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A dynamically coherent pattern 
of rhythms that matches 
between distant species 
across the evolutionary scale
J. M. Kembro 1,2,3,9, A. G. Flesia 4,9, P. S. Nieto 5,9, J. M. Caliva 1, D. Lloyd 6, S. Cortassa 7 & 
M. A. Aon 7,8*

We address the temporal organization of circadian and ultradian rhythms, crucial for understanding 
biological timekeeping in behavior, physiology, metabolism, and alignment with geophysical time. 
Using a newly developed five-steps wavelet-based approach to analyze high-resolution time series 
of metabolism in yeast cultures and spontaneous movement, metabolism, and feeding behavior 
in mice, rats, and quails, we describe a dynamically coherent pattern of rhythms spanning over a 
broad range of temporal scales (hours to minutes). The dynamic pattern found shares key features 
among the four, evolutionary distant, species analyzed. Specifically, a branching appearance given 
by splitting periods from 24 h into 12 h, 8 h and below in mammalian and avian species, or from 14 h 
down to 0.07 h in yeast. Scale-free fluctuations with long-range correlations prevail below ~ 4 h. 
Synthetic time series modeling support a scenario of coexisting behavioral rhythms, with circadian 
and ultradian rhythms at the center of the emergent pattern observed.

Biological timekeeping associated with daily profound variations in, e.g., light, temperature, is crucial for adap-
tation and survival of living organisms. Circadian rhythms with a period of about a day were first described in 
1729 by the French astronomer de Mairan, and since then extensively studied and shown to be ubiquitous from 
protists to  humans1–5. The discovery of the molecular mechanisms by which organisms anticipate and adapt to 
daily environmental cues through clock genes that control circadian oscillations in cells and tissues, led to the 
2017 Nobel Prize in Physiology or  Medicine6. Ultradian rhythms with periods shorter than 24 h have also been 
reported in a broad variety of  organisms3,7,8 but the study of their origin and functional role lags far behind the 
dominant circadian research.

Frequency- and phase-coordination exists between different types of rhythms. Evidence suggests that signals 
from the suprachiasmatic nucleus (SCN) might synchronize in  avian9 and  mammalian2 (including humans) 
peripheral circadian  clocks10. In mammals, including humans, existing knowledge shows that both the liver clock 
and feeding rhythms are also required for temporal coordination and alignment of physiology and metabolism 
with geophysical  time11. Moreover, peripheral tissues can be directly entrained in response to environmental 
signals without the need for SCN  intervention12. For example, feeding cycles can entrain the liver independently 
of the SCN and the light  cycle13. Circadian gene expression in response to food-induced phase resetting has 
also been observed in cells from kidney, heart, and  pancreas14. In addition to 24 h transcriptional rhythms, the 
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liver and other tissues express ultradian rhythms with period lengths of 12, 8 and 6  h8,15,16. Specifically, recent 
studies have proposed that the mammalian 12-h rhythm is not only cell autonomous, but that can be linked to 
a dedicated “12-h clock”, separate from the circadian clock, that also functions to coordinate cellular stress with 
 metabolism7,17,18.

Biological systems are spatially and temporally distributed, built from a dynamic web of interconnected 
feedback loops marked by interdependence, pleiotropy, and  redundancy19. These features challenge our ability 
to extract fundamental quantitative information from their dynamics. For instance, frequency relations are 
observed between rhythms, with more frequent rhythms exhibiting frequencies that can be described by mul-
tiples of less frequent  ones20. A combination of different methods for detecting rhythms appears to be the most 
reliable  approach21–23 since the majority of the wide variety of methods employed for chronobiological analysis, 
e.g., Fourier, Autocorrelation, Extended cosinor, Maximum Entropy Spectral Analysis (MESA), Enright and 
Lomb–Scargle periodograms, eigenvalue/pencil method, multiple signal classification (MUSIC)24–28, all assume 
that the oscillatory processes under study are stationary (i.e. mean and variance does not change over time) while 
a priori information about their stationarity and the presence of noise in the time series is not always  possible29. 
Methodological approximations for quantification of irregular and or nonstationary rhythms have been studied 
through Singular Spectrum Analysis (SSA)22 as well as wavelet based  analysis21,30. For example, in non-stationary 
avian locomotion time series, wavelet analysis enabled unambiguous and highly sensitive detection of ultradian 
rhythms, even with short periods (< 1–2 h) on an individual animal level, while traditional analytical tools such 
as Power Spectrum and Enright’s based analyses exhibited limitations in their detection, notable for time scales 
below daily  rhythms23,31.

Given the evident multiplicity of existing rhythms, an important question concerns their coordination in 
distinct temporal domains. More precisely, how circadian and ultradian rhythms can be dynamically orches-
trated? It is difficult to overstate the importance of these questions, since rhythmic misalignment is linked to 
aging and  disease32–35 as well as their mechanistic underpinnings with physiology,  metabolism36 and  behavior31.

The living state can be understood as  homeodynamic37 rather than  homeostatic38, and non-linearity of func-
tional activities lead to an emergent plethora of oscillatory, rhythmic and timed  outputs37,39,40. Advanced signal 
processing analysis of experimentally obtained time series from self-synchronized Saccharomyces cerevisiae 
(yeast) continuous  culture41, mammalian cardiac  cells42,43, quail  locomotion23 and mice wheel  running21 have 
shown multi-oscillatory, dynamically functional patterns of behavior. These dynamic patterns hold over a broad 
range of temporal scales for at least 3 orders of magnitude: ~ 13 h–4 min in yeast (dissolved  O2 and  CO2)41,44, 
100 s–220 ms in cardiac muscle cells (mitochondrial membrane potential and NAD(P)H)42,44, 24 h–15 min in 
quails  locomotion21,23,31. However, none of these prior studies assessed coherence between rhythms associated 
with different biological processes operating at different time scales within the same model organism.

It is not surprising that important insights on multi-oscillatory dynamics were obtained from  yeast45–47. Most 
of our basic understanding of networks from central metabolism has come from research in this species since 
the nineteenth  century48,49. Although S. cerevisiae is evolutionarily separated by ~ 1.5 billion years from mam-
malian  cells50 and has about fivefold fewer genes that humans (51; reviewed in 52), it has provided fundamental 
understanding of molecular function, deficiencies, and disorders in mammals and other  species45–47. Despite the 
wide evolutionary time separation and number of genes, human gene orthologs are able to complement growth 
defects in nearly half of yeast genes (43%)53. Ease of gene replacement was best predicted by properties of specific 
gene modules (i.e., proteins in the same pathway or complex) rather than sequence similarity. This modularity 
of gene replacement suggests that ancestral essential genes are critically retained in pathway-specific manner 
and resilient to drift in sequence, further highlighting the usefulness of yeast as an experimental model in the 
understanding of basic biological  mechanisms53.

Previous comparative work between the dynamics of time series obtained from yeast and isolated cardiac cells 
data has been explored, detecting similarities between  them50. However, due to temporal span limitations regard-
ing data acquisition in cardiac cells, the study was limited to the milliseconds to few minutes time  span44. More 
recently, publicly available datasets offer the opportunity to not only compare long, high resolution, time series 
among evolutionarily distant species, but also coherence among distinct rhythms within species. These datasets 
include mice and rat time series from metabolic  cages54, activity and feeding behavior in C57BL/6  mice55,56 and 
the high-resolution locomotor, feeding and drinking time series from Japanese  quails23.

Herein, we address the general question of organization and coordination between rhythms at the organism 
level, by studying high resolution time series spanning broad temporal scales, from a few minutes to several 
days. Time series from living systems are predominantly nonstationary since they change over time, frequently 
in a rhythmic fashion, such as, e.g., animal physiology, metabolism, and behavior involving movement, feeding, 
mating or in synchronized cellular systems exhibiting oscillatory metabolic and gene expression  dynamics25. 
We utilize an advanced integrative methodological approach (GaMoSEC) for analyzing extensive time series 
obtained from evolutionarily distant species such as yeast (S. cerevisiae), mammal (Mus musculus, Rattus norvegi-
cus) and avian (Coturnix japonica). With our set of newly developed analytical tools based on wavelet  analyses21 
we explore, detect, identify and compare rhythms in the circadian and ultradian temporal domains. We found 
an overall emergent dynamic pattern of rhythms, shared amongst the evolutionarily distant species studied, 
and both in mammalian and avian instances circadian and ultradian temporal domains, in agreement with its 
potential universality.

Results
To investigate the temporal organization of rhythms in circadian and ultradian domains, we comprehensively 
address the analysis of nonstationary time series from distinct and widely studied organisms such as yeast, mouse, 
rat and quail. We utilize an integrated methodological approach (GaMoSEC), comprising a wide range of tools 
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based on wavelet analyses, which is applied in five steps: Gaussian and complex Morlet wavelets, Synchrosqueez-
ing, Empirical Wavelet Decomposition (EWD) and wavelet  Coherence21.

Time series of yeast metabolism in entrained and/or spontaneously synchronous continuous 
culture.. Herein, we utilize GaMoSEC to detect and characterize periodicity in the time series of spontane-
ously self-synchronous yeast cell cultures as originated by Kuriyama’s  group57. Under these conditions, yeast 
cultures can produce multiple frequencies when grown continuously under precisely controlled  conditions41. 
Figures 1a, 2a, S1a and S2a show the time series of dissolved  O2 and  CO2 with different levels of magnification. 
Periods of 13 h, ~ 40 min and ~ 4 min have been previously reported utilizing power spectral and relative disper-
sional  analyses41,44.

Figure 1 shows two different types of wavelets analyses, Gaussian (panel b) and complex Morlet (panel c) 
continuous wavelet transform (cwt). The colored rectangles highlight the correspondence between the time 
series (Fig. 1a, left  (O2), and right  (CO2) panels) and the wavelet analysis (Fig. 1b,c, left and right panels). In a 
first step of GaMoSEC, the Gaussian cwt shows the principal oscillation, in red orange, with a 13.6 h period in 
both signals, as well as apparent, faster-low amplitude oscillations (< 7 h; visualized in light brown pseudocolor 
(Fig. 1b, left and right panels).

In the second step of GaMoSEC, the complex Morlet cwt was applied. The real part of the coefficients of this 
wavelet (Fig. 1c) exhibits a remarkable branching pattern associated with the variety of slower and faster oscil-
lations apparent in the time series. The value of the coefficients indicate regions associated with peaks (red) and 
valleys (blue) in the rhythm. For example, at the ~ 14 h period (see y-axis) positive coefficients (red peaks Fig. 1c 
left panel) are associated with low respiratory activity by yeast cells, i.e., high levels of dissolved  O2 due to low 
uptake of the latter, while the low levels of dissolved  CO2 are due to low release into the medium; the negative 
coefficients (blue, valleys, Fig. 1c left panel) denote high yeast respiration, i.e., low levels of dissolved  O2 due to 
higher uptake of the latter, and high levels of  CO2 due to its high release into the medium.

While the Gaussian cwt highlights variability and transitions between states at a given time scale, and the 
complex Morlet cwt the phase of the oscillation, the third step of GaMoSEC involves synchrosqueezing, which 
quantitatively describes the two main features characterizing an oscillatory signal, i.e., amplitude and period 
(= 1/frequency).

It also emphasizes their relationship, given that both changes in the period (y-axis) and the amplitude (pseu-
docolor scale) over time (x-axis) are visualized for the O2 (Fig. 1d, left panel) and CO2 (Fig. 1d, right panel) sig-
nals. Specifically, synchrosqueezing reveals which time points present in the time series attain a local maximum 
that determines a ‘ridge’ delineated by the main frequency of each rhythm within their own scale, ~ 14 h and ~ 7 h 
(Fig. 1d). Note the upward tendency of the ~ 14 h rhythm indicating a slight lengthening of the period over time.

The degree of variability of the ridge throughout the time series, indicating the stability and range of varia-
tion of the rhythm’s period over time, is also addressed by EWD, the fourth step of GaMoSEC (Fig. 1e). In this 
case, since the ~ 14 h period changes over time, EWD shows a mixture of horizontal lines at this time scale but 
not at ~ 7 h.

Wavelet coherence analysis, the fifth step of GaMoSEC, addresses the phase relationships between the  O2 and 
 CO2 time series from yeast cultures (Fig. 1f). Yellow in the color scale indicates strong coherence between signals, 
with a magnitude square coefficient > 0.7, while arrows denote phase relationships between the two signals at a 
given time scale. From ~ 14 h up to 2.4 h strong coherence is observed. In addition, arrows are all at around 180º 
indicating antiphase relationships between the O2 and CO2 signals (Fig. 1f). This is observable in the time series 
shown in Fig. 1g, at least for the slower time scales up but to a lesser extent beyond 2.4 h (Fig. 1h).

Figure 2 shows a magnification of the analytical approach shown in Fig. 1 focusing on faster temporal scales 
in order to visualize periodicities with periods from 0.07 h (~ 4 min) to 2.4 h (see also Fig. S1). The Gaussian 
wavelet shows the positioning of the faster, low amplitude, rhythm (dark red vertical regions) with respect to 
the slower, high amplitude, one (Fig. 2b). The complex Morlet cwt unveils the amplitude and frequency of the 
rhythms, depicting a branching pattern corresponding to 2.4 h and 0.7 h (~ 40 min) periods present in the time 
series (Fig. 2c). Note the branching from the ~ 7 h period depicted in Fig. 1c into the 2.4 h period shown in Fig. 2c. 
Synchrosqueezing further showed that the 2.4 h and 0.7 h periods are not constant, but rather intermittent, 
localized at specific time windows. Interestingly, the circahoralian ~ 0.7 h (~ 40 min)  rhythm46,47 appears to be 
neither constant nor stable but present within localized and specific time frames (Fig. 2) with a slightly increas-
ing period over time within a 30–40 min range, as previously  described44. Interestingly, an even faster ~ 0.07 h 
rhythm is constant over time in the  O2 time series but not in the  CO2 time series (see higher magnifications in 
Figs. S1 and S2). In yeast, the  CO2 dynamics observed at high-frequencies, display complex fluctuations without 
a well-defined period and intermittency, and correspond to time scales where predominant long-range correla-
tions prevail, as shown in Fig. S3a and similar previous studies in  rodents59–61 and  quail23,62.

Together, the results show that spontaneously synchronized yeast cultures exhibit a dynamic pattern of ultra-
dian metabolic rhythms with frequencies spanning from 14 h up to 0.07 h, as revealed by our 5-step wavelet 
approach, GaMoSEC. Importantly, the remarkable branching pattern noticeable in the Morlet cwt at distinct 
frequencies exhibits a self-similar, fractal nature, reminiscent of the organization of branching in trees, pulmonary 
and blood  vessels39,63. Since the dynamic pattern of ultradian rhythms displayed by the self-synchronized yeast 
cultures exhibits a striking resemblance with those presented by quails’  locomotion23, we wondered about their 
generality as could be judged from the sharing of key organizational features.

Shared dynamic pattern of circadian and ultradian rhythms by mammalian (mouse, rat) and 
avian (quail) organisms. To address the question of whether species with distinct evolutionary trajectories 
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do exhibit similarity in the dynamic organization of their rhythms, we employed a similar analytical approach 
of time series as applied to yeast.

Time series of metabolism, movement, and food intake in isolated mice. We analyzed the time series data from 
Adamovich and  colleagues54 corresponding to 3 months old C57BL/6 wild type fed ad libitum mice monitored 
in metabolic cages housed at 22 °C under 12 h light–dark regimen where the  O2 consumption rate,  CO2 release, 
spontaneous locomotor activity, and food intake were simultaneously  measured54. ZT0 corresponds to the time 
lights were turned ON and ZT12 to the time lights were turned OFF in the animal  facility54.

Figure 3a displays a representative time series example of normalized  O2 consumption and  CO2 release rates 
along with activity and food consumption. The Gaussian wavelet shows cwt in the four-time series and the prin-
cipal 24 h circadian rhythm in red orange, as well as apparent, faster-low amplitude oscillations (Fig. 3b). The 
real part of the Complex Morlet cwt also unveiled a branching pattern representing the variety of oscillations 
present in these time series (Fig. 3b). Note that pattern branching begins at the 24 h circadian rhythm as revealed 
by alternating peaks of night-time activity (red) and valleys of day-time inactivity (blue).
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Synchrosqueezing (Fig. 3d) and EWD (Fig. 3e) confirmed the presence of 24 h, 12 h, and 8 h rhythms in this 
time series along with fluctuations at time scales below 6 h (see magnification in Fig. S4). The branching from 
the highest amplitude corresponding to the circadian rhythm was followed by the faster and lower amplitude 
ultradian rhythms in the rates of  O2 consumption and  CO2 emission (Fig. 3d,e, two left panels, respectively), 
activity and feeding (Fig. 3d,e, two right panels, respectively). The percentage of animals studied, in which these 
rhythms were detected along with the acrophase and power characterization of the 24 h, 12 h, and 8 h rhythms, 
are shown in Supplementary Fig. S5.

Wavelet coherence analysis showed that the  O2 and  CO2 time series from mice are largely in phase across time 
scales (Fig. 3f, left panel) as well as between both the dynamics of gases and activity (Fig. 3f, 2nd and 3rd panels). 
However, coherence between activity and feeding was consistent up to 12 h decreasing thereafter, especially at 
faster time scales (Fig. 3f, right panel).

Together, the ensemble of metabolic, spontaneous activity and feeding data in mice as well as rats (displayed 
in Supplementary Fig. S6) reveals a dynamic pattern of circadian and ultradian rhythms that shares a strik-
ing resemblance with those observed in yeast cultures. Like in yeast, the high-frequency complex fluctuations 
observed in mice and rats in the dynamics of gases and activity, characterized by the absence of a well-defined 
period and intermittency, correspond to long-range correlations as shown in Fig. S3b.

Behavioral time series in physically isolated quails. High-resolution time series of spontaneous locomotor activ-
ity (movement) along with feeding and drinking behavior from individually housed, Japanese quails (Coturnix 
japonica) were analyzed for 3 days sampled every 0.5 s, as previously  described23.

Figure 4a shows the normalized time series of activity (left panel), feeding (middle panel) and drinking 
(right panel). In the three variables measured, Gaussian wavelet analysis displays the circadian 24 h rhythm in 
red orange, as well as apparent, faster-low amplitude rhythms (Fig. 4b) whereas the complex Morlet shows the 
characteristic branching pattern of peaks (red) and valleys (blue) in correspondence with heightened activity and 
inactivity, respectively (Fig. 4c). Regarding locomotor activity, synchrosqueezing (Fig. 4d) and EWD (Fig. 4e) 
revealed the stability of the rhythms both in the circadian and ultradian domains, particularly noticeable at 12 h 
and 8 h, despite some variability between animals (see Fig. S7). Fluctuations were also detected in the faster time 
scales below 6 h (Fig. S8) and 3 h (Figs. S9, S10) where rhythms appeared localized in specific time frames and 
as expected, long-range correlations were also detected in the three time series of activity, feeding, and drinking 
(Fig. S3c)23,62. Finally, wavelet coherence analysis of the variables measured, presented a coordinated pattern only 
in the circadian but less so in the ultradian domain (Fig. 4f), especially between activity and feeding (Fig. 4f, left 
panel) or drinking (Fig. 4f, right panel) whereas, comparatively, the relationship between feeding and drinking 
exhibited higher coherence across temporal scales (Fig. 4f, middle panel).

Overall, the three species analyzed exhibited a striking similarity in the organization of the dynamic pattern 
of rhythms. In mammalian (mouse, rat) and avian (quail) species the circadian rhythm coexists with higher 
frequency-lower amplitude ultradian rhythms, irrespective of the variables measured. Moreover, the rhythms 
in metabolic behavior of yeast, and of activity and metabolism in both mice and rats, exhibited a high degree of 
coherence, stability and phase relationship over time.

Origin of the dynamic branching pattern of circadian and ultradian rhythms. Next, we addressed 
the possible origin of the dynamic pattern of rhythms found, corresponding to a principal circadian oscillator 

Figure 1.  The 5-steps of GaMoSEC analysis were applied to time series of  O2 and  CO2 signals obtained by 
membrane-inlet mass spectrometry (MIMS) from oscillating continuous cultures of S. cerevisiae. (a) Relative 
MIMS signals of the m/z = 32 and 44 components versus time, corresponding to the  O2 (blue) and  CO2 (red) 
signals, respectively. Time is given in hours after the start of the continuous operation. Yeast continuous 
cultures were operated as described under Methods at a total volume of 800 ml; medium flow rate, 1 ml/min, 
i.e., dilution rate D = 0.0765  h−1. From this visualization it is apparent that the large-amplitude oscillation shows 
substantial cycle-to-cycle variability, with cycle times of 11.7–15.5 h, giving a mean of 13.66 h (SD, n = 8)44. (b) 
Analysis of the time series shown in “a” with the Gaussian cwt. This wavelet highlights variability and transitions 
between states at a given time scale. Note that the principal oscillation is observed in red orange over a broad 
range of scales. Fluctuations are visible for shorter time scales (≤ 7 h). (c) Analysis of the time series shown in 
“a” with the complex Morlet cwt, only the real part is shown. Note the bifurcation-like pattern marking the 
different oscillations that compose the signal. (d) Synchrosqueezing method applied to time series shown in “a”. 
Dark  horizontal bands indicate the estimated period of the signal at the time scales around 13.6 and 6.8 h. Note 
a slight increase in period over time in the ~ 14 h range, as previously mentioned  in44. This period is longer than 
the mean doubling time of 9 h (= ln2/D), as discussed  elsewhere41. The biological bases for all three oscillatory 
outputs of the yeast culture have been confirmed by exclusion of the possible influences of variations of aeration 
or stirring, pulsed medium addition, cycles of NaOH addition and pH variation, or cycles of temperature 
 control41,58. (e) Empirical Wavelet Decomposition applied to the time series shown in “a”. Note that since the 
period changes over time, at the time scale around 13.6 h, this method shows a mixture of different horizontal 
lines, which is not observed for scales around 6.8 h. (f) Wavelet coherence analysis was performed between 
the two-time series shown in Fig. 1a. Color-scale represents the magnitude squared coherence between  O2 and 
 CO2 for a given time scale. Note high positive values for scales up to ~ 0.07 h (~ 4 min). Arrows indicate phase 
relationships between signals at a given time scale. The 180º angle indicates an antiphase activity, as noticeable in 
the time series shown in A, for both large and shorter time scales. (g–h) Zoom in on time series  depicted in “a” 
showing the antiphase relationship between them at both, large (13.6 h) and few minutes temporal scales. Image 
yeast: https:// commo ns. wikim edia. org/ wiki/ File: Yeast_ (PSF). png.

◂

https://commons.wikimedia.org/wiki/File:Yeast_(PSF).png
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apparently coexisting with ultradian rhythms which have frequencies that are multiples of the principal oscil-
lator, as exemplified by the phase angle representations shown for  VO2 in yeast, mice, quails in Fig. 5a, and for 
rats in Fig. S6c. The complex dynamics observed in yeast can be easily understood as a sum of sinusoidal oscil-
lations (see Fig. S11,  and42). However, for the time series from vertebrates, two possible hypothetical scenarios 
can underlie the dynamic pattern observed: (i) a sum of sinusoidal coexisting oscillations from circadian and 
ultradian origin (Fig. 5b, left column), or (ii) a sum of non-sinusoidal oscillations of circadian origin 24 h out 
of phase (Fig. 5b, right column). According to the former scenario, the subsequent ultradian rhythms (i.e., 12 h, 
8  h) present characteristic phase and power relationships with regard to the circadian rhythm, whereas the 
second scenario postulates that only circadian rhythms happen to occur 24 h out of phase with each other. A 
similar branching pattern in the complex Morlet cwt arises in both scenarios (Fig. 5c), however, comparatively, 
the second is less parsimonious because it demands not only precise timing of the phase between peaks but also 
of their amplitudes.

Further insight is provided in Fig. 6 where the analytical scheme of experimental data displayed in Figs. 1, 3, 
4 and S6 are shown (time series shown as a filled area) superimposed with the extracted sinusoidal oscillations 
(bold colored lines). Importantly, the resultant pattern of 24 h, 12 h and 8 h is reproduced by wavelet analysis of 
the synthetic time series produced according to the first scenario (Fig. 5, compare panels a-left with panel c, left 
column). Moreover, the synthetic time series depicted in Fig. 5b (left column, bold trace) simulates the experi-
mental time series of the rate of  O2 consumption  (VO2) in mice and rats (see Fig. 6, second and third columns, 
respectively, and Fig. S12 for mice where, in addition to  VO2,  CO2 release rate  (VCO2), spontaneous locomotor 
activity, and food intake are plotted) and of quails’ activity (Fig. 6, fourth column). Yeast data, also included in 
Fig. 6 (left column), further supports the concept of rhythms coexistence at different temporal scales.

Figure 2.  Detection and localization of higher frequency oscillations in  O2 and  CO2 signals obtained by MIMS 
from oscillating continuous cultures of S. cerevisiae. (a) Zoom in on the same time series shown in Fig. 1a of the 
relative MIMS signals of the m/z = 32 and 44 components vs time, corresponding to the  O2 (blue) and  CO2 (red) 
signals, respectively. Time is given in hours after start of the fermentor’s continuous operation. (b) Magnification 
of the same Gaussian cwt analysis shown in Fig. 1b. This wavelet highlights variability and transitions between 
states at a given time scale. Note the appearance of vertical lines around the 1 h time scale. (c) Magnification 
of the complex Morlet cwt analysis displayed in Fig. 1c (only the real part is shown). The bifurcation-like 
pattern marks the different periodic oscillations that compose the signal. (d) Magnification of the same wavelet 
synchrosqueezing analysis presented in Fig. 1d. Dark vertical localized bands indicate the estimated period of 
the signal at the time scales that appear in specific temporal windows. Note the thin red line at 4 min (0.07 h) 
period in the  O2 synchrosqueezing coefficients (see zoom in Fig. S1). Color scale was adjusted to improve 
visualization.
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Together, the data presented suggest that the branching pattern deployed by circadian and ultradian rhythms, 
along with the phase correspondence between the different variables measured, agree with the idea that both 
time domains (circadian, ultradian) coexist.

Discussion
The present work addresses the general question of contemporaneous rhythms in metabolism, movement, and 
feeding, spanning multiple time scales, and of its potentially uniform character in evolutionary distant organisms. 
The main finding shows that a unicellular eukaryote, such as yeast, as well as multicellular mammalian (mouse, 
rat) and avian (quail) organisms share key features of a dynamic coherent pattern of self-similar appearance in 
rhythms (Figs. 5a, S6c). In both an avian and mammalian species, this organization pattern temporally unfolds 
from the circadian domain, as can be judged by its branching appearance in the complex Morlet cwt given 
by splitting periods from 24 h into 12 h, 8 h, 4 h (Figs. 3, 4, S6c). In yeast, the splitting of the ~ 14 h cycle can 
reach down to 0.07 h (Figs. 1, 2). Besides experimental evidence, these findings are supported by synthetic time 
series corresponding to summation of coexisting oscillations from circadian and ultradian rhythm (Fig. 5a–c). 
Although most of previously published work focused on circadian rhythmicity, it is evident that the circa-
dian domain of the temporal organization of animal behavior and metabolism is insufficient to understand the 
observed dynamic complexity (Fig. 6).

The unprecedented degree of detail attained in the description of the temporal scaling of the dynamic pattern 
described in the present work as applied to high resolution time series, could be achieved using our original 
five-step, wavelet-based, analytical  approach21. The first step of GaMoSEC, consists of Gaussian cwt, critically 
important since it is based on a wavelet function that is not in itself periodic, thus fundamental for understand-
ing data variability over different time scales while ruling out spurious  harmonics21. Moreover, none of the 
time series analyzed in the present work shows evidence of waveforms that are discontinuous, spikes, square 
or strongly non-sinusoidal that would result in spurious harmonics. Hence, after the first step (Gaussian cwt), 
the subsequent analyses are based on the hypothesis that the data can be represented as a sum of sinusoids of 
different periods, which do not involve harmonics for representation. Complex Morlet cwt, synchrosqueezing, 
EWD and wavelet coherence analyses, unveil distinct key features of the rhythms present, such as amplitude, 
frequency, phase, power, temporal stability and coherence. Integrated, these methods allow not only simultane-
ous assessment of different possible rhythms as well as their temporal localization over a wide range of temporal 
scales (seconds to days), but also stability along with the phase correspondence between metabolism, locomotor 
and feeding activity of the animals (Figs. 3, 4, S4–S10), not possible with other methods traditionally utilized.

The emergent dynamic pattern of circadian and ultradian rhythms described in the present work, begets the 
fundamental question of coordination at the organismic level. Answering the coordination question entails on 
the one hand, knowing which rhythms emerge at the macroscopic scale and whether intermittent rhythms are 
happening sequentially or simultaneously. On the other hand, precisely, how, e.g., quails’ or mouse movements 
along with their metabolic and feeding behaviors are linked to SCN-mediated signaling of peripheral organs 
such as, e.g., cardiac and skeletal muscle, liver, pancreas, and brain.

Given the broad range of temporal scales covered by the dynamic pattern of rhythms, it is important to sepa-
rate low-frequency high-amplitude from high-frequency low amplitude rhythms. In addition to the circadian 
rhythm, the first regimen comprises the ~ 12 h circatidal-like rhythm, not only documented in coastal  organisms64 
but also in the locomotor activity of  quails23 and rats, as recently shown by Hasanpour and  collaborators65, whom 
by comparing the circatidal-like rhythm with the artificial light/dark cycles (12L:12D) using phase-synchronicity 
analysis observed that the detected circatidal rhythm is unlikely to have been caused by the experimental setup. In 
addition, herein, we also show evidence of an 8 h rhythm in activity patterns. The analytical approach employed 
in the present work suggests that in mammalian and avian organisms there is a limit at ~ 4 h between low- and 
high-frequency rhythmic regimes. We propose that rhythms within the first regime correspond to dynamic 
events with organismic reach thus subjected to systemic modulation, likely of endocrine nature, like hormones 
and neurotransmitters via the circulation. The second regime includes behavioral temporal scales of ultradian 
rhythms that have been documented both in small mammals in the 2–4 h time scale (examples in Table S2), 
as well as avian species mostly at scales between 15 and 90 min (examples in Table S1). Results from previous 
studies point out the existence of identifiable control mechanisms for generation of circadian and ultradian 
 rhythms66. Specifically, localized rhythms of high-frequency low-amplitude could emerge from the interaction 
with local biological subsystems within organs via paracrine modulation involving signaling and cell-to-cell 
communication through metabolites, second messengers, transcriptional factors. In this regime, where faster 
processes take place in the minutes to sec/msec scale, a panoply of feed-forward, -back, autocatalytic, allosteric, 
nonlinear mechanisms of control and regulation predominate.

We note that in the second, high-frequency, regime in yeast culture dynamics, intermittent periodicities 
happen within certain time frames, while nonexistent in others (see e.g., Figs. S1, S2). Unlike intermittent perio-
dicities that in the yeast  O2 signal occur sequentially over the 14 h time span, coexisting with a sustained high-
frequency oscillation of 0.07 h (~ 4 min) period, the  CO2 signal displays a wide variety of different fluctuations, 
likely presumably associated with fractal, scale-free  dynamics44. In mammals and avian behavioral time series, 
intermittent periodicities without a well-defined period were also observed whereas sustained high-frequency 
oscillation over the entire 3-day period were not detected. This is consistent with previous ultradian rhythm 
studies where detectability and period can change throughout the day (Tables S1, S2). For example, locomotor 
ultradian rhythms of Siberian hamsters were more frequently detected during the daily dark  phase67, and can 
even exhibit lower periods compared to the light  phase68. In Siberian hamsters, depending upon the photoperiod 
and the light/dark phase, up to four significant distinct periods (between 0.1 and 7.9 h) could be  detected68,69. 
Given the periods’ variability, Goh et al.70 proposed that rhythms in the range of 20 min–6 h should be more 
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appropriately named Episodic Ultradian  Events70. In agreement with our analytical approach, these authors also 
highlighted the importance of wavelet methods for understanding complex dynamics on faster time  scales70,71.

Although research on biological dynamics has mainly focused on circadian rhythms, a large body of evi-
dence shows that periodicities on fast and ultrafast time scales are not random and cannot be characterized by 
a single period. Instead, as shown in the present work (Fig. S3), long-range correlations associated with long-
term memory, characterize these faster temporal  scales23,44,60,72,73. Food restriction and injury in the suprachi-
asmatic nucleus (SCN) and/or dorsomedial hypothalamic (DMH) have been shown to differentially affect time 
scales >  ~ 4 h leading to random fluctuations that disrupt fractal activity patterns. Oppositely, these lesions induce 
only slightly more regular fluctuations at smaller time  scales60,61,74. In this context, the SCN in the hypothalamus 
would coordinate temporal scales > ∼ 4 h whereas the second regime (i.e., < ∼ 4 h), would be more dependent 
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on the organ and its function thus governed by local conditions. These reported results can be interpreted in 
the framework of our systemic (organism) and local (organ) proposal of rhythms coordination in the emergent 
pattern of rhythms described herein, according to which systemic regulatory mechanisms would set the stage for 
local events at the organ level. This hypothetical scheme implicitly suggests a sequential rather than a simultaneous 
mechanism of coordination  (see74 for an alternative view).

Concluding remarks
Together, the data ensemble shows that evolutionary distant species exhibit a strikingly similar pattern in the 
dynamic organization of rhythms in circadian and ultradian domains. The dynamic pattern’s resemblance, func-
tional consistency, and broad occurrence as can be judged from mice, rats, quails and yeast analyzed, support its 
potentially universal character. Coherent behavior in metabolism concomitant with spontaneous or motivated 
movement (e.g., feeding, drinking) displayed phase relationships between the rates of  O2 consumption and 
 CO2 release such as in yeast and mice and, in the latter, in concordance with spontaneous and feeding behavior 
movement. Our highly sensitive methods were able to capture different degrees of coherence among rhythms 
such as in mice with respect to metabolic vs. activity or feeding, and in quails between movement vs. feeding 
or drinking. At the origin of the dynamic branching pattern of rhythms observed, our data support a scenario 
of coexistent and interdependent circadian and ultradian rhythms as shown by synthetic time series (Fig. 5) 
experimentally corroborated (Fig. 6). Hypothetically, the temporal unfolding and coordination of the branching 
pattern of frequencies (periods) in vertebrates can be modulated by rhythms of low-frequency high-amplitude at 
the organism level via endocrine processes with systemic reach, and locally, at the organ level, by high-frequency 
low-amplitude rhythms subjected to paracrine modulation.

Methods
Yeast, mice, rat and quail datasets. The yeast S. cerevisiae  dataset41, as stated previously, has been ana-
lyzed with regard to rhythmicity using a different analytical  approach44. In the present work, the same yeast 
time series were analyzed with the wavelet-based approach below described. Briefly, the yeast experimental 
time series correspond to an autonomously oscillating culture under constant environmental conditions (tem-
perature, illumination, pH) and monitored by membrane-inlet mass  spectrometry75. Data were collected every 
12 s at m/z = 32, 34, 40 and 44 corresponding to oxygen,  H2S, argon and carbon dioxide, where the m/z ratio, 
represents mass m divided by charge number of ions z. Argon m/z = 40 was used to correct for long-term drift 
in the instrument’s response as described  previously41. The minutes temporal scale (0.07 h) present in self-syn-
chronized cultures of  yeast41, depicted herein in Figs. 1a and 2a, was confirmed by independent experiments 
in spontaneously synchronized oscillations in a contiguous layer of S. cerevisiae cells loaded with fluorescent 
probes, incubated at 30 °C with aeration of the perfusion buffer, and monitored by two-photon scanning laser 
fluorescence  microscopy44. The yeast cells utilized in the two-photon experiments reiterate synchrony defined 
by cell sizing, flow cytometry and budding index of fixed aliquots of yeast cells removed at intervals from the 
long-term continuous cultures.

Yeasts were attached to a coverslip which had been coated with poly-L-lysine with unrestricted access to 
atmospheric oxygen on the stage of a Nikon E600FN upright microscope which was maintained at 30 °C44,76.

Both, mice (3 males, 3 females) and rats (8 males) datasets have been previously published and analyzed for 
circadian  rhythms54 and were promptly supplied by the authors upon request. Individually housed mice and rats’ 
oxygen consumption and carbon dioxide release rates, spontaneous locomotor activity, and food consumption 
were simultaneously monitored using Phenomaster (TSE System) and Promethion (Sable Systems International) 
metabolic cages, respectively. Before each experiment, animals were adapted for several days (3–7 days acclima-
tization) in the metabolic cages enabling proper adjustment to the new housing conditions. Data was collected at 
15 min intervals for TSE, and 1 min for Sable system. The light schedule in the metabolic cages was maintained 

Figure 3.  GaMoSEC analysis as applied to C57BL/6 wild type mice behavioral time series. (a) Wild-type female 
mice were housed under 12 h light–dark cycles. Metabolic cages were used to monitor oxygen consumption 
 (VO2, blue), carbon dioxide  (VCO2, red), spontaneous locomotor activity (green), and food intake (black). Data 
were recorded at 15 min intervals for 3 consecutive days. (b) Analysis of the time series shown in “a” with the 
Gaussian cwt. This wavelet highlights variability and transitions between states at a given time scale. Note that 
the principal circadian oscillation is observed in red over a broad range of scales. Fluctuations are visible for 
shorter time scales (< 12 h). (c) Analysis of the time series shown in “a” with the complex Morlet cwt (only the 
real part is shown). Note the bifurcation-like pattern highlighting the different periodic oscillations composing 
the signal. (d) Synchrosqueezing method applied to time series shown in “a”. Dark orange-red regions horizontal 
bands most noticeable around the 24 h, 12 h and 8 h time scales represent the circadian and two predominant 
ultradian rhythms, respectively. A band around 4.8 h is also observable. (e) Empirical Wavelet Decomposition 
applied to the time series shown in “a”, as well as horizontal bands most noticeable around the 24 h, 12 h and 
8 h time scales represent the circadian and two predominant ultradian rhythm, respectively, consistent with 
Synchrosqueezing. A band around 4.8 h is also noticeable although its localization in frequency over time is 
not constant. (f) Wavelet coherence analysis between the four-time series. Color-scale represents the magnitude 
squared coherence between time series for a given time scale. Note the high positive values (yellow) observed 
at almost all scales. Arrows indicate phase relationships between signals at a given time scale. The 0° angle 
indicates that these series are completely in phase, as noticeable in the time series shown in panel a, for both 
slower and faster time scales. Mouse image: https:// commo ns. wikim edia. org/ wiki/ File: Vector_ diagr am_ of_ labor 
atory_ mouse_ (black_ and_ white). svg.

◂

https://commons.wikimedia.org/wiki/File:Vector_diagram_of_laboratory_mouse_(black_and_white).svg
https://commons.wikimedia.org/wiki/File:Vector_diagram_of_laboratory_mouse_(black_and_white).svg


10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5326  | https://doi.org/10.1038/s41598-023-32286-0

www.nature.com/scientificreports/

as in the animals’ home cages using 12 light: 12 dark cycles. Fluorescent light of 100 lx intensity was applied for 
the metabolic cage recordings during the light  phase54.

Quails were bred according to standard laboratory  protocols77. The experimental protocol was approved by 
the Institutional Council for the Care of Laboratory Animals (CICUAL, Comité Institucional de Cuidado de 
Animales de Laboratorio) of the Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, UNC-CONICET). 
Animal care and experimental treatments followed the Guide for the Care and Use of Laboratory Animals issued 
by the National Institute of Health (NIH Publications, Eighth Edition)78. They also followed local animal regula-
tions including the Animal Protection law number 14346, National Administration of Drugs, Foods and Medical 
Devices (ANMAT) decree 6344/96, and the National Scientific and Technical Research Council (CONICET) 
resolution number 1047/2005. This study was carried out in compliance with the ARRIVE guidelines.
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Quail datasets obtained from two independent experiments are publicly available, and results are shown in 
main text and Supplementary Figs. S5, S7–S10. Briefly, eight adult female quails were individually housed in 
40 × 40  ×  40 cm (width × length × height, respectively) boxes with 3 solid white walls and one wire mesh wall that 
allowed visual contact with the female located in the contiguous box. Nylon monofilament line was extended 
over the top of the boxes with a 1 cm separation to prevent the birds from escaping without interfering with their 
visualization. A 14 light: 10 dark cycle was used. A video camera connected to a computer was suspended 1.5 m 
above the box. These cameras have built-in, infrared LED lighting, automatically switching to infrared recording 
after lights were turned off. Boxes had feeder, automatic nipple drinker, and floor with wood shavings. A period 
of at least 30 days acclimatization was taken before the actual recordings. The longer quail datasets used in Sup-
plementary Fig. S10, were performed using a similar experimental setup but with the main exception that birds 
were visually isolated from each other, see complete description  elsewhere77 and publicly available at FigShare 
(http:// dx. doi. org/ 10. 6084/ m9. figsh are. 14247 29) ANY-MAZE@ computer program was used to register loco-
motion at 0.5 s intervals  (xi), and a customized application in Matlab was used to obtain feeding and drinking 
time series. The behavioral time series of each bird was obtained by assigning a number one (xi = 1) if during the 
interval the bird was performing the behavior, or a zero (xi = 0) if  not23.

Time series analysis with the 5-step wavelet approach GaMoSEC. Detection and characterization 
of oscillations were performed using a combination of 5 different wavelet decomposition techniques that simul-
taneously detrend and denoise the signal. Wavelets have the potential to describe the data without making any 
parametric assumptions about trends in the frequency or amplitude of the components signals and are resilient 
to noise (see review  in56). Also, information regarding changes in temporal dynamics over the length of the 
experiment at different time scales is quantifiable. Hence, it is possible to detect the consolidation or disappear-
ance of a given ultradian rhythm.  In wavelet analysis a specified function (i.e., wavelet) is compared to the signal 
at each time point. The resulting coefficients thus provide not only information regarding features of interest in 
the signal but also the temporal localization of that feature. Note that the wavelet used in the analysis depends 
on the features to be extracted, e.g., for a transition between states a Gaussian continuous wavelet transform 
(cwt) can be used, while for periodicity a complex Morlet cwt is appropriate. Consequently, wavelet analysis 
is not a single analysis but rather a family of analyses defined by the characteristics of the wavelet used in the 
transformation. Herein, the time series data were consecutively analyzed by the five types of transformations, 
coined GaMoSEC, an acronym describing the methodology used (i.e., Gaussian, Morlet, Synchrosqueezing, 
Empirical Wavelet Decomposition, and Wavelet Coherence). Code was written in Matlab and is publicly avail-
able at https:// doi. org/ 10. 684/ m9. figsh are. 21545 385. v1. Briefly, GaMoSEC comprises the following steps:

1. Visual inspection by continuous wavelet transform based on a real Gaussian mother wavelet in the Cartesian 
time scale plane. This wavelet transform highlights changes in the signal and singularities (i.e. spike-like or 
step-like changes) in the dynamics described by the time series, hence providing evidence of variability and 
 fluctuations21.

2. Visual inspection by Continuous wavelet transform based on complex Morlet mother wavelet in the Polar 
time scale plane. This is a complex wavelet of periodic nature thus its transformation is also complex, provid-
ing 4 different plots corresponding to the real, imaginary, modulus and phase angle of the wavelet coefficients. 
This complex wavelet provides information about the presence of oscillatory  behavior21,23 which can be used 
to estimate the  acrophase21. Herein, only the real part of the transformation is shown.

3. Modal frequencies identification by synchrosqueezed wavelet transform is a linear time-scale analysis fol-
lowed by a synchrosqueezing technique. This analysis provides highly localized frequency information, 
important for precise estimation of period and power of  rhythms21.

4. Modal frequencies identification by Empirical Wavelet Decomposition, wavelet analysis in the Fourier 
domain followed by frequency segmentation to extract the modal components. This is an independent 

Figure 4.  The 5-steps wavelet analysis of Japanese quail (Coturnix japonica) behavioral time series. (a) 
Spontaneous locomotor activity (green), food intake (black) and water drinking (purple) time series of an adult 
female Japanese quail in a home box environment. Data was obtained at a sampling rate of 0.5 s integrated in 
6 min intervals. (b) Analysis of the time series shown in panel A with the Gaussian cwt. This wavelet highlights 
variability and transitions between states at a given time scale. Note that the principal circadian oscillation 
is observed in red over a broad range of scales. Fluctuations are visible for shorter time scales (< 12 h). (c) 
Analysis of the time series shown in panel (a) with the complex Morlet cwt (only the real part is shown). Note 
the bifurcation-like pattern corresponding to the different oscillations that compose the signal. (d) Wavelet 
synchrosqueezing method applied to time series shown in panel A. Dark orange-red regions horizontal 
bands most noticeable around the 24 h, 12 h and 8 h time scales represent the circadian and two predominant 
ultradian rhythms, respectively. A consistent and complete band over the 3-day experimental period for 
these ultradian rhythms could only be observed for locomotor activity. (e) Empirical Wavelet Decomposition 
applied to the time series shown in (a). Note the horizontal lines for the circadian rhythm are evident for the 
three-time series, while for  ultradian rhythms they are only well defined for locomotor activity consistent 
with synchrosqueezing. (f) Wavelet coherence analysis between the three-time series shown in (a). Color-scale 
represents the magnitude squared coherence between time series for a given time scale. Note the high positive 
values (yellow) are observed predominantly on the 24 h scales. Arrows indicate phase relationships between 
signals at a given time scale. The 0° angle indicates that these series are completely in phase. Image quail: https:// 
commo ns. wikim edia. org/ wiki/ File: Quail_1_ (PSF). png.

◂

http://dx.doi.org/10.6084/m9.figshare.1424729
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https://commons.wikimedia.org/wiki/File:Quail_1_(PSF).png
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Figure 5.  Resemblant dynamic pattern of circadian and ultradian rhythms in mice, quails and yeast can be 
understood by two distinct mechanisms. Visual comparison between time series analysis with the complex 
Morlet cwt (only phase angle is shown): (a) left panel, dissolved  O2 obtained by MIMS from oscillating 
continuous cultures of S. cerevisiae (same as in Fig. 1a); middle panel,  O2 consumption rate of wild-type female 
mice in metabolic cages (same as in Fig. 3a); and right panel, spontaneous locomotor activity of an adult female 
japanese quail in a home box environment (same as in Fig. 4a). (b) Two theoretical models that can give rise to 
the observed bifurcation patterns. On the left, three sinusoidal oscillations with different amplitudes and periods 
of 24 h, 12 h and 8 h were summed to create the synthetic time series shown in solid black lines on the bottom 
panel. On the right, three different trains of gaussian curves with peaks separated by 24 h periods are summed 
to create the synthetic time series (bottom panel). (c) Wavelet analysis of both synthetic time series. The same 
general bifurcation pattern is observed and of similar appearance as the time series from living organisms shown 
in panel “a”.
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analysis that also can detect rhythms in time series, as well as changes in periodicity. The Matlab toolbox 
was made available by J.  Gilles79–81.

5. Wavelet Coherence between pairs of different time series from the same individual and dataset was used to 
determine level of coherence as well as the phase relation between periodicities. For each animal, if evidence 
of periodicity was observed in the first four steps at a specific time scale (e.g., 24 or 12 h) and during a specific 
time period than the given rhythm, was considered to be detected under the specified experimental condition 
(Fig. 1). Percent of animals with the given rhythm was estimated.

The method utilized herein to determine scale-invariance and to evaluate the presence and extent of long-
range autocorrelations in feed-intake and wheel running activity, was introduced by Peng et al.82 and is described 
in detail  elsewhere62. Briefly, DFA estimates the self-similarity parameter that measures the autocorrelation 
structure of the time series. If α = 0.5, the series is uncorrelated (random) or has short-range correlations (i.e., 
the correlations decay exponentially), whereas 0.5 < α < 1 indicates long-range autocorrelation exist (correlation 
decays as a power-law), meaning that present depends on past  behavior83. Also, α is inversely related to a typical 
fractal dimension, so in this case, the value increases with increasing regularity (or decreasing complexity) in 
the time series. This software is also available in the public domain (http:// www. physi onet. org/ physi otools/ dfa/). 
Herein, DFA calculations were performed with a customized script on MATLAB  R2018a84.

Materials and correspondence. Information and requests others than what are reported herein should 
be directed to Miguel A. Aon (miguel.aon@nih.gov) and Jackelyn M. Kembro (jkembro@unc.edu.ar).

Data availability
All data sets analyzed herein have been previously  published23,41,54 with the exception of one of the quail data-
sets that is publicly available on Figshare, https:// doi. org/ 10. 6084/ m9. figsh are. 21524 481. Only animals from 
control groups, fed ad libitum, were analyzed herein. Data from yeast, rats and mice were made available upon 
request to the corresponding authors of the original manuscripts. Yeast data will be made available upon accept-
ance on FigShare. The longer quail datasets used in Supplementary Figure S10 are publicly available at FigShare 
(http:// dx. doi. org/ 10. 6084/ m9. figsh are. 14247 29).

Figure 6.  Contribution of circadian and ultradian rhythms to the temporal dynamics of  O2 consumption  (VO2) 
in yeast, mice and rat, along with locomotor activity in quail. Columns indicate animal model, and rows the 
following from top to bottom: (a) time series data is presented as the average of three periods (mean ± SEM) 
for a time interval of 0.2 min in yeast and 1 h in vertebrates. The colored area under the curve is maintained 
for comparison; (b) representation of the main (solid line) 14 h rhythm in yeast and 24 h circadian rhythm for 
vertebrates, according to Wavelet Synchrosqueezing (see Figs. 1, 3, S6, S4); (c, d) the 7 h and 2.4 h in yeast and 
12 h and 8 h rhythms (dotted lines) determined with Wavelet Synchrosqueezing and shown consecutively to the 
circadian rhythm (solid line). UR, ultradian rhythm; ZT, zeitgeber time.

http://www.physionet.org/physiotools/dfa/
https://doi.org/10.6084/m9.figshare.21524481
http://dx.doi.org/10.6084/m9.figshare.1424729
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Code availability
Customized script in MATLAB will be made publicly available upon acceptance of publication in FigShare 
for GAMoSEC https:// doi. org/ 10. 6084/ m9. figsh are. 21545 385. v1. Customized script in MATLAB is currently 
publicly available on FigShare for Detrended Fluctuation Analysis (http:// dx. doi. org/ 10. 6084/ m9. figsh are. 15149 
75). The Empirical Wavelet Transform Matlab toolbox was made available by J. Gilles, and is freely distributed 
on MATLAB Central File Exchange (https:// www. mathw orks. com/ matla bcent ral/ filee xchan ge/ 42141- empir 
ical- wavel et- trans forms).
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