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of gene expression profiling data 
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COVID‑19 is a newly recognized illness with a predominantly respiratory presentation. Although 
initial analyses have identified groups of candidate gene biomarkers for the diagnosis of COVID‑19, 
they have yet to identify clinically applicable biomarkers, so we need disease‑specific diagnostic 
biomarkers in biofluid and differential diagnosis in comparison with other infectious diseases. This can 
further increase knowledge of pathogenesis and help guide treatment. Eight transcriptomic profiles 
of COVID‑19 infected versus control samples from peripheral blood (PB), lung tissue, nasopharyngeal 
swab and bronchoalveolar lavage fluid (BALF) were considered. In order to find COVID‑19 potential 
Specific Blood Differentially expressed genes (SpeBDs), we implemented a strategy based on finding 
shared pathways of peripheral blood and the most involved tissues in COVID‑19 patients. This step 
was performed to filter blood DEGs with a role in the shared pathways. Furthermore, nine datasets of 
the three types of Influenza (H1N1, H3N2, and B) were used for the second step. Potential Differential 
Blood DEGs of COVID‑19 versus Influenza (DifBDs) were found by extracting DEGs involved in only 
enriched pathways by SpeBDs and not by Influenza DEGs. Then in the third step, a machine learning 
method (a wrapper feature selection approach supervised by four classifiers of k‑NN, Random Forest, 
SVM, Naïve Bayes) was utilized to narrow down the number of SpeBDs and DifBDs and find the most 
predictive combination of them to select COVID‑19 potential Specific Blood Biomarker Signatures 
(SpeBBSs) and COVID‑19 versus influenza Differential Blood Biomarker Signatures (DifBBSs), 
respectively. After that, models based on SpeBBSs and DifBBSs and the corresponding algorithms 
were built to assess their performance on an external dataset. Among all the extracted DEGs from 
the PB dataset (from common PB pathways with BALF, Lung and Swab), 108 unique SpeBD were 
obtained. Feature selection using Random Forest outperformed its counterparts and selected IGKC, 
IGLV3‑16 and SRP9 among SpeBDs as SpeBBSs. Validation of the constructed model based on these 
genes and Random Forest on an external dataset resulted in 93.09% Accuracy. Eighty‑three pathways 
enriched by SpeBDs and not by any of the influenza strains were identified, including 87 DifBDs. 
Using feature selection by Naive Bayes classifier on DifBDs, FMNL2, IGHV3‑23, IGLV2‑11 and RPL31 
were selected as the most predictable DifBBSs. The constructed model based on these genes and 
Naive Bayes on an external dataset was validated with 87.2% accuracy. Our study identified several 
candidate blood biomarkers for a potential specific and differential diagnosis of COVID‑19. The 
proposed biomarkers could be valuable targets for practical investigations to validate their potential.
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Abbreviations
SpeBDs  COVID-19 potential Specific Blood DEGs
DifBDs  Potential Differential Blood DEGs of COVID-19 versus Influenza
SpeBBSs  COVID-19 potential specific Blood biomarker signatures
DifBBSs  COVID-19 versus Influenza Differential Blood Biomarker Signatures
DEA  Differential Expression Analysis
DEGs  Differentially Expressed Genes
BALF  Bronchoalveolar Lavage Fluid
PB  Peripheral Blood

The novel coronavirus (2019-nCoV, or COVID-19) was first identified at the end of 2019 and has rapidly spread 
worldwide. It causes severe acute respiratory syndrome and can lead to  pneumonia1. Detecting and monitoring 
the disease as early as possible is paramount to preventing progression. COVID-19 shares overlapping signs, 
symptoms, laboratory findings and imaging features with other respiratory viruses, which might complicate its 
diagnosis, treatment, and  prognosis2. Recently, the under-detection of many infectious diseases has increased, 
which is somewhat due to the prevalence of a novel  coronavirus2. Influenza, a contagious viral disease-causing 
respiratory illness, shared similar clinical manifestations to COVID-19. Fever, cough, rhinitis, sore throat, head-
ache, shortness of breath, and myalgia are some of these similar  symptoms3,4. Different subtypes of the influenza 
A virus, including H1N1, H3N2, and influenza B as a seasonal influenza virus, are currently circulating among 
 individuals5. The co-occurrence of influenza and COVID-19 may increase in the year’s cold months. Both 
viruses are spread from person to person primarily by airborne  droplets6. Failures in differential detection of 
COVID-19 may result in higher hospitalization rates, prolonged stay in intensive care units, and an increased 
chance of death in  patients7,8.

Searching for the virus-specific genetic materials via real-time quantitative polymerase chain reaction (RT-
qPCR), so far, is the most reliable method for the detection of coronavirus. However, the procedure of RT-
qPCR on virus-specific genetic materials is unable to distinguish between active infection and colonization but 
host-response biomarkers are able to do  that7,9,10. Furthermore, RT-qPCR can have a high rate of false-negative 
results due to the low virus load in individuals, which can also change over time, as well as incorrect sampling. 
This makes it essential to use host-specific biomarkers as a complementary tool to ensure accurate diagnosis of 
presence or type of infection in at-risk  hosts11–13.

Numerous tissues, including respiratory epithelial cells, nasopharynx, colonocytes, and whole blood or plasma 
samples, have recently seen significant changes to the host transcriptome following COVID-19  infection14,15. 
Therefore, transcriptomics can be used effectively to identify COVID-19 affected host transcriptional signatures, 
paving the way for the creation of novel diagnostic biomarkers and therapeutic  strategies12. To find virus-specific 
transcriptional signatures, it is also necessary to comprehend the host response to COVID-19 infection in com-
parison to other respiratory  infections16. Although several candidate gene biomarkers have been proposed so 
far, none of them were successful for an efficient diagnosis and particularly differential diagnosis of COVID-19 
in samples.

In the present study, we hypothesized that novel and potentially more specific blood biomarkers of a disease 
could be identified by searching for the DEGs involved in the common pathways between blood and the major 
organs affected by the disease. We validated this hypothesis using machine learning methods and found that these 
potential biomarkers included signatures that could accurately differentiate COVID-19 from Influenza blood 
 samples7. So, in order to identify COVID-19 potential Specific Blood Differential expressed genes (SpeBDs), we 
implemented a strategy based on finding shared pathways of peripheral blood (PB) and the most involved tis-
sues in COVID-19 patients (lung tissue, nasopharyngeal swab and bronchoalveolar lavage fluid (BALF)) to filter 
blood DEGs based on playing a role in those shared pathways. Furthermore, potential Differential Blood DEGs 
of COVID-19 versus influenza (DifBDs) were identified by extracting DEGs involved in only enriched pathways 
by SpeBDs and not by influenza DEGs. Then, a machine learning method (feature selection) was utilized to 
narrow down the number of SpeBDs and DifBDs and find the most predictive combination of DEGs. This step 
was performed to select potential COVID-19 Specific Blood Biomarker Signatures (SpeBBSs) and COVID-19 
versus influenza Differential Blood Biomarker Signatures (DifBBSs), respectively. Then the models based on the 
SpeBBSs or DifBBSs and the corresponding algorithms were validated on an external dataset. Accuracy (ACC), 
Area under curve (AUC) and Matthews Correlation Coefficient (MCC) were calculated to measure the power of 
machine learning models constructed by considering SpeBBSs and DifBBSs. Different steps of this experiment 
are demonstrated in Fig. 1.

Materials and methods
Datasets selection. For finding SpeBDs, transcriptomic profiles of COVID-19 infected versus control 
samples from PB and three sources related to the respiratory system, the most involved tissues in COVID-19, 
were considered, including Lung Tissue (Lung), Nasopharyngeal Swab (Swab), and Bronchoalveolar Lavage 
Fluid (BALF). Datasets of PB, Lung, and Swab sources were obtained from GEO  database17. Also, the differential 
expression analysis (DEA) data of the BALF source was obtained from Zhou et al.’s18 and Li et al.’s  study19. In 
addition, datasets of the three types of Influenza (H1N1, H3N2, and B) were used to discover DifBDs. Table 1 
provides all the information about dataset IDs, data production platforms, and sample sizes.

Differential expression analysis. Among RNAseq datasets of COVID-19, GEO raw data of GSE155241 
(Table 1) were analyzed by the Galaxy web server (https:// usega laxy. org/)20. Quality control was executed with 
FastQC (version 0.11.8). The reads were aligned to the human reference genome file (Gencode, release 32, hg38 

https://usegalaxy.org/
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https:// www. genco degen es. org/ human/ relea ses. html) using HISAT2 (version 2.1.0) with default parameters. 
The reads mapped to the human reference genome were counted using featureCounts Galaxy Version 2.0.1 and 
default parameters.

The RNAseq count files of this study and all other RNAseq datasets of COVID-19 (Table 1) were analyzed 
by the following methodology: Bioconductor’s DeSeq2 package was used to identify DEGs from the normal-
ized expression dataset. It was then applied to mine statistically significant DEGs based on the difference in 
their expression values between samples of the COVID-19 versus control. DEGs with |log2FC|≥ 1 and adjusted 
p-value ≤ 0.05 were considered to be significantly differentially expressed. Also, the DEA results of COVID-19 
and Healthy BALF samples from Zhou et al.’s study and Li et al.’s study were filtered by a |log2FC|≥ 1 and adjusted 
p-value < 0.05. After obtaining the DEGs of the COVID-19 datasets related to the four sources (Swab, BALF, Lung, 

Figure 1.  A workflow representing the main steps of the present study. Designed using diagram.net online tool 
available at https:// app. diagr ams. net/.

https://www.gencodegenes.org/human/releases.html
https://app.diagrams.net/
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and PB), the results of DEA of the sources with more than one dataset (BALF and Lung) were integrated using 
the Venn diagram. While, in the cases of Swab and PB sources, only one dataset was related to each of them, and 
plotting the Venn diagram was not required.

For three influenza types, we selected microarray raw data (Table 1). Microarray data were pre-processed, 
merged, and analyzed independently by the R programming language for each influenza type. The series matrixes 
were downloaded from the GEO database. Quantile normalization and log transformation were performed on 
datasets. The aggregate function averaged multiple expression values assigned to the same gene symbols. The 
platform for producing the data in each influenza type was the same GPL, and the source of all samples was 
peripheral blood; the data was homogenous, so we integrated data for each influenza type independently using 
the merging method. In order to remove the batch effect between datasets, we performed a batch effect removal 
using the ComBat function from the SVA package. Finally, DEA between three types of influenza and healthy 
samples was conducted independently using the Limma package. DEGs with a false discovery rate adjusted 
p-value < 0.05 and |log2FC|≥ 0.4 |were considered significant.

Biomarker discovery using pathway enrichment analysis. SpeBDs discovery. The pathway enrich-
ment analysis by the Reactome database in Enrichr web-based  tool21 was performed for DEGs of each source 
(Swab, BALF, Lung, and PB) independently. Enriched pathways with adjusted p-value < 0.05 were considered 
significant. After that, common pathways of each Swab, BALF, and Lung source with PB were found, and the 
DEGs that had enriched those common pathways in PB were extracted. These DEGs were considered as SpeBDs.

DifBDs discovery. In order to find DifBDs, the pathway enrichment analysis for the three types of influenza 
(H1N1, H3N2, and B) was performed independently by the Reactome database of Enrichr. The pathway enrich-
ment analysis for the SpeBDs was performed as well. A pathway was considered significant if the adjusted 
p-value was smaller than 0.05. Then, a Venn diagram was constructed including the significant pathways of 
SpeBDs, H1N1, H3N2, and B. Significant specific pathways of COVID-19 that were not enriched in any of the 
influenza types were selected. After that, the SpeBDs of COVID-19 that had enriched those pathways were 
extracted. These DEGs were considered as DifBDs.

Choosing the best biomarker signatures and validation by machine learning. RapidMiner Stu-
dio as a powerful tool for biomarker discovery was registered (version 9.7) and utilized to extract and validate 
biomarker signature from SpeBDs and  DifBDs22–26.

In this study a two-step machine learning approach was implemented, first we employed four classifiers 
(k-NN, Random Forest, SVM, Naïve Bayes) to supervise the wrapper feature selection method and extract the 
best combination of biomarkers from the feature selection dataset (an external dataset different from discovery 
datasets but containing SpeBDs or DifBDs). In the next step, the models based on optimal subset of biomarkers 
and the corresponding algorithms (the same algorithms that were applied in feature selection to select them) 
were validated on the validation dataset (another external dataset different from discovery and feature selection 

Table 1.  Publicly available biomarker discovery datasets. a Swab: nasopharyngeal swab; BALF: bronchoalveolar 
lavage fluid; PB: peripheral blood cells; bGSA-BIG/hGSA-BIG, Genome Sequence Archive (GSA)/ Human 
Genome Sequence Archive (hGSA) in National Genomics Data Center, Beijing Institute of Genomics 
(BIG), Chinese Academy of Sciences https:// bigd. big. ac. cn/ gsa- human/; GEO: Gene Expression Omnibus; 
ArrayExpress, ArrayExpress Archive of Functional Genomics Data https:// www. ebi. ac. uk/ array expre ss/. c(I/H), 
samples from infected patients/samples from healthy controls.

Disease Sample  typea Dataset ID Technology/platform/platform ID Data  repositoryb Sample size (I/H)c Data format analyzed in this study

COVID-19

Swab GSE156063 RNAseq/Illumina NovaSeq 6000/GPL24676 GEO 93/41 Counts

BALF
HRA000143 RNAseq/Illumina HiSeq 2500 hGSA-BIG 8/20 DEA results of Zhou et al.’s’s  study18

CRA002390 RNAseq/Illumina MiSeq GSA-BIG 4/3 DEA results of Li et al.’s’s  study19

Lung

GSE147507 RNAseq/Illumina NextSeq 500/GPL18573 GEO 2/2 Counts

GSE150316 RNAseq/Illumina NextSeq 500/GPL15520 GEO 41/5 Counts

GSE155241 RNAseq/Illumina NovaSeq 6000/ GPL24676 GEO 3/2 SRRs

GSE159787 RNAseq/NextSeq 550 GPL29228 GEO 85/53 Counts

PB GSE161731-A RNAseq/Illumina NovaSeq 6000/GPL24676 GEO 46/19 Counts

Influenza H1N1 PB

GSE111368-A Microarray/Illumina/GPL10558 GEO 154/131 Series matrix

GSE90732 Microarray/Illumina/GPL10558 GEO 86/22 Series matrix

GSE68310-A Microarray/Illumina/GPL10558 GEO 166/43 Series matrix

GSE61821-A Microarray/Illumina/GPL10558 GEO 86/0 Series matrix

Influenza H3N2 PB

GSE61754 Microarray/Illumina/GPL10558 GEO 16/17 Series matrix

GSE29385 Microarray/Illumina/GPL10558 GEO 36/225 Series matrix

GSE61821-B Microarray/Illumina/GPL10558 GEO 16/0 Series matrix

InfluenzB PB
GSE111368-B Microarray/Illumina/GPL10558 GEO 16/130 Series matrix

GSE68310-B Microarray/Illumina/ GPL10558 GEO 16/4 Series matrix

https://bigd.big.ac.cn/gsa-human/
https://www.ebi.ac.uk/arrayexpress/
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datasets). The logic behind this strategy was that the algorithm applied to supervise a wrapper method has had 
the best performance ability for a subset of features, among other probable combination of features. So we can 
use that algorithm for building a model (biomarker panel) based on the corresponding features (SpeBBSs or 
DifBBSs) and test the model on an external dataset to validate the model. The purpose of employing four clas-
sifiers in this study was to get four subsets of genes and build four models and biomarker panels. In this way, we 
had the chance to consider four biomarker panels with a high classification power and introduce the best one, 
as our minimal biomarker panel.

Feature selection. A biomarker panel containing a less number of genes would be more practical to test in a 
clinical  assay27,28. So, we decided to choose a small set of most predictive biomarker signatures from SpeBDs to 
be introduced as COVID-19 potential Specific Blood Biomarker Signatures (SpeBBSs) and from DifBDs to be 
introduced as COVID-19 versus influenza Differential Blood Biomarker Signatures (DifBBSs). In order to do 
that, we applied a machine learning method (feature selection) using the Optimize Selection (forward selec-
tion type) operator implemented in Rapid Miner. The Forward Selection is a kind of wrapper feature selection 
approach. Here, we employed four classifiers (k-NN, Random Forest, SVM, Naïve Bayes) to supervise the wrap-
per method and extract the best combination of biomarkers from the feature selection dataset.

The Forward Selection strategy initially uses only one attribute (in our case, each attribute is a SpeBD or 
DifBD). Additional attributes are added until there is no more performance gain by adding an attribute.

Rapid Miner provides several other methods for feature selection including Brute Force, Evolutionary 
algorithm, Backward Elimination, and many other  methods29. The Optimize Selection (Brute Force) operator 
examines all possible combinations of the attribute sets to select the most relevant attribute. This method is 
not applicable in the case of high-dimensional data due to its comprehensive  examination30. The evolutionary 
algorithm selects the most relevant attributes of the dataset using evolutionary algorithms, e.g. genetic algorithm 
(GA). Backward Elimination starts with all features and it removes the worst feature in each  step30. We tried 
using Optimize Selection (Evolutionary) and Optimize Selection (Backward Elimination) operators of Rapid 
Miner but these algorithms represented lower performances with the low number of features compared to the 
Forward Selection strategy. The purpose of feature selection in this study is to select a small set of biomarker 
signatures because such a panel would be more clinically applicable. We, therefore, chose to use Optimize Selec-
tion (Forward Selection) operator that has a higher performance in selecting a small set of biomarker signatures.

SpeBBSs discovery and validation. The count values of SpeBDs were extracted from dataset GSE166190 and 
Bibert et al.’s dataset-A31, which included peripheral blood samples of healthy people and COVID-19 infected 
patients. Table 2 listed the sample size and platform properties of these datasets.

The rlog function of the package DESeq2 was used to convert the raw counts to normalized logarithmic 
counts. The dataset was then transposed (samples in rows and SpeBDs genes in columns), and after conversion 
of disease status to binominal (Healthy = 0 and COVID-19 = 1) input dataset for machine learning was prepared. 
After that, the two-step machine learning procedure was used to narrow down the SpeBDs for obtaining SpeBBSs 
(feature selection phase using an external dataset (GSE166190)) and validating the SpeBBSs (validation phase 
using another external dataset (Bibert et al.’s dataset-A)). In each phase, the five indicators (ACC, Spe, Sen, MCC, 
and AUC) were calculated for the feature selections and models constructed by the four algorithms.

DifBBSs discovery and validation. The count values of DifBDs were extracted from dataset GSE161731-B and 
Bibert et al.’s dataset  B31, which included peripheral blood samples of Influenza and COVID-19 infected patients. 
The sample size and platform properties of these datasets are listed in Table 2. In order to construct the input for 
RapidMiner software, the binominal disease status (Influenza = 0 and COVID-19 = 1) was added to rlog trans-
formed, transposed counts files of the two datasets. The same two-step procedure for selecting and validating 
the SpeBBSs was applied to select DifBBSs among DifBDs (feature selection phase using an external dataset 
(GSE161731-B)) and validate them (validation phase using another external dataset (Bibert et al.’s dataset-B)). 
In each phase, the five indicators (ACC, Spe, Sen, MCC, and AUC) were calculated for the feature selections and 
constructed models by the four algorithms.

Performance evaluation. The ten-fold cross-validation strategy was employed to evaluate the performance of 
constructed models in this study. In ten-fold cross-validation, the input (samples) is divided into ten equal parts. 
One of the ten parts is retained as the test data set. The other parts are used as inputs of the training subprocess. 

Table 2.  Datasets used for feature selection and validation of blood biomarker signatures by machine learning 
methods.

Dataset ID Platform/platform ID Sample size and type Usage in this study

GSE166190 Illumina HiSeq 4000/GPL20301 15 Healthy, 83 COVID-19 Feature selection for finding SpeBBSs

Bibert et al.’s dataset-A Illumina HiSeq 4000/- 27 Healthy, 103 COVID-19 Validation of SpeBBSs

GSE161731-B Illumina NovaSeq 6000/GPL24676 17 Influenza, 77 COVID-19 Feature selection for finding DifBBSs

Bibert et al.’s dataset-B Illumina HiSeq 4000/- 22 Influenza, 103 COVID-19 Validation of DifBBSs
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Cross-validation is repeated ten times and every time one of the subsets plays the role of the test dataset. The ten 
results are then averaged to obtain a single result.

The performance of classification was obtained in terms of four common measurements. These measurements 
were Accuracy (ACC), Sensitivity (Sen), Specificity (Spe), the Mathews correlation coefficient (MCC), and area 
under the curve (AUC). The first four were calculated using true-positive (TP), true-negative (TN), false-positive 
(FP), and false-negative (FN) indicators by the formula. And AUC was calculated by plotting a ROC curve.

When datasets are imbalanced in evaluating binary classification problems, MCC gives more information than 
other measures like accuracy because it considers the balance ratios of the four measures (TP, TN, FP, and FN). 
The accuracy score can be misleading since it does not fully consider the size of the four classes of measurements 
in its final calculation. However, we provided this indicator as the most intuitive evaluation metric. The MCC 
value is between − 1 and 1. 1 is MCC of a model with the best performance. 0 is like a random prediction, and 
− 1 indicates a complete discrepancy between reality and  prediction25. Also, we used AUC, which is a standard 
parameter and a threshold-independent measure. AUC is the area under the ROC curve generated by plotting 
sensitivity or true positive rate against false positive rate.

The following parameters were set for the four classifiers of this study:
k-NN: K: 5; Weighted vote: true; Measure types: MixedMeasures; Mixed measure: MixedEucideanDistance. 

Random Forest: Number of trees: 100; Criterion: gain_ratio; Maximal depth: 10; Voting strategy: confidence 
vote; Guess subset ratio: true. SVM: Kernel type: Dot; C: 0.00; Convergence epsilon: 0.001; Lpos: 1.0; L neg: 1.0; 
epsilon: 0.0; Epsilon plus: 0.0; epsilon minus: 0.0. Naïve Bayes : Laplace correlation parameter was set to true.

Results
Differential expression analysis and biomarker discovery using pathway enrichment analy‑
sis. SpeBDs discovery. The DEA between COVID-19 and Healthy PB samples of dataset GSE161731-A (Ta-
ble 1) resulted in 624 DEGs including 271 upregulated and 353 downregulated genes. The pathway enrichment 
analysis of these up and downregulated DEGs resulted in 113 significant pathways which are listed in Tables S1 
and S2.

The DEGs of differential analysis results between COVID-19 and Healthy BALF samples in Zhou et al. and 
Li et al. studies were obtained. Then, the Venn diagram plotted for these two groups of DEGs from the BALF 
source resulted in 890 DEGs including 475 upregulated and 415 downregulated genes. The pathway enrichment 
analysis of these DEGs resulted in 36 significant pathways (Tables S3 and S4). Thirty-one of these significant 
pathways were shared with the significant pathways of PB, and We extracted 95 DEGs from the PB dataset that 
had enriched those common pathways (Figs. 2 and 3).

The DEA was performed between COVID-19 and Healthy Lung samples of datasets GSE147507, GSE150316, 
GSE155241, and GSE159787. The plotted Venn diagram for the four datasets of Lung source resulted in 15 
upregulated and 42 downregulated common genes, a total of 57 DEGs. The pathway enrichment analysis of 
these 57 DEGs resulted in 9 significant pathways (Tables S5 and S6), 2 of these significant pathways were shared 
with PB, and we extracted 54 DEGs of the PB dataset that had enriched those common pathways (Figs. 2 and 3).

The DEA between COVID-19 and Healthy Swab samples of dataset GSE156063 resulted in 207 upregulated 
and 379 downregulated genes, a total of 586 DEGs. Pathway enrichment analysis of these DEGs resulted in 
91 significant pathways which are listed in Tables S7 and S8; six of which were shared with the PB significant 
pathways, and 74 DEGs of the PB dataset that enriched those common pathways were extracted (Figs. 2 and 3).

Finally, from all the DEGs extracted from the PB dataset in this step (from common pathways of PB with 
BALF:95 DEGs, with Lung: 54 DEGs, and with Swab:74 DEGs), duplicated DEGs were removed, and 108 unique 
SpeBDs were obtained (Fig. 3). A complete list of SpeBDs and their related extraction sources are listed in Figs. 2 
and 3. Moreover, a pathway enrichment analysis was performed for the SpeBDs, and 152 significant pathways 
were enriched (Table S9).

DifBDs discovery. In order to obtain DEGs of Influenza H1N1, the four related datasets including GSE111368-
A, GSE90732, GSE68310-A, and GSE61821-A were integrated. DEA resulted in 309 upregulated and 208 down-
regulated, a total of 517 DEGs. These DEGs were enriched in 79 significant pathways (Tables S10 and S11).

To obtain DEGs of Influenza H3N2, three datasets including GSE61754, GSE29385, and GSE61821-B were 
integrated. The results of DEA were 1139 DEGs including 854 upregulated and 285 downregulated genes. The 
DEGs were enriched in 11 significant pathways (Tables S12 and S13).

Also, the two datasets of Influenza B (GSE111368-B and GSE68310-B) were integrated, and the DEA resulted 
in 976 DEGs including 512 upregulated and 464 downregulated genes. The pathway enrichment analysis for 
these DEGs resulted in 186 significant pathways (Tables S14 and S15).

Finally, a Venn diagram of significantly enriched pathways of influenza H1N1, H3N2, B, and SpeBDs was 
plotted (Fig. 4A). Eighty-three pathways were specifically enriched by SpeBDs and not by any of the Influenza 
types. The 87 SpeBDs that enriched those pathways were extracted for further analysis and named DifBDs. A 
list of uncommon pathways and DifBDs from them is provided in Fig. 4B.

Choosing the best gene signature and validation by machine learning. SpeBBSs discovery and 
validation. In order to select the best subset of SpeBDs to be introduced as SpeBBSs, a feature selection method 
was applied using an external dataset containing SpeBDs (GSE166190). Then, these biomarker signatures were 
validated on another external dataset (Bibert et al.’s dataset -A). All the four classifiers used for evaluating the 
performance of the feature selection method indicated high robustness levels in terms of AUC and ACC (ACC 
higher than 92.86% and AUC higher than 86.10% on the feature selection dataset). Also the models based on 
these algorithms and the SpeBBSs had ACCs higher than 90.77% and AUCs higher than 96.30% on the valida-
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Figure 2.  Common Pathways of PB with BALF, Lung, and Swab, their adjusted p-values in pathway enrichment 
analysis, and the list of extracted SpeBDs from them. The figure is generated using RStudio version 2022.12.0 
and Adobe Illustrator version 24.2.1.
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tion dataset. Feature selection using Random Forest provided the highest ACCs and AUCs (95.92% ACC and 
93.80% AUC on feature selection dataset and the model based on this classifier and the three selected SpeBBSs 
had the 93.09% ACC and 98.00% AUC on the validation dataset) (Fig. 5A,B). Feature selection using this classi-
fier chose IGKC, IGLV3-16, and SRP9 as SpeBBSs. The feature selection and model based on this algorithm had 
the second-highest performance regarding MCC on both datasets respectively (83.64% on the feature selection 

Figure 3.  Extraction of SpeBDs from PB DEGs of COVID-19 patients with the help of the common pathways 
between PB and the three sources from the respiratory system of COVID-19 patients (Swab, BALF, and Lung). 
A whole list of SpeBDs is indicated in this figure. Lung, Lung tissue biopsy; Swab, nasopharyngeal swab; BALF, 
bronchoalveolar lavage fluid; PB, peripheral blood. The figure is created using Cytoscape version 3.8.2 and 
Illustrator version 24.2.1
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Figure 4.  (A) Venn diagram representing the pathways enriched by SpeBDs, Influenza H1N1 PB DEGs, 
Influenza H3N2 PB DEGs, and Influenza B PB DEGs constructed using an online tool available at https:// bioin 
forma tics. psb. ugent. be/ webto ols/ Venn/. The red circle mentions pathways that were enriched by SpeBDs and 
not by the three Influenza types; these pathways are listed in part B: Eighty-three pathways were obtained from 
pathway enrichment analysis of SpeBDs and were different from pathways obtained by pathway enrichment 
analysis of Influenza H1N1, H3N2, and B DEGs; (B) is created using RStudio version 2022.12.0 and Adobe 
Illustrator version 24.2.1.

https://bioinformatics.psb.ugent.be/webtools/Venn/
https://bioinformatics.psb.ugent.be/webtools/Venn/
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Figure 5.  The ten-fold cross-validation results of the feature selection method in choosing SpeBBSs and 
the constructed machine learning models; (A) ROC curves representing classification ability of the feature 
selection method by the four classifiers on GSE166190 dataset (the feature selection dataset); (B) ROC curves 
representing classification powers of the constructed models based on the selected SpeBBSs and corresponding 
algorithms (the same algorithms that were applied in feature selection step) on Bibert et al.’s dataset A (the 
validation dataset). These ROC curves show ROC (red lines) at various threshold settings (blue lines). In the 
ROC curves, the x-axis shows 1-specificity, and the y-axis shows sensitivity. (C) Four measures indicating the 
classification power of the feature selection method by the four classifiers on GSE166190 dataset (the feature 
selection dataset); (D) Four measures indicating the power of constructed models based on the selected SpeBBSs 
and the corresponding algorithms (the same algorithms that were applied in feature selection step) on Bibert 
et al.’s dataset A (the validation dataset). FS: feature selection.
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and 78.70% on the validation dataset) (Fig. 5C,D). Furthermore, they showed the highest sensitivity with an ac-
ceptable level of specificity.

DifBBSs discovery and validation. In order to select the most predictable subset of DifBDs to be introduced 
as DifBBSs, a feature selection method was applied using an external dataset containing DifBDs (GSE161731-
B). Then, these biomarker signatures were validated on another external dataset (Bibert et al.’s dataset B). The 
forward selection method using all four classifiers had ACCs higher than 97.87% and AUCs higher than 95.00% 
on the feature selection dataset. Models built based on them and the corresponding DifBBSs, represented higher 
than 82.4 ACCs and higher than 83.60% AUCs on the validation dataset (Fig. 6A,B). Among them, the feature 
selection using Naive Bayes had a high performance on the feature selection dataset and constructed model 
based on this classifier and the corresponding DifBBSs represented the highest performance on the validation 
dataset in terms of MCC; In addition, the feature selection and the model built based on this algorithm showed 
high levels of sensitivity and specificity in both datasets (Fig. 6C,D). The forward selection method using this 
classifier chosen FMNL2, IGHV3-23, IGLV2-11, and RPL31 as DifBBSs.

Discussion
Gene expression profiles of the disease-involved cells are not practical in the diagnosis of diseases. Rather, 
such profiles might be valuable for selection of limited number of potential protein biomarkers which can be 
detected via common techniques in biofluid samples. From both basic and clinical perspectives, comprehending 
the associations between blood biomarkers and the pathogenic states and processes in the tissues affected by 
the disease could be a great help in selecting the right molecule as potential biomarker. Therefore, in this study, 
we considered the overlapping pathways between peripheral blood and the central involved body system in 
COVID-19 in order to identify the disease’s novel and potential specific blood  biomarkers7. Although, further 
steps such as comparisons of DEGs of a disease against other diseases (e.g. what we did for Influenza in this 
study) are indeed needed to get specific biomarkers for diseases, this strategy can help to find the potential spe-
cific blood biomarkers before comparing the DEGs of our desired disease against the rest of the diseases one by 
one. SpeBDs were extracted from the overlapping pathways between PB and respiratory system-related samples 
(Swab, BALF, and Lung) of Covid-19 patients. The extracted 108 SpeBDs enriched 152 significant pathways that, 
as we expected, are involved in multiple pathways in the immune system, such as classical antibody-mediated 
complement activation, FCGR activation, creation of C4 and C2 activators, initial triggering of complement, role 
of phospholipids in phagocytosis, complement cascade, regulation of actin dynamics for phagocytic cup forma-
tion, immune System, immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell, FCERI 
mediated NF-kB activation, viral mRNA Translation, FCERI mediated Ca + 2  mobilization32,33.

In the next step, a machine learning method (feature selection) was utilized to narrow down the number of 
SpeBDs and find the most predictive combination of them to select SpeBBSs. The five indicators (ACC, AUC, 
MCC, Sen and Spe) were calculated to measure the power of machine learning models constructed by SpeBBSs. 
Consequently, feature selection using Random Forest selected IGKC, IGLV3-16, and SRP9 as SpeBBSs with 
the highest classification power. And the constructed model based on this algorithm and SpeBBSs also vali-
dated this biomarker panel on an external dataset. Interestingly, the involvement of these biomarker proteins 
was previously shown by some studies. Immunoglobulin kappa constant, IGKC, encodes the constant domain 
of kappa-type light chains for antibodies and Immunoglobulin lambda variable 3-16, IGLV3-16, encodes the 
variable domain of lambda-type light chains of antibodies. Immunologically, plasma cells are responsible for 
synthesizing antibodies and have been identified as possibly producing virus-neutralizing antibodies in COVID-
1919,34. Upregulated IGKC and IGLV3-16 expression may be involved in the differentiation of B lymphocytes 
into immunoglobulins-secreting plasma cells, which could play an important role in the pulmonary immune 
 response35. SRP9 is a component of the signal recognition particle (SRP) complex, involved in targeting secretory 
proteins to the rough endoplasmic reticulum  membrane35. The SRP proteins also have a role in the virus-host 
responses. Based on an experiment, the 7SL RNA component of the SRP interacts with SARS-CoV-2, and upon 
binding, the viral proteins disrupt SRPs function, thus inhibiting protein trafficking to the cell  membrane36. 
Moreover, it was shown that the uncleaved SRP9 could increase the translation elongation arrest and allows 
translocation, including the insertion of transmembrane domains (e.g., Coronavirus envelope protein). This 
process can finally lead to frameshifts in the translation  process37.

In the next part, another pathway-based strategy was applied to obtain DifBDs. 87 DifBDs were extracted 
from the 83 pathways enriched by SpeBDs but not by Influenza H1N1, H3N2, and B DEGs. The most important 
of these pathways involves classical antibody-mediated complement activation, FCGR activation, activators, 
initial triggering of complement, FCERI mediated NF-kB activation, binding and Uptake of Ligands by Scaven-
ger, complement cascade, regulation of actin dynamics for phagocytic cup formation, role of phospholipids in 
phagocytosis and mobilization. It can be seen that a number of non-specific pathways have been removed from 
the previous 152 pathways.

Then, DifBBSs were selected from 87 DifBDs using a feature selection approach. The five indicators of ACC, 
AUC, MCC, Sen and Spe were calculated to measure the power of machine learning methods and models con-
structed by DifBBSs. Accordingly, the feature selection by the best classifier (the Naive Bayes) selected FMNL2, 
IGHV3-23, IGLV2-11, and RPL31 as DifBBSs. These DifBBSs along with the Naive Bayes were validated on an 
external dataset as a biomarker panel with the highest performance. Formin-like protein 2, FMNL2, is a formin-
related protein from a family of large proteins with multidomain that play an essential role in controlling a 
cytoskeletal  organization38. There is a significant interaction between the native β1 integrins expressed on human 
and mouse pulmonary epithelial cells and the S-protein of SARS-CoV-239,40. The critical role of β1 integrins in 
mediating cellular adhesive interaction with the SARS-CoV-2 S-protein have recently shown in  studies39. As 



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5599  | https://doi.org/10.1038/s41598-023-32268-2

www.nature.com/scientificreports/

Figure 6.  The ten-fold cross-validation results of the feature selection method in choosing DifBBSs and 
the constructed machine learning models; (A) ROC curves representing classification ability of the feature 
selection method by the four classifiers on GSE161731-B dataset (the feature selection dataset); (B) ROC curves 
representing classification powers of the constructed models based on the selected DifBBSs and corresponding 
algorithms (the same algorithms that were applied in feature selection step) on Bibert et al.’s dataset-B (the 
validation dataset). These ROC curves show ROC (red lines) at various threshold settings (blue lines). In the 
ROC curves, the x-axis shows 1-specificity, and the y-axis shows sensitivity. (C) Four measures indicating the 
classification power of the feature selection method by the four classifiers on GSE161731-B dataset (the feature 
selection dataset); (D) Four measures indicating the power of constructed models based on the selected DifBBSs 
and the corresponding algorithms (the same algorithms that were applied in feature selection step) on Bibert 
et al.’s dataset B (the validation dataset). FS: feature selection.
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FMNL2 involves in the regulation of β1-integrin traffic and  function41, it is possible that as COVID-19 progress, 
FMNL2 regulation shifts from cell-to-cell adhesion to cell-to-substitute adhesion.

IGHV3-23 (Immunoglobulin Heavy Variable 3-23) and IGLV2-11 (Immunoglobulin Lambda Variable 2-11) 
belong to a cluster of genes in the immunoglobulin (Ig) structure. During acute phase infection in COVID-19, 
these two variable chains are parts of top frequent paired heavy and light chain clonotypes that are identified 
in the repertoire of more general  clonotypes42–44. RPL31 (Ribosomal Protein L31) is a member of ribosomal 
proteins (RPs). One direct evidence of ribosomal heterogeneity comes from ribosomopathy, caused by defec-
tive RPs and/or rRNAs. In a study, the putative role of ribosomal heterogeneity in COVID-19 susceptibility 
and severity is investigated as an important  role45. Furthermore, recent studies showed RPL31 as a diagnostic 
biomarker for this  infection8.

Conducting the pathway analyses based on a manually curated aggregate of multiple data sources can be the 
limitation of the present work. On the other hand, the reliability of the findings is maintained by a promise with 
known mechanisms and between the expression profiling data from different datasets.

Conclusion
In summary, to find potential specific biomarkers for diagnosis of COVID-19, we focused on disease pathways, 
which include multiple pathways that can vary between different disease-related compartments. Consequently, 
more works that simultaneously analyze multiple mechanisms in peripheral blood and inflamed tissues are 
required. By the way, our findings shed a light on some pathways and molecules which can be valuable candidates 
for more investigations. Moreover, investigating differential biological pathways in similar diseases can help us 
identify differential diagnostic biomarkers for diseases. The present study identified several candidate biomarkers 
for specific detection of COVID-19 and differential diagnosis compared to influenza strains in blood. Further 
practical studies are necessary to validate these combinatorial biomarkers.

Data availability
Data from no human is directly involved in the present study’s analysis. All the original data are available in 
public databases or supplementary material of a published article on the following links: [GEO] repository, 
[https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE15 6063], [hGSA-BIG] repository, [https:// ngdc. 
cncb. ac. cn/ gsa- human/ browse/ HRA00 0143], [GSA-BIG] repository, [https:// ngdc. cncb. ac. cn/ gsa/ browse/ 
CRA00 2390], [GEO] repository, [https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE14 7507], [GEO] 
repository, [https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE15 0316], [GEO] repository, [https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE15 5241], [GEO] repository, [https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE15 9787], [GEO] repository, [https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE16 
1731], [GEO] repository, [https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE11 1368], [GEO] repository, 
[https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE90 732], [GEO] repository, [https:// www. ncbi. nlm. nih. 
gov/ geo/ query/ acc. cgi? acc= GSE68 310], [GEO] repository, [https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? 
acc= GSE61 821], [GEO] repository, [https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE61 754], [GEO] 
repository, [https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE29 385], [GEO] repository, [https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE16 6190], [Bibert et al.’s study supplementary material], https:// 
www. front iersin. org/ artic les/ 10. 3389/ fimmu. 2021. 666163/ full].
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