomyocyte), 
vascular compartment (endothelial cell, smooth muscle cell, and pericyte), immune cells (monocyte-macrophage 
and lymphocyte), fibroblast, and neuronal (also called glial) cell.

Forth, in our previous  work29, after CCND2hiPSC were injected into the MI injury model on postnatal day P28, 
the pigs’ cardiomyocytes increased proliferation. This was confirmed by counting the proportion of cardiomyo-
cytes expressing cytokinesis-exclusive marker Aurora Kinase B (AURKB). In this work, we repeated the same 
experiment on two ischemic reperfusions (IR) on P28 pigs  (IRP28). One pig was sacrificed one week, and the 

Table 1.  Mouse scRNA dataset (GSE130699)14.

Sample ID Postnatal day of MI or Sham surgery
Postnatal day of cardiac tissue 
collection Proliferative capacity Number of cells

P1-MI-D1 1 2 Strong 3209

P1-MI-D3 1 4 Strong 2694

P8-MI-D1 8 9 Weak 3801

P8-MI-D3 8 11 Weak 4795

P1-Sham-D1 1 2 Moderate 2825

P1-Sham-D3 1 4 Weak 5740

P8-Sham-D1 8 9 Weak 4568

P8-Sham-D3 8 11 Weak 3954

https://www.heartcellatlas.org/
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other was sacrificed four weeks after the CCND2hiPSC injection. Also, we collected scRNAseq data in four pigs 
that underwent  IRP28 injury without treatment as a control group. The total number of cells in this CCND2hiPSC 
transplantation data is 34,451.

Computer hardware. Data analysis was performed on an in-house DELL Precision 5820 Tower worksta-
tion computer equipped with an  Intel® Core™ i9-10920X 12-core CPU, 256 GB of memory, an Nvidia Quadro 
RTX4000 8 GB GPU, a 12-TB hard drive, and the most recent (as of November 2021) versions of all software 
programs, including Anaconda version 3, R version 4.1.2, Python version 3.8, and Matlab version 2021b.

scRNAseq data integration and normalization. Data preprocessing, integration, and normaliza-
tion were completed via  Seurat30. Cells with fewer than 200 genes, fewer than 500 unique molecular identifiers 
(UMIs), more than 30,000 UMIs, or > 25% mitochondrial UMIs were omitted; the cutoff for mitochondrial genes 
was greater than the default setting (5%)31 because cardiomyocytes have an exceptionally high energy  demand32. 
Total expression was multiplied by a factor of 10,000 and log-transformed (base 2), and variations in the number 
of genes and UMI detected per cell were scaled via the ScaleData  function31 with vars.to.regress set to nUMI and 
nGenes. Normalization returned two gene-cell matrices: one in log scale, and the other the adjusted gene-cell 
count.

Selection of non‑AI techniques for comparative analyses. Non-AI tools for scRNAseq clustering 
(Table 2), pathway/gene set enrichment (Table 3), and trajectory analysis (Table 4) were selected from the online 
scRNA-Tools catalog (https:// www. scrna- tools. org/ tools), which tracked the use of 1027 scRNA-seq tools as of 
August  202133. Clustering tools were filtered with the "Clustering" tag, pathway/gene set tools were filtered with 
the "Gene Sets" tag, and trajectory analysis tools were filtered with the "Ordering" tag. Then the filtering tools 
were ranked from the highest to the lowest number of citations. The five (clustering), three (pathway/geneset), 
and two (trajectory analysis) most highly cited tools that could be successfully installed on our workstation and 
did not produce technical errors when processing 31,586 mouse and 250,700 pig cells were chosen for compara-
tive analyses. scRNAseq data were normalized via  Seurat30 before clustering, and for tools that did not include 

Table 2.  Non-AI scRNAseq clustering tools.

Technique name Version Software platforms # citations Tutorial website

Seurat30 4.0 R 10,670 https:// satij alab. org/ seurat/ artic les/ pbmc3k_ tutor ial. html

Scanpy75 Python 1579 https:// scanpy- tutor ials. readt hedocs. io/ en/ latest/ pbmc3k. html

RaceID98 3.0 R 1127 https:// cran.r- proje ct. org/ web/ packa ges/ RaceID/ vigne ttes/ RaceID. 
html

SC399 R 743 http:// bioco nduct or. org/ packa ges/ relea se/ bioc/ manua ls/ SC3/ man/ 
SC3. pdf

CIDR100 R 248 https:// github. com/ VCCRI/ CIDR

scDHA35 R https:// github. com/ duct3 17/ scDHA

ssCCES37 R https:// github. com/ gedcom/ scCCE SS

DCA36 Python https:// scanpy. readt hedocs. io/ en/ stable/ gener ated/ scanpy. exter nal. pp. 
dca. html

Table 3.  Non-AI pathway/geneset enrichment analysis tools.

Technique name Version Software platforms # citations Tutorial website

Seurat30 Ranksum 4.0 R,  DAVID34 10,670 https:// satij alab. org/ seurat/ refer ence/ finda llmar kersl

Seurat30 MAST 4.0 R,  DAVID34 10,670 https:// satij alab. org/ seurat/ refer ence/ finda llmar kers

Seurat30 NegBinom 4.0 R,  DAVID34 10,670 https:// satij alab. org/ seurat/ refer ence/ finda llmar kers

singleseqgset101 R 104 https:// arc85. github. io/ singl eseqg set/ artic les/ singl eseqg set. html

ssGSEA78 R 13 https:// ncbor cherd ing. github. io/ vigne ttes/ escape_ vigne tte. html

GSEA20 4.3.2 35,629 https:// www. gsea- msigdb. org/ gsea/ doc/ GSEAU serGu ideFr ame. html

Table 4.  Non-AI scRNAseq trajectory analysis tools.

Technique name Version Software platforms # citations Tutorial website

Monocle25 3.0 R 4148 http:// cole- trapn ell- lab. github. io/ monoc le- relea se/ docs/# const ructi ng- single- cell- traje ctori es

PAGA 27 Python 1579 https:// scanpy- tutor ials. readt hedocs. io/ en/ latest/ paga- paul15. html# Recon struc ting- gene- chang es- along- PAGA- 
paths- for-a- given- set- of- genes

https://www.scrna-tools.org/tools
https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html
https://cran.r-project.org/web/packages/RaceID/vignettes/RaceID.html
https://cran.r-project.org/web/packages/RaceID/vignettes/RaceID.html
http://bioconductor.org/packages/release/bioc/manuals/SC3/man/SC3.pdf
http://bioconductor.org/packages/release/bioc/manuals/SC3/man/SC3.pdf
https://github.com/VCCRI/CIDR
https://github.com/duct317/scDHA
https://github.com/gedcom/scCCESS
https://scanpy.readthedocs.io/en/stable/generated/scanpy.external.pp.dca.html
https://scanpy.readthedocs.io/en/stable/generated/scanpy.external.pp.dca.html
https://satijalab.org/seurat/reference/findallmarkersl
https://satijalab.org/seurat/reference/findallmarkers
https://satijalab.org/seurat/reference/findallmarkers
https://arc85.github.io/singleseqgset/articles/singleseqgset.html
https://ncborcherding.github.io/vignettes/escape_vignette.html
https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideFrame.html
http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories
https://scanpy-tutorials.readthedocs.io/en/latest/paga-paul15.html#Reconstructing-gene-changes-along-PAGA-paths-for-a-given-set-of-genes
https://scanpy-tutorials.readthedocs.io/en/latest/paga-paul15.html#Reconstructing-gene-changes-along-PAGA-paths-for-a-given-set-of-genes
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an embedding step (RaceID, SC3, and CIDR), embedding was also performed via Seurat. Pathway/gene set and 
trajectory tools were implemented in Monocle combination with  Seurat30, and the lists of differentially expressed 
genes were analyzed with the DAVID functional annotation  tool34 to determine which pathways and gene sets 
were upregulated.

Besides, we chose three recently-published tools: single-cell Decomposition using Hierarchical Autoencoder 
(scDHA)35, deep count  autoencoder36 (DCA), and  scCCESS37. In these tools, the Autoencoder was primarily 
for denoising the scRNAseq data, which may improve the cell clustering results. Therefore, these tools would be 
absent from the functional annotation analysis.

We also tried Geneset Enrichment Analysis (GSEA)20, a well-known pathway/geneset analysis but not built 
for scRNAseq data, via an ad-hoc experiment as follows. For each sample in the mouse  dataset14, the average gene 
expressions over all cells were computed; then, these average expressions were treated as a ‘bulk-like’ expression. 
8 samples were divided into ‘regenerative’ and ‘non-regenerative’ groups according to  to14. In the pig dataset, 
the number of samples per group is small (between 1 and 3); therefore, synthetic sample data were created by 
randomly selecting 5000 cells from the same original sample. Then, the average gene expressions over all cells 
were calculated, being treated as a ’bulk-like’ sample. The group for synthetic samples was the same as the original 
sample. After preparing the ‘bulk-like’ data, the GSEA software and the MSigDB v2022.138 was used to analyze 
the enriched pathways. GSEA software parameters were set by it default: number of permutations = 1000, metric 
to ranking genes = Signal2Noise, Maxsize: exclude larger set = 500, and Minsize: exclude smaller set = 15. The 
software will determine the enriched pathway; and if so, it will plot the pathway enrichment curve.

Comparing methods evaluation. To evaluate the embedding and clustering performance between our 
proposed Autoencoder and other state-of-the-art techniques, the mouse heart scRNASeq  data14 was used. These 
methods were applied to (i) visualize and isolate cardiomyocytes and (ii) recall two important mouse ’CM4’ 
and CM5’ cardiomyocyte subsets as reported in  reference14 if (i) is successful.  In14, cluster ’CM4’ was explicit 
among regenerative and neonatal hearts: P1-MI-D1, P1-MI-D3, and P2-Sham. CM4 highly upregulated imma-
ture and cell-cycle markers Troponin I1 slow skeletal type (Tnni1), Ki-67 (Mki67) and Cyclin B1 (Ccnb1). CM5 
was explicit among non-regenerative hearts: P8-MI-D1 and P8-MI-D3. CM5 highly upregulated hypertrophic 
marker Xin Actin-Binding Repeat Containing 2 (Xirp2) and cell adhesion marker Cd44. These markers were 
already validated using immunohistochemistry in  reference14. Besides, the embedding and clustering results 
were evaluated in the much-larger human cardiac scRNAseq  atlas17. Here, the tools were expected to replicate 
the identification of the major cardiac cell type clusters as  in17:

• Ventricular cardiomyocytes were marked by clusters strongly expressing Titin (TTN), Cardiac Type Troponin 
T2 (TNNT2), Ryanodine Receptor 2 (RYR2), Myosin Heavy Chain 7 (MYH7), Myosin Light Chain 2 (MYL2), 
and Iroquois Homeobox 3 (IRX3).

• Atrial cardiomyocytes were marked by clusters strongly expressing TTN, TNNT2, RYR2, and Hepcidin 
Antimicrobial Peptide (HAMP).

• Cardiac endothelial cells were marked by clusters strongly expressing Cadherin 5 (CDH5), Platelet And 
Endothelial Cell Adhesion Molecule 1 (PECAM1), and Von Willebrand Factor (VWF).

• Cardiac pericytes were marked by clusters strongly expressing ATP Binding Cassette Subfamily C Member 
9 (ABCC9) and Potassium Inwardly Rectifying Channel Subfamily J Member 8 (KCNJ8).

• Cardiac smooth muscle cells were marked by clusters strongly expressing Transgelin (TAGLN) and Smooth 
Muscle Actin Alpha 2 (ACTA2).

• The monocyte-macrophages were marked by clusters strongly expressing Macrophage-Associated Antigen 
CD163 and Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE1).

• The lymphocytes were marked by clusters strongly expressing CD3 Epsilon Subunit Of T-Cell Receptor Com-
plex (CD3E), CD3 Gamma Subunit Of T-Cell Receptor Complex (CD3G), and T-Cell Surface Glycoprotein 
CD8 Alpha Chain (CD8A).

• Cardiac fibroblasts were marked by clusters strongly expressing Decorin (DCN), Gelsolin (GSN), and Platelet 
Derived Growth Factor Receptor Alpha (PDGFRA).

• And the neuronal (glial) cells were marked by clusters strongly expressing Neurexin 1 (NRXN1), Neurexin 3 
(NRXN3), and Potassium Calcium-Activated Channel Subfamily M Regulatory Beta Subunit 4 (KCNMB4).

The performances of the pathway/gene set enrichment analysis techniques were evaluated by assessing 
whether they recalled the upregulation of cell cycles among the P1-MI-D1 and P1-MI-D3 cells in  reference14. 
Besides, we examined whether the techniques could demonstrate the upregulation of MAPK, HIPPO, cAMP, 
JAK-STAT, and RAS, which were upregulated in P1-MI mammals and validated in  reference39. The statistical 
p-values of less than  10–2 were reported for statistical significance. Both the p-values and enrichment fold-changes 
were reported.

In the pig scRNAseq experiment, the technical performances were evaluated by reproducing the cardio-
myocyte subpopulations that were validated in  reference40. Briefly, a cardiomyocyte subpopulation, denoted 
’CM1’ (6537 cells), which was exclusive to the regenerative heart, was found. CM1 highly expressed proliferative 
regulators T-Box Transcription Factor 5 (TBX5) & T-Box Transcription Factor 20 (TBX20), Receptor tyrosine-
protein kinase erbB-4 (ERBB4), and GRK5. Following the myocardial infarction on postnatal day P28, CM1 
may primarily transit into two cardiomyocyte clusters, denoted ’CM2’ and CM10’.

Analyzing pigs’ cardiomyocytes with AI‑based techniques when CCND2hiPSC was injected into 
the injured heart. We combine CCND2hiPSC-inject scRNAseq data with our previous embryonic, naïve, and 
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MIp28-only scRNAseq data. This dataset was large and complex; therefore, multiple Autoencoder were built as 
follow:

• First, in the CCND2hiPSC transplantation, an Autoencoder was built using the combined graft (hiPSC) and 
host (pig) cells. The original scRNAseq data were mapped to the combined human and pig reference genomes 
(GRCh38 and Sscrofa11.1) to quantify both human mRNA and pig mRNA. The Autoencoder and Uniform 
Manifold Approximation and Projection (UMAP)41,42 identified clusters where the count of human mRNA 
was significantly (tenfolds and more) than the count of pig mRNA; these clusters were human cells. Other 
clusters were pig cells.

• Second, after separating the pig cells from the human cells, the pig scRNAseq data were re-mapped and 
quantified only via the pig reference genome Sscrofa11.1. Another Autoencoder was built to cluster the pig 
cell types into cardiomyocytes, fibroblasts, endothelial cells, immune cells, and smooth muscle cells. Clusters 
explicitly expressing cardiomyocyte markers (ACTCT, MYH7, and RYR2) were separated (Supplemental 
Fig. 1).

• Third, the pig cardiomyocyte clusters in step 2 were combined, and this data was used to build another 
Autoencoder to cluster only cardiomyocytes (Supplemental Fig. 2).

After clustering the pig’s cardiomyocytes, similar  to40, the AI-based sparse support vector technique (sparse 
model) was applied to quantify cell-cycle phases and proliferative-supporting signaling pathways, including 
MAPK and HIPPO/YAP signaling. Here, Fetal cardiomyocytes were chosen as ’positive,’ and CTL-P56 cardio-
myocyte was chosen as ’negative’ cells for computing the sparse model. We also applied other pathway & gene 
ontology enrichment analysis methods in Table 3 to identify which pathways were upregulated in the CCND2hiPSC 
transplanted cardiomyocytes, compared to the control MIp28-only ones, on postnatal day 35 (7 days after the 
myocardial infarction injury).

We demonstrate the approach to separate the human cell from the pig cells by the following experiment. We 
used the raw SC sequencing data from two samples: one pig heart generated by our  lab18, and the human-induced 
pluripotent stem cells (iPSC) from ArrayExpress, number E-MTAB-668719. These data were mapped to the ’draft’ 
pig Sscrofa10.220 and the published human GRch38 genomes (http:// www. ncbi. nlm. nih. gov/ assem bly/ GCF_ 
00000 1405. 39/) using 10X Genomics CellRanger software version 3.124. From CellRanger summary, it is clear that 
the pig transcripts can only be mapped to the pig genome (pig genome: 92.6%, human genome: 3.6%); meanwhile, 
the human transcripts can only be mapped to the human genome (pig genome: 28.2%, human genome: 95.6%). 
Also, we combined the human and pig  housekeeping25 gene expression matrices from CellRanger and plot the 
cell clusters using  UMAP26. Clearly, the human cells are completely separated from the pig cells in Supplemental 
Fig. 11. For pig cells, the ratio between map-to-pig-genome transcripts and map-to-human-genome is greater 
than 5 for all cells; meanwhile, this ratio is between 0 and 1 for all human cells.

Besides, since the proportion of cytokinesis cardiomyocytes is very  low29, cells highly expressing cytokinesis-
exclusive genes were counted to quantify and compare cytokinesis activity. The cytokinesis-exclusive gene list 
was chosen as follows. First, we obtained the gene participating in the cytokinetic process from Gene Ontology 
(GO) number GO:003250643. Each gene may participate in more than one process described by GO terms. 
Therefore, for each gene in GO:0032506, we counted the number of cytokinesis-subprocess GO terms and non-
cytokinesis terms, then calculated the ratio between these two numbers. Then, genes having this ratio of 0.9 or 
less were filtered out (Supplemental Table 1). Only AlkB Homolog 4, Lysine Demethylase (ALKBH4), Anillin, 
Actin Binding Protein (ANLN), Aurora Kinase B (AURKB), Centrobin- Centriole Duplication And Spindle 
Assembly Protein (CNTROB), and Kelch Domain Containing 8B (KLHDC8B) were considered cytokinetic-
specific genes. Cardiomyocytes expressing at least 3 among these 5 genes in the scRNAseq data were considered 
cytokinetic cardiomyocytes.

Results
After data integration and normalization, the scRNAseq analytic pipeline begins with two levels of embedding 
and clustering (Fig. 1A). The first level separates cardiomyocyte scRNAseq data from the data for other cell 
types, and the second level divides cardiomyocytes into subpopulations. Once the subpopulations are identi-
fied, pathway and gene set enrichment analysis is conducted to determine which cellular processes are up- or 
downregulated among the subpopulations, and trajectory analysis is conducted to determine whether one cell 
population may evolve into another over time and, if so, to identify genes that may trigger the transition between 
subpopulations.

AI Autoencoder identified all major cardiac cell types in cluster analysis of scRNAseq data from 
mouse hearts, while non‑AI techniques did not. Autoencoder44 is an AI technique that can synthesize 
and embed neural-network  data45,46. It comprises at least three layers—an input layer, consisting of the original 
high-dimensional dataset, a central embedded layer with fewer dimensions, and a synthetic output layer whose 
dimensionality is equivalent to the input layer (Fig. 1B). Data from the input layer is alternately compacted into 
the embedded layer and then expanded to form the synthetic layer, and the computing sequence is optimized by 
minimizing the following function:

(1)E =
1

N

N
∑

i

N
∑

j

(

xi − yj
)2

+ 0.001�W�2 + Q

http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
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where N denotes the number of datapoints, xi denotes an arbitrary input data point, yj denotes an arbitrary 
synthetic datapoint, ||W||2 represents the regularization of Autoencoder weights, and Q represents the sparsity 
 parameters47. After optimization, the output layer matches the input layer with maximum fidelity, and the embed-
ded layer is considered an accurate low-dimensional representation of the input data.

Autoencoding can require a prohibitively large amount of computer  memory35,36,48, which has prompted some 
researchers to reduce the dimensionality of the input data before the autoencoding procedure is initiated by 
(for example) including additional intermediate layers between the input and central layers and the central and 
output layers. However, the transcriptional heterogeneity of cardiac cells is  high49–51 and likely further increased 
by the physiological changes that occur in response to cardiac injury. Thus, since reducing the dimensionality of 
the input data could mask this complexity, our AI Autoencoder retained the simple three-layered architecture, 
and the input layer was limited to genes with at least 1000 UMIs, yielding a dimensionality of 10,811 and 14,753 
genes for the mouse and pig scRNA-seq datasets, respectively.

After AI Autoencoding, mouse data was visualized in two dimensions via Uniform Manifold Approximation 
(UMAP)41,42, the cells were clustered with the density-based clustering (dbscan)52,53 algorithm, and cell-type 
identity was determined via the expression of canonical markers for cardiomyocytes (Myh7, Ryr214), fibroblasts 
(Col1a1, Col1a254), endothelial cells (Pecam1, Kdr55), immune cells (Bin2 and Ifi3056), and smooth muscle cells 
(SM22 alpha—Tagln57). When compared with five other highly cited clustering techniques (Seurat, ScanPY, 
SC3, CIDR, and RaceID), only Autoencoder and Seurat effectively generated cell-type–specific clusters (Fig. 2, 
Supplemental Fig. 1), whereas both Myh7 and Ryr2 were consistently and almost exclusively expressed by cells 
in the cardiomyocyte cluster of UMAPs from AI-Autoencoded data, a small but appreciable number of cells in 
the ScanPY cardiomyocyte cluster failed to express at least one of the two myocyte markers. Substantial myocyte 
marker expression was observed in all cell-type clusters generated via Seurat. Regarding ScanPY, cells express-
ing Tagln are scattered, making it difficult to identify smooth muscle cells. The other methods either failed to 
identify any cell types (SC3, CIDR, RaceID, ssCCEES—Fig. 2D–F,H), showed large clusters where the major cell 
types were mixed (DCA), or missing smooth muscle cell (ScanPY, DCA, scDHA—Fig. 2C,G,I). Importantly, 
each cell-type cluster included cells from all injury groups and time points (Supplemental Fig. 2), confirming 
that sample preparation variations did not compromise our results.
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Figure 1.  An AI-based approach for processing and interpreting scRNAseq datasets. (A) The scRNAseq 
analytical pipeline is displayed as a flowchart with the data processing steps in arrows and the input and output 
data for each step displayed as cylinders. (B) The architecture of the AI Autoencoder is displayed as a schematic.
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Figure 2.  AI Autoencoder was more effective than non-AI tools for cluster analysis of scRNAseq data from 
mouse hearts. Cluster analysis of mouse heart scRNAseq data was conducted via (A) AI Autoencoder, (B) 
Seurat, (C) ScanPY, (D) SC3, (E) CIDR, (F) RaceID, (G) scDHA, (H) ssCCCEES or (I) DCA and (Column i) 
displayed via UMAP for identification of cell-type specific clusters. (Column ii) Myh7 and (Column iii) Ryr2 
expression was quantified across the corresponding UMAP and presented as a heat map.
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AI Autoencoder distinguished cardiomyocyte subpopulations and their markers in injured and 
uninjured mouse hearts, while non‑AI techniques missed important markers. The first pub-
lished  analysis14 of this mouse scRNAseq dataset identified five cardiomyocyte clusters (denoted CM1-CM5). 
One of the clusters (CM4) comprised > 20% of cardiomyocytes in animals that underwent MI or Sham surgery 
on P1, but just 4% in animals that underwent either procedure at P8, while a second cluster (CM5) was primarily 
observed in hearts that underwent MI rather than Sham surgery and was further enriched when MI induction 
was performed on P8. CM4 cardiomyocytes also appeared to re-enter the cell cycle after MI induction on P1 and 
expressed elevated levels of markers for cardiomyocyte immaturity (Tnni1), proliferation (Mki67), and cell-cycle 
activity (Ccnb1), while the hypertrophic marker Xirp2 and the cell-adhesion molecule Cd44 were upregulated in 
CM5 cardiomyocytes. Thus, cells in the CM4 cluster appeared to drive the regenerative response to MI induction 
on P1, while CM5 cardiomyocytes contributed to the adverse remodeling that occurred when MI was induced 
on P8.

AI Autoencoder largely replicated these results, but with even greater specificity for injury group and time 
point. Of the five AI-Autoencoder–identified cardiomyocyte subpopulations (AICMa-AICMe, Fig. 3Ai), AICMc 
comprised > 95% of cardiomyocytes in hearts from P1-MI-D1 and -D3 animals and 10–35% of cardiomyocytes in 
P1-Sham-D1/D3 animals but were largely absent in animals that underwent surgical procedure on P8. In contrast, 
the AICMd cluster included > 95% of cardiomyocytes in P8-MI-D1/D3 animals and no more than 5% from any 
other group or time point (Fig. 3Aii). Tnni1, Mki67, and Ccnb1 also tended to be upregulated in the AICMc cluster 
as well as in AICMb and AICMe cardiomyocytes (Fig. 3Aiii-v), which together comprised the majority of cardio-
myocytes in P1-Sham-D1/D3 hearts, while both Xirp2 and Cd44 were highly expressed in AICMd (Fig. 3Avi,vii). 
Seurat clustering also identified five cardiomyocyte subpopulations (SCMa-SCMe, Fig. 3Bi); however, the distribu-
tion of cardiomyocytes across the five clusters differed somewhat between P1- and P8-operated animals. It did 
not vary substantially between injury groups (Fig. 3Bii). For example, the SCMb cluster was enriched in both 
P1-MI-D1/D3 and P1-Sham-D1/D3 animals, where it included 30–50% of all cardiomyocytes compared to less 
than 10% in P8-MI- and P8-Sham-D1/D3 animals, while the SCMa cluster comprised a much larger proportion 
of cardiomyocytes in both P8-MI- and P8-Sham-D1/D3 hearts (> 85%) than in P1-operated hearts (30–55%). 
Furthermore, although SCMb cardiomyocytes were more common in the hearts of younger animals, they did 
not appear to express elevated levels of Mki67 or Ccnb1 (Fig. 3Biv-v). ScanPY, where DCA was co-executed, 
identified six cardiomyocyte clusters (ScPYCMa-ScPYCMf, Fig. 3Ci), two of which were found almost exclusively 
in P8-MI-D1/D3 (ScPYCMb) or P8-Sham-D1/D3 (ScPYCMa) hearts, where they comprised more than 80% of all 
cardiomyocytes. ScanPY also identified two clusters (ScPYCMc and ScPYCMd) that together comprised 75%-85% of 
cardiomyocytes in P1-MI or P1-Sham animals and were largely absent in animals that underwent either surgery 
on P8; however, the distribution of cardiomyocytes across clusters in P1-operated animals was largely similar, 
regardless of injury group (Fig. 3Cii), and neither ScPYCMc nor ScPYCMd cardiomyocytes displayed evidence of 
Mki67 upregulation (Fig. 3Civ). Collectively, these observations demonstrate the clear difference between the AI 
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Figure 3.  AI Autoencoder was more effective than non-AI tools for cluster analysis of cardiomyocyte 
scRNAseq data from mouse hearts. Cluster analysis of cardiomyocyte scRNAseq data was conducted via (A) 
AI Autoencoder (clusters AICMa-AICMe), (B) Seurat (cluster SCMa-SCMe), (C) ScanPY (clusters ScPYCMa-
ScPYCMf), or (D) scDHA (cluster scDHACMa-scDHACMc) and displayed via (Row i) UMAP for identification of 
cardiomyocyte subpopulations. (Row ii) The proportion of cardiomyocytes from each cluster is displayed for 
each injury group and time point. (Rows iii-vii) The expression of (iii) Tnni1, (iv) Mki67, (v) Ccnb1, (vi) Xirp2, 
and (vii) Cd44 was quantified for each cardiomyocyte cluster. Similarities between cluster labels are coincidental 
(e.g., clusters AICMa, SCMa, and ScPYCMa do not represent the same subpopulation). Expression data were 
normalized as in Seurat, briefly: the raw counts were logarithm (base 2) transformed and scaled according to the 
total of UMIs and detected genes per cell.
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Autoencoder and non-AI clustering techniques for identifying cardiomyocyte subpopulations associated with 
the regenerative response to MI induction in mouse hearts; furthermore, the AI Autoencoder clustering results 
demonstrated the upregulation of all cell-cycle markers, which were missed by non-AI techniques.

On the other hand, scDHA identified three cardiomyocyte clusters (scDHACMa-c). Cluster scDHACMc were 
more enriched among the regenerative groups PI-MI-D1/D3 (Fig. 3D-ii), co-upregulated cell cycle markers 
Tnni1, Mk67, Ccnb1 (Fig. 3D-iii-v), but also co-upregulated hypertrophy marker Xirp2 and Cd44 (Fig. 3D-vi-vii). 
Therefore, although scDHA, which also utilized Autoencoder, could identify a cardiomyocyte cluster strongly 
presented in the regenerative-heart groups, the method failed to differentiate whether this cluster demonstrated 
a proliferative response or a hypertrophic response.

AI sparse modeling identified cardiomyocytes with upregulated cell‑cycle and pathway activ‑
ity, whereas non‑AI techniques did not. Conventional techniques for pathway and gene set enrichment 
 analysis58 begin with a list of differentially expressed genes between cell populations and then infer which cel-
lular processes or pathways are up- or down-regulated between populations. In AI Sparse  Modeling59–62, these 
two steps are implemented in the reverse order, beginning with sets of genes that are known to participate in 
the process being studied and then determining whether these genes and their associated pathways are differen-
tially activated in the cells. Thus, whereas the conventional approach can only be applied to cell populations (or 
subpopulations), AI Sparse Modeling can be used to evaluate the data for an individual cell and extract relevant 
information from datasets containing a large number of variables that do not contribute to the property being 
studied. However, the technique requires designating predefined "positive" and "negative" cell groups, so since 
the proliferative activity of cardiomyocytes in neonatal mice declines precipitously during the first several days 
after birth, cardiomyocytes from P1-Sham-D1 (collected from 2-day-old mice) and P8-Sham-D3 animals (col-
lected from 11-day-old mice) were designated positive (i.e., proliferating) and negative (i.e., nonproliferating), 
respectively.

The sparse model estimates a score y for each cell expression data vector x via the linear formula:

x denotes the gene expression vector, w denotes the coefficient for each gene in a pathway or geneset, and the 
parameters w and b are computed by minimizing

subject to

where ǫi represents the accuracy of Eq. (2) when applied to cell i, with a smaller ǫi indicating greater accuracy. 
w and b were initially calculated for cardiomyocytes in the positive and negative groups, with y = 1 and y = − 1, 
respectively, and then used to calculate y (Eq. 2) for all other cardiomyocytes. Cells with y > 1 were categorized 
"high," cells with y < –1 were categorized "low," and cells with − 1 ≤ y ≤ 1 were categorized "middle." Thus, a 
"high" categorization (for example) indicated that the cell was more similar to P1-Sham-D1 than to P8-Sham-D3 
cardiomyocytes and, consequently, more likely to be proliferative.

Analyses were conducted for the cell-cycle  markers14 and genes associated with  MAPK63,  HIPPO64,  cAMP65, 
JAK-STAT 66, and  RAS67 signaling (Fig. 4A), which are known to be upregulated in the mammalian hearts that 
underwent MI on  P139. The AI Sparse Model identified statistically significant differences (P < 0.01) between 
cardiomyocytes from the Regenerative P1-MI-D1/D3 and Non-regenerative P8-MI-D1/D3 groups for all cell-
cycle phases and all signaling pathways. At the same time, only a single parameter differed significantly when the 
data were analyzed via Seurat MAST (G2-M phase transition) or Seurat Negbinom (cAMP signaling), and three 
other highly cited non-AI techniques (Wilcoxon Ranksum, Singleseqgset, and ssGSEA) failed to identify any 
significant differences between groups (Fig. 4B). Beside, GSEA (the data availability section) did not identify cell 
cycle and other signaling pathways. Overall, AI Sparse Modeling identified most of the previously-validated genes 
and pathways may be differentially activated in proliferating and non-proliferating cardiomyocytes; meanwhile, 
the non-AI techniques missed many of these genes and pathways.

AI semisupervised learning identified transformation among cardiomyocyte subpopulations, 
where non‑AI trajectory analysis did not. The pig scRNA-seq dataset analyzed for this report was 
generated in our double-injury model. Animals underwent  ARP1,  MIP28, both  ARP1 and  MIP28  (ARP1MIP28) or 
neither myocardial injury (CTL), and assessments conducted on P56 indicated that the hearts of animals in the 
 MIP28 group displayed significant fibrosis and declines in contractile activity,  ARP1MIP28 animals completely 
recovered with no evidence of myocardial scarring or loss of cardiac function. The complete cardiac scRNAseq 
dataset included data from  ARP1 animals on P28 and P56; from  MIP28 and  ARP1MIP28 animals on P30, P35, P42, 
and P56; from  ARP1MIP28 animals on P30, P35, P42, and P56; from CTL animals on P1, P28, and P56; and fetal 
pigs. AI Autoencoding identified 10 cardiomyocyte clusters (denoted CM1-CM10), one of which (CM1) com-
prised 62.91% of the cardiomyocytes present in  ARP1 hearts on P28 but was essentially absent in all other injury 
groups and at all other timepoints. In comparison, two other clusters (CM2 and CM10) collectively encompassed 
89.62% of cardiomyocytes in  ARP1MIP28 hearts on  P3040. Notably, CM1 cardiomyocytes were also enriched for 
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the expression of three genes  (TBX568,69,  TBX2070,71, and  ERBB472) that contribute to the proliferation of cardio-
myocytes in fetal and neonatal mouse hearts. Collectively, these observations suggest that AR on P1 preserved 
some neonatal-like proliferative capacity in a subpopulation of cardiomyocytes that subsequently formed the 
CM1 cluster, and that MI on P28 triggered this latent proliferative capacity, thereby driving the transformation 
of CM1 cardiomyocytes into either CM2 or CM10 cardiomyocytes.

Trajectory analysis via our AI Semisupervised learning  model73,74 tracks the transformation of one type of 
cell (e.g., CM1) into two other cell types (e.g., CM2 and CM10), via a procedure that is analogous to AI Sparse 
Modeling for pathway and geneset enrichment, with the two endpoints of the transformational trajectories serv-
ing as the predefined positive (CM2, y = 1) and negative (CM10, y = − 1) cells. The w coefficients and b parameters 
were initially computed by applying formulas 2–4 to the cells at the endpoints of the trajectories (CM2 and 
CM10) and then used to calculate y (via formula 2) for each cell at the beginning of the trajectory (CM1). CM1 
cells for which y > 0.1 were categorized as CM1→2, CM1 cells for which y < − 0.1 were categorized as CM1→10, 
and all other CM1 cells were categorized as inconclusive; then, CM2 cells were combined with CM1→2 cells 
(CM2 + 1→2), CM10 cells were combined with C1→10 cells (CM10 + 1→10), w and b were re-computed via 
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Figure 4.  AI Sparse Modeling was more effective than non-AI tools for pathway/gene set enrichment analysis 
of cardiomyocyte scRNAseq data from mouse hearts. (A) Sparse model scores for each cell-cycle phase and 
for the activity of the MAPK, HIPPO, cAMP, JAK-STAT, and RAS signaling pathways were summarized for 
cardiomyocytes from the indicated injury groups and time points and presented as violin plots. Statistical 
comparison between the P1-MI-D1/D3 (regenerative) and P8-MI-D1/D3 (non-regenerative), also between 
P2-Sham and P11-Sham, were done by non-parametric tests; *p-value < 0.01. (B) Cardiomyocytes from the 
P1-MI-D3 and P8-MI-D3 groups were scored for cell-cycle phase and pathway activity via AI Sparse Modeling, 
Wilcoxon Ranksum test, MAST, Negative Binomial (NegBino) test, Singleseqset, and ssGSEAP; then, the scores 
generated by each technique were compared between time points, and the P-values for each comparison was 
presented as a heat-map.
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formulas 2–4 with the combined cell populations serving as the predefined positive (CM2 + 1→2, y = 1) and 
negative (CM10 + 1→10, y = − 1) cell populations, y was recalculated for CM1 cells, and the procedure was 
repeated until the CM1→2, CM1→10, and inconclusive categories did not change. The results from our AI 
Semisupervised Learning  Model40 indicated that most (84.78%) CM1 cardiomyocytes would likely follow the 
CM1→2 trajectory, while the remainder (15.22%) followed the CM1→10  trajectory40.

The combined Seurat–Monocle pipeline (Fig. 5A–D) found 12 cardiomyocyte clusters (CMs1-CMs12). 
Among them, an ARp1-P28-exclusive CMs1 cardiomyocyte cluster co-upregulated TBX5, TBX20, ERBB4, and 
GRK5, Fetal-exclusive CMs8, CTL-P56-exclusive CMs5. However, this pipeline could not identify any cluster 
exclusive for CTL-P1 cardiomyocytes (Fig. 5C). Therefore, we replaced Seurat cluster  result40 by the AI cluster 
prior to Monocle. Although Monocle revealed a three-branch trajectory, none of the three branches were explicit 
for either CM1, CM2, or CM10 (Fig. 5D). Therefore, the combined Seurat-Monocle pipeline was unlikely to tell 
how the highly regenerative-potential ARp1-P28 cardiomyocytes evolved following MIp28 injury.

Meanwhile, ScanPY pipeline (Fig. 5E–H) resulted in 16 cardiomyocyte clusters (CMc1-CMc16). ScanPY 
UMAP visualization showed overlapping and ’breaking up’ cardiomyocyte clusters, such as CMc7 and CMc2 were 
visualized by multiple blocks. Still, ScanPY also found cluster CMc1 exclusive for ARp1-P28 and co-upregulated 
TBX5, TBX20, ERBB4, and GRK5. Cluster CMc2 only appeared in regenerative ARp1-P28, ARp1-P28-P30, and 
ARp1-P28 groups and upregulated the same markers to the AI-found cluster CM2. Also, exclusive clusters for 
Fetal (CMc8), CTL-P1 (CMc7), and CTL-P56 (CMc5 and CMc9) were founded. Cluster CMc10 covered the 
majority of injured-heart cardiomyocytes. However, the ScanPY trajectory result (Fig. 5H) did not show any 
clear trajectory among CMc1, CMc2, and CMc10.

AI‑based Autoencoder, Seurat, and ScanPY identified major cell types in the large human cell 
atlas dataset. Figure 6 visualizes the cell-clustering results among our AI-based Autoencoder (Fig. 6A), 
Seurat (Fig.  6B), and ScanPY (Fig.  6C) when analyzing 486,134 human cardiac cells. In these methods, the 
cardiomyocytes form a large, isolated cluster; furthermore, the separation between ventricular cardiomyocyte 
and atrial cardiomyocyte can be clearly seen. The cluster-to-cell-type assignment is consistent with the cell-type-
specific marker-expression localization (Supplemental Figs. 5, 6, 7, 8). Other methods listed in Table 2 failed to 
execute the large-scale (486,134 cells) human data and were absent from Fig. 6.

AI‑based Autoencoder outperforms PCA dimensional reduction in representing and restruc‑
turing the data. Due to a large number of genes (high dimension), most scRNAseq analytic pipelines per-
form dimensional reduction before clustering and embedding data. In  Seurat30 and  ScanPY75, Principal Compo-
nent Analysis (PCA) is used for dimensional reduction. In principle, the high-dimensional original scRNAseq 
data was transformed into lower-dimensional data. The lower dimensional data can reconstruct the original 
data; furthermore, good dimensional reduction should reconstruct the data similarly to the original ones. There-
fore, we compare the reconstructed-original data similarity:

In formula (5), xi denotes an arbitrary original cell, and yi denotes the reconstructed cell, which is computed 
from xi by the Autoencoder or PCA. Lower S implies more similarity. In Table 5, we compared reconstructed-
original data similarity between the Autoencoder, PCA (using all reduced features) and PCA2000 (using only 
the best 2000 reduced features as in Seurat) for each pig  heart40 (GEO database accession number GSE185289). 
Clearly, Autoencoder achieves a higher degree of similarity in all hearts except 8060_AZ, which means that 
the Autoencoder 10 embedded features represent the scRNAseq data more accurately than 2000 PCA features.

Different clustering algorithms can produce consistent cell type identification if using AI‑based 
Autoencoder embedded layer. Since our cell clustering approach involves on the Autoencoder embed-
ding, clustering algorithms, and visualization, it is interesting to examine whether the embedding primarily 
determine the clustering results. Therefore, we applied different clustering algorithms: the ’simple’ K-mean76, 
the  Louvain77, and density-based (dbscan)  algorithms52 to cluster our previous pig scRNAseq  data9,40 after the 
dataset was encoded (embedded) into just 10 dimensions. Visualizing the clustering results (Supplemental 
Fig. 9) using the UMAP and cell type markers from our previous  work40, it is interesting seeing that the K-mean 
clustering (K = 7, Supplemental Fig. 9A), Louvain (implemented according to https:// github. com/ GenLo uvain/ 
GenLo uvain, Supplemental Fig. 9B), and dbscan (implemented according to https:// www. mathw orks. com/ help/ 
stats/ dbscan. html with epsilon = 0.2 and minpts = 50, Supplemental Fig. 9C) show very consistent results. Fur-
thermore, these results were nearly identical to our previous report  in40, where dbscan were performed on the 
UMAP visualization instead of the embedding. Since very different clustering algorithms produced very similar 
results, the cell type identification in our pipeline is mostly determined by the embedding.

AI‑based techniques found increased pigs’ cardiomyocyte proliferation and upregulated 
HIPPO/YAP & MAPK signaling pathways 7 days after CCND2hiPSC injection. In Fig. 7, the percent-
age of cytokinetic cardiomyocytes is the highest in the fetal heart (2.55%), then it gradually decreases through 
CTL-P1 (1.30%), CTL-P28 (0.83%), and CTL-P56 (0.76%) cardiomyocytes. This decrease is consistent with 
the fact that wildtype cardiomyocyte proliferation gradually shutdowns 7 days after birth in  mammals4; it also 
validates our cytokinetic-specific markers and quantification method. Interestingly, the percentage of cytoki-
netic cardiomyocytes increases in CCND2hiPSC-IRP28-P35 (7 days after injection) to 1.30%, which is close to the 
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Figure 5.  AI semisupervised learning was more effective than non-AI tools for trajectory analysis of 
cardiomyocyte scRNAseq data from pig hearts (A) Seurat-Monocle pipeline UMAP plot visualizing 12 
cardiomyocyte clusters (CMs1-CMs12), where these clusters were identified by Seurat  pipeline30. (B) The 
proportion of cardiomyocytes from each cluster CMs1-CMs12 is displayed for each injury group and time 
point. (C) Summary of clusters resulting from the Seurat-Monocle pipeline that are: exclusive for ARp1-P28, 
Fetal, CTL-P1, CTL-P56, and co-upregulation of TBX5/TBX20/ERBB4/GRK5, which do not show any clusters 
explicit for ARP1-MIP28 cardiomyocytes on P30, P35, and P42. (D) Seurat-Monocle pipeline trajectory 
plot among CM1, CM2, and CM10, whereas CM1, CM2, and CM10 were defined  in40. (E) ScanPY pipeline 
UMAP plot visualizing 16 cardiomyocyte clusters (CMc1-CMc16) identified by ScanPY. (F) The proportion of 
cardiomyocytes from each cluster CMc1-CMc12 is displayed for each injury group and time point. (G) ScanPY 
pipeline, a summary of clusters that are: exclusive for ARp1-P28, Fetal, CTL-P1, CTL-P56, and co-upregulation 
of TBX5/TBX20/ERBB4/GRK5. (H) ScanPY pipeline trajectory plot among CM1, CM2, and CM10. For 
comparison, the figures for the AI-based method were available  at40.
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CTL-P1 level, then decreases to 0.96% on CCND2hiPSC-IRP28-P56. Meanwhile, this percentage does not increase 
in the control  MIP28-P35 heart (0.51%). Furthermore, the sparse model analysis showed that CCND2hiPSC-P35 
increased G2 to Mitosis and Mitosis cell cycle activities. Concurrently, HIPPO/YAP & MAPK signaling path-
ways, which are known to be associated with cardiomyocyte proliferation, were upregulated in CCND2hiPSC-P35 
compared to  MIP28-P35 cardiomyocytes. Furthermore, YAP1 expression in CCND2hiPSC-IRP28-P35 was elevated. 
Together, these results suggest that CCND2iPSC injection may communicate with and promote the hosts’ cardio-
myocyte proliferation through the HIPPO/YAP and MAPK pathways.

Meanwhile, Seurat-NegBino (Supplemental Fig. 10A) and Seruat-MAST (Supplemental Fig. 10B), which do 
not calculate the pathway enrichment for individual cells, analyzed differentially-expressed genes in CCND2hiPSC-
IRP28-P35 cardiomyocytes; they showed that these genes enrich TGF-beta and JAK-STAT signaling pathways. 
None of the cell-cycle biological processes were found enriched in these methods. On the other hand, our 
AI-based sparse model and  ssGSEA78 can compute the enrichment score in each cell. The sparse model analy-
sis shows that CCND2hiPSC-IRP28-P35 cardiomyocytes have higher scores for cell-cycle G1 to DNA synthesis 
(G1S)79, DNA synthesis (S)80, G2 to Mitosis (G2M)81, and cytokinesis stages (Supplemental Fig. 10C–F). Mean-
while, ssGSEA only shows that CCND2hiPSC-IRP28-P35 cardiomyocytes have higher enrichment score for G1S 
and cytokinesis stages (Supplemental Fig. 10C–F). In addition, the sparse model shows that CCND2hiPSC-IRP28-
P35 cardiomyocytes increase MAPK, HIPPO, and TGFβ signaling pathways; meanwhile, ssGSEA found that 
the CCND2hiPSC-IRP28-P35 cardiomyocyte enriched cAMP, RAS, and TGFβ signaling pathways (Supplemental 
Fig. 10G–L). Overall, the sparse model results showed the highest number of upregulated cell-cycle stages in 
CCND2hiPSC-IRP28-P35, and it was the only method identifying the HIPPO signaling pathway.

A) B) C)
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Figure 6.  Our proposed pipeline, Seurat, and ScanPY can analyze and identify all major cell types in the human 
heart cell atlas data. 2D plots visualize the cell clustering and cell-type in (A) AI-based Autoencoder (UMAP 
plot), (B) Seurat (UMAP plot), (C) ScanPY (ScanPY coordinate plot). V-CM (red): ventricular cardiomyocyte. 
A-CM (ligh red): atrial cardiomyocyte. EC (blue): endothelial cell. PC (cyan): pericyte. SMC (pink): smooth 
muscle cell. FB (green): fibroblast. Mono (yellow): monocyte and macrophage. Lympho (violet): lymphocyte, 
including T cells and natural killer cells. GLI (grey): neuronal (glial) cell.

Table 5.  Comparing reconstructed-original data similarity (S score) among Autoencoder, PCA2000 and PCA 
approach. The lowest S score (most reconstructed-original similarity) approach is bold-highlighted.

SampleID Autoencoder PCA 2000 PCA (all features)

7995_BZ 40.18 43.27 41.22

8014_BZ 40.16 44.13 42.44

8015_BZ 40.73 43.90 41.92

8026_BZ 40.71 42.97 41.04

8026_P1 41.29 47.40 45.25

8030_CZ 40.79 44.60 42.95

8046_BZ 40.21 44.99 43.72

8052_AZ 38.80 43.30 41.38

8060_AZ 42.98 40.04 37.72

8060_IZ 41.08 42.24 41.23

8064_AZ 39.27 45.88 44.18

8064_CZ 39.26 42.87 41.21

8094_AZ 40.70 44.36 41.96

8095_AZ 39.87 43.36 41.51

8095_BZ 39.99 42.52 40.84
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Discussion
The field of cardiovascular science has been actively generating scRNAseq  datasets82. The large-scale cardiac 
scRNAseq data (> 10,000 cells) first appeared in  201818, then massive-scale (> 200,000 cells)  datasets17 emerged, 
including our previous works  in9,40. In the field, the most important objective is to find cell-type subpopulations 
that are specific for the disease or phenotype and occur at specific time-windows. These subpopulations are  rare82; 
therefore, analyzing cardiac scRNAseq emphasizes the precision in detecting the rare subpopulations over the 
computing burden. In this report, two large-scale and two massive-scale scRNAseq datasets from mouse, pig, 
and human were analyzed and compared among the analytic pipelines. Our proposed pipeline rediscovered all 
phenotype (proliferation and hypertrophy) and timepoint-specific cardiomyocyte subpopulations that were 
validated in the previous  works9,14,40. Furthermore, the pipeline identified cardiomyocyte-proliferation regulators 
upregulated in the host (pig) cardiomyocytes when the engineered hiPSC-derived cardiomyocytes (graft) were 
transplanted into an injured heart model. These findings serve the most important objective of using scRNAseq 
data in cardiovascular science. The pipeline can be applied to analyze non-cardiac scRNAseq data, when detect-
ing ‘rare’ cell subpopulations and stages is the priority.

The fundamental goal of regenerative myocardial therapy is to replace the scarred region of infarcted hearts 
with functional contractile tissue. Many of the strategies that are currently under investigation involve the 

Figure 7.  Single-nuclei RNA sequencing shows that CCND2hiPSC-MI cardiomyocytes increase cycling and 
upregulated HIPPO/YAP & MAPK signaling pathways, especially 7 days after MI injury. (A) Percentage 
of cardiomyocytes highly expressing cytokinesis-specific genes AURKB, ALKBH4, ANLN, CNTROB, and 
KLHDC8B in each group. (B–D) Bar graphs: sparse analysis quantifies the G2M phase, HIPPO/YAP, and 
MAPK signaling pathways in each heart; here, the sparse model only used DNA synthesis genes to compute a 
’sparse model score’ for each cell such that the score optimally separates fetal from naïve-P56 cardiomyocytes; 
a higher score implies more active G2M, HIPPO/YAP and MAPK activities. Each dot is the percentage of 
cells having ’high model score’ in a heart. (E) Error bar: YAP1 average expression, which was per cell in each 
group; here, the raw counts were logarithm (base 2) transformed and scaled according to the total of UMIs and 
detected genes per cell by  Seurat30.
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delivery of cells or engineered tissues to the infarcted  region29,83–85; however, despite substantial advancements 
in both approaches, engraftment rates remain unacceptably low, and whether the transplanted cells adequately 
couple with the native myocardium has yet to be conclusively determined. Techniques for inducing the prolifera-
tion of endogenous cardiomyocytes alleviate both concerns because the engraftment process is no longer relevant, 
and coupling is likely to be more extensive between daughter cardiomyocytes generated via the division of a 
parent cell than between endogenous and transplanted cardiomyocytes. Thus, by generating a comprehensive 
list of molecules and signaling mechanisms that regulate myocardial regeneration, the AI scRNAseq toolkit 
presented here could develop a transformative approach to treating cardiac disease.

All three components of scRNAseq analysis (clustering, pathway/geneset enrichment, and trajectory analy-
sis) were executed more effectively when the data were processed via our AI scRNAseq toolkit than via non-AI 
techniques. AI Autoencoder was the only tool to identify substantial differences between the cardiomyocyte 
subpopulations that comprised P1-MI and P1-Sham mouse hearts on D3, especially the ones corresponding 
to proliferative and hypertrophic responses; statistically significant differences between cardiomyocytes from 
the P1-MI-D1/D3 and P8-MI-D1/D3 mouse groups were identified for six cell-cycle phases and five signaling 
pathways when the data were analyzed via AI Sparse Modeling, compared to a total of just one cell-cycle phase 
and one pathway when the data were analyzed via five non-AI techniques; and whereas the non-AI techniques 
failed to detect any potential transformational changes among the CM1, CM2, and CM10 clusters in pig hearts, 
AI Semisupervised Learning found two distinct subpopulations of the CM1 cluster that were primed to follow 
the CM1→2 and CM1→10 trajectories. Notably, ten other highly cited scRNAseq tools  (BackSPIN86,  SPADE87, 
RCA 88,  SIMLR89,  URD90,  SCope91, SNN-Cliq92,  TSCAN93,  SCDE94, and  Slingshot26) failed to complete the analy-
ses without generating technical errors, perhaps because they were likely developed and tested on datasets that 
were much smaller than those used in this report. Furthermore, our pipeline was the only one identifying the 
upregulation of the HIPPO signaling pathway, a critical cardiomyocyte proliferation  regulator95,96, among the 
host cardiomyocytes following a transplantation treatment, which directly explain the host cardiomyocyte pro-
liferation observed  in29. Thus, our AI-based approach is more effective than many non-AI scRNAseq tools for 
analyzing the immense datasets needed to accommodate the vast heterogeneity of cardiac cells—particularly 
cardiomyocytes—in the hearts of animals that are recovering from myocardial injury. However, to analyze the 
massive-scale dataset, our AI-based toolkit was implemented with proprietary software (Matlab) in the current 
study and required more than 50 GB of computer memory and approximately 24 h of processing time for a 
10,000-gene dataset, which limits its compatibility with standard lab computers. Methods to reduce the comput-
ing burden, including training the Autoencoder using a smaller (~ 3000 genes) but representative gene list and 
using transfer  learning97, will be examined in future works.

This work also reported the performance of other utilizing-Autoencoder  pipelines35–37 in analyzing cardiac 
scRNAseq data. In these pipelines, the primary task for Autoencoder is data denoising; meanwhile, in our 
pipeline, Autoencoder’s primary task is data embedding. Among them, ssCCES could identify cardiomyocyte 
subclusters, but failed to separate other cardiac cell types. Meanwhile, DCA, which was integrated into ScanPY, 
did not help ScanPY improve the cluster cell type identification step in the mouse dataset; rather, applying DCA 
resulted in clusters mixing multiple cell types (cardiomyocyte-mix-fibroblast and cardiomyocyte-mix-immune 
cells). On the other hand, while scDHA identified a cardiomyocyte cluster explicit for the regenerative-heart 
group (scDHACMc), this cluster upregulated both proliferative and hypertrophy markers; therefore, it was unable 
to separate proliferation from hypertrophy, which is a fundamental requirement in cardiac regeneration. These 
pipelines’ results suggest that although Autoencoder data denoising was effective in other non-cardiac scRNAseq 
data, its performance was very limited in cardiac scRNAseq data. One explanation for this failure is that cardio-
myocyte proliferation, marked by expression of AURKB and a few other genes, is a rare event. In our manuscript, 
counting from the single-cell data, the percentage of AURKB + cardiomyocytes is only at most 2–3%, which also 
means no more than 1.5% of the overall cardiac scRNAseq data. The small percentage of AURKB + cardiomyo-
cyte was also reported by other  works1,3. Due to the very small percentage, denosing methods may mistakenly 
consider these critical proliferating cardiomyocytes as ’noise’; therefore, they may miss important results about 
cardiomyocyte proliferation.

In conclusion, for the cluster, pathway/gene set enrichment, and trajectory analysis of scRNAseq datasets 
generated from studies of myocardial regeneration in mice and pigs, our AI-based toolkit identified results that 
non-AI techniques did not discover. These different results were validated and were important in explaining myo-
cardial regeneration. Ongoing work will adapt the toolkit for implementation with open-source software (e.g., R 
or Python) and improve the toolkit’s compatibility with standard laboratory computers by investigating methods 
for reducing dimensionality, such as the inclusion of intermediate layers in the AI Autoencoder architecture.

Data availability
The source codes for AI techniques are publicly available at https:// github. com/ thamn guy/ Cardi ac- single- cell- AI, 
with a detailed tutorial at https:// sites. uab. edu/ jayzh anglab/ produ cts/ ai- pipel ine/. A R-version replicate can be 
found at https:// sites. uab. edu/ jayzh anglab/ ai- pipel ine-r/. This work used the publicly available scRNAseq data at 
Gene Expression Omnibus accession numbers GSE130699 and GSE185289. The GSEA analysis result is available 
at https:// github. com/ thamn guy/ Cardi ac- single- cell- AI/ tree/ main/ GSEA% 20ana lysis. The new CCND2hiPSC-inject 
scRNAseq data will be publicly available when the manuscript is accepted for publication.
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