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COVID-19 is a newly recognized illness with a predominantly respiratory presentation. Although
initial analyses have identified groups of candidate gene biomarkers for the diagnosis of COVID-19,
they have yet to identify clinically applicable biomarkers, so we need disease-specific diagnostic
biomarkers in biofluid and differential diagnosis in comparison with other infectious diseases. This can
further increase knowledge of pathogenesis and help guide treatment. Eight transcriptomic profiles
of COVID-19 infected versus control samples from peripheral blood (PB), lung tissue, nasopharyngeal
swab and bronchoalveolar lavage fluid (BALF) were considered. In order to find COVID-19 potential
Specific Blood Differentially expressed genes (SpeBDs), we implemented a strategy based on finding
shared pathways of peripheral blood and the most involved tissues in COVID-19 patients. This step
was performed to filter blood DEGs with a role in the shared pathways. Furthermore, nine datasets of
the three types of Influenza (H1N1, H3N2, and B) were used for the second step. Potential Differential
Blood DEGs of COVID-19 versus Influenza (DifBDs) were found by extracting DEGs involved in only
enriched pathways by SpeBDs and not by Influenza DEGs. Then in the third step, a machine learning
method (a wrapper feature selection approach supervised by four classifiers of k-NN, Random Forest,
SVM, Naive Bayes) was utilized to narrow down the number of SpeBDs and DifBDs and find the most
predictive combination of them to select COVID-19 potential Specific Blood Biomarker Signatures
(SpeBBSs) and COVID-19 versus influenza Differential Blood Biomarker Signatures (DifBBSs),
respectively. After that, models based on SpeBBSs and DifBBSs and the corresponding algorithms
were built to assess their performance on an external dataset. Among all the extracted DEGs from
the PB dataset (from common PB pathways with BALF, Lung and Swab), 108 unique SpeBD were
obtained. Feature selection using Random Forest outperformed its counterparts and selected IGKC,
IGLV3-16 and SRP9 among SpeBDs as SpeBBSs. Validation of the constructed model based on these
genes and Random Forest on an external dataset resulted in 93.09% Accuracy. Eighty-three pathways
enriched by SpeBDs and not by any of the influenza strains were identified, including 87 DifBDs.
Using feature selection by Naive Bayes classifier on DifBDs, FMNL2, IGHV3-23, IGLV2-11 and RPL31
were selected as the most predictable DifBBSs. The constructed model based on these genes and
Naive Bayes on an external dataset was validated with 87.2% accuracy. Our study identified several
candidate blood biomarkers for a potential specific and differential diagnosis of COVID-19. The
proposed biomarkers could be valuable targets for practical investigations to validate their potential.
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Abbreviations

SpeBDs  COVID-19 potential Specific Blood DEGs

DifBDs  Potential Differential Blood DEGs of COVID-19 versus Influenza
SpeBBSs  COVID-19 potential specific Blood biomarker signatures

DifBBSs COVID-19 versus Influenza Differential Blood Biomarker Signatures
DEA Differential Expression Analysis

DEGs Differentially Expressed Genes

BALF Bronchoalveolar Lavage Fluid

PB Peripheral Blood

The novel coronavirus (2019-nCoV, or COVID-19) was first identified at the end of 2019 and has rapidly spread
worldwide. It causes severe acute respiratory syndrome and can lead to pneumonia'. Detecting and monitoring
the disease as early as possible is paramount to preventing progression. COVID-19 shares overlapping signs,
symptoms, laboratory findings and imaging features with other respiratory viruses, which might complicate its
diagnosis, treatment, and prognosis®. Recently, the under-detection of many infectious diseases has increased,
which is somewhat due to the prevalence of a novel coronavirus® Influenza, a contagious viral disease-causing
respiratory illness, shared similar clinical manifestations to COVID-19. Fever, cough, rhinitis, sore throat, head-
ache, shortness of breath, and myalgia are some of these similar symptoms>*. Different subtypes of the influenza
A virus, including HIN1, H3N2, and influenza B as a seasonal influenza virus, are currently circulating among
individuals®. The co-occurrence of influenza and COVID-19 may increase in the year’s cold months. Both
viruses are spread from person to person primarily by airborne droplets®. Failures in differential detection of
COVID-19 may result in higher hospitalization rates, prolonged stay in intensive care units, and an increased
chance of death in patients”®.

Searching for the virus-specific genetic materials via real-time quantitative polymerase chain reaction (RT-
qPCR), so far, is the most reliable method for the detection of coronavirus. However, the procedure of RT-
qPCR on virus-specific genetic materials is unable to distinguish between active infection and colonization but
host-response biomarkers are able to do that”*'°. Furthermore, RT-qPCR can have a high rate of false-negative
results due to the low virus load in individuals, which can also change over time, as well as incorrect sampling.
This makes it essential to use host-specific biomarkers as a complementary tool to ensure accurate diagnosis of
presence or type of infection in at-risk hosts'' ™3,

Numerous tissues, including respiratory epithelial cells, nasopharynx, colonocytes, and whole blood or plasma
samples, have recently seen significant changes to the host transcriptome following COVID-19 infection'*'>.
Therefore, transcriptomics can be used effectively to identify COVID-19 affected host transcriptional signatures,
paving the way for the creation of novel diagnostic biomarkers and therapeutic strategies'?. To find virus-specific
transcriptional signatures, it is also necessary to comprehend the host response to COVID-19 infection in com-
parison to other respiratory infections'®. Although several candidate gene biomarkers have been proposed so
far, none of them were successful for an efficient diagnosis and particularly differential diagnosis of COVID-19
in samples.

In the present study, we hypothesized that novel and potentially more specific blood biomarkers of a disease
could be identified by searching for the DEGs involved in the common pathways between blood and the major
organs affected by the disease. We validated this hypothesis using machine learning methods and found that these
potential biomarkers included signatures that could accurately differentiate COVID-19 from Influenza blood
samples’. So, in order to identify COVID-19 potential Specific Blood Differential expressed genes (SpeBDs), we
implemented a strategy based on finding shared pathways of peripheral blood (PB) and the most involved tis-
sues in COVID-19 patients (lung tissue, nasopharyngeal swab and bronchoalveolar lavage fluid (BALF)) to filter
blood DEGs based on playing a role in those shared pathways. Furthermore, potential Differential Blood DEGs
of COVID-19 versus influenza (DifBDs) were identified by extracting DEGs involved in only enriched pathways
by SpeBDs and not by influenza DEGs. Then, a machine learning method (feature selection) was utilized to
narrow down the number of SpeBDs and DifBDs and find the most predictive combination of DEGs. This step
was performed to select potential COVID-19 Specific Blood Biomarker Signatures (SpeBBSs) and COVID-19
versus influenza Differential Blood Biomarker Signatures (DifBBSs), respectively. Then the models based on the
SpeBBSs or DifBBSs and the corresponding algorithms were validated on an external dataset. Accuracy (ACC),
Area under curve (AUC) and Matthews Correlation Coefficient (MCC) were calculated to measure the power of
machine learning models constructed by considering SpeBBSs and DifBBSs. Different steps of this experiment
are demonstrated in Fig. 1.

Materials and methods

Datasets selection. For finding SpeBDs, transcriptomic profiles of COVID-19 infected versus control
samples from PB and three sources related to the respiratory system, the most involved tissues in COVID-19,
were considered, including Lung Tissue (Lung), Nasopharyngeal Swab (Swab), and Bronchoalveolar Lavage
Fluid (BALF). Datasets of PB, Lung, and Swab sources were obtained from GEO database'’. Also, the differential
expression analysis (DEA) data of the BALF source was obtained from Zhou et al’s'® and Li et al’s study®. In
addition, datasets of the three types of Influenza (HIN1, H3N2, and B) were used to discover DifBDs. Table 1
provides all the information about dataset IDs, data production platforms, and sample sizes.

Differential expression analysis. Among RNAseq datasets of COVID-19, GEO raw data of GSE155241
(Table 1) were analyzed by the Galaxy web server (https://usegalaxy.org/)*. Quality control was executed with
FastQC (version 0.11.8). The reads were aligned to the human reference genome file (Gencode, release 32, hg38
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Figure 1. A workflow representing the main steps of the present study. Designed using diagram.net online tool
available at https://app.diagrams.net/.

https://www.gencodegenes.org/human/releases.html) using HISAT2 (version 2.1.0) with default parameters.
The reads mapped to the human reference genome were counted using featureCounts Galaxy Version 2.0.1 and
default parameters.

The RNAseq count files of this study and all other RNAseq datasets of COVID-19 (Table 1) were analyzed
by the following methodology: Bioconductor’s DeSeq2 package was used to identify DEGs from the normal-
ized expression dataset. It was then applied to mine statistically significant DEGs based on the difference in
their expression values between samples of the COVID-19 versus control. DEGs with |log2FC|>1 and adjusted
p-value<0.05 were considered to be significantly differentially expressed. Also, the DEA results of COVID-19
and Healthy BALF samples from Zhou et al’s study and Li et al’s study were filtered by a |log2FC|> 1 and adjusted
p-value <0.05. After obtaining the DEGs of the COVID-19 datasets related to the four sources (Swab, BALE, Lung,
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Disease Sample type* | Dataset ID Technology/platform/platform ID Data repository® | Sample size (I/H)° | Data format analyzed in this study
Swab GSE156063 RNAseq/Illumina NovaSeq 6000/GPL24676 | GEO 93/41 Counts
BALE HRA000143 RNAseq/Illumina HiSeq 2500 hGSA-BIG 8/20 DEA results of Zhou et al’s’s study®
CRA002390 RNAseq/Illumina MiSeq GSA-BIG 4/3 DEA results of Li et al’s’s study'
COVID19 GSE147507 RNAseq/Illumina NextSeq 500/GPL18573 | GEO 2/2 Counts
GSE150316 RNAseq/Illumina NextSeq 500/GPL15520 | GEO 41/5 Counts
Lung GSE155241 RNAseq/Illumina NovaSeq 6000/ GPL24676 | GEO 3/2 SRRs
GSE159787 RNAseq/NextSeq 550 GPL29228 GEO 85/53 Counts
PB GSE161731-A | RNAseq/Illumina NovaSeq 6000/GPL24676 | GEO 46/19 Counts
GSE111368-A | Microarray/Illumina/GPL10558 GEO 154/131 Series matrix
Influenza HINI | PB GSE90732 Microarray/Illumina/GPL10558 GEO 86/22 Series matrix
GSE68310-A Microarray/Illumina/GPL10558 GEO 166/43 Series matrix
GSE61821-A Microarray/Illumina/GPL10558 GEO 86/0 Series matrix
GSE61754 Microarray/Illumina/GPL10558 GEO 16/17 Series matrix
Influenza H3N2 | PB GSE29385 Microarray/Illumina/GPL10558 GEO 36/225 Series matrix
GSE61821-B Microarray/Illumina/GPL10558 GEO 16/0 Series matrix
InfluenzB PB GSE111368-B | Microarray/Illumina/GPL10558 GEO 16/130 Series matrix
GSE68310-B Microarray/Illumina/ GPL10558 GEO 16/4 Series matrix

Table 1. Publicly available biomarker discovery datasets. *Swab: nasopharyngeal swab; BALF: bronchoalveolar
lavage fluid; PB: peripheral blood cells; "GSA-BIG/hGSA-BIG, Genome Sequence Archive (GSA)/ Human
Genome Sequence Archive (hGSA) in National Genomics Data Center, Beijing Institute of Genomics

(BIG), Chinese Academy of Sciences https://bigd.big.ac.cn/gsa-human/; GEO: Gene Expression Omnibus;
ArrayExpress, ArrayExpress Archive of Functional Genomics Data https://www.ebi.ac.uk/arrayexpress/. <(I/H),
samples from infected patients/samples from healthy controls.

and PB), the results of DEA of the sources with more than one dataset (BALF and Lung) were integrated using
the Venn diagram. While, in the cases of Swab and PB sources, only one dataset was related to each of them, and
plotting the Venn diagram was not required.

For three influenza types, we selected microarray raw data (Table 1). Microarray data were pre-processed,
merged, and analyzed independently by the R programming language for each influenza type. The series matrixes
were downloaded from the GEO database. Quantile normalization and log transformation were performed on
datasets. The aggregate function averaged multiple expression values assigned to the same gene symbols. The
platform for producing the data in each influenza type was the same GPL, and the source of all samples was
peripheral blood; the data was homogenous, so we integrated data for each influenza type independently using
the merging method. In order to remove the batch effect between datasets, we performed a batch effect removal
using the ComBat function from the SVA package. Finally, DEA between three types of influenza and healthy
samples was conducted independently using the Limma package. DEGs with a false discovery rate adjusted
p-value <0.05 and |log2FC|> 0.4 |were considered significant.

Biomarker discovery using pathway enrichment analysis.  SpeBDs discovery. The pathway enrich-
ment analysis by the Reactome database in Enrichr web-based tool*! was performed for DEGs of each source
(Swab, BALF, Lung, and PB) independently. Enriched pathways with adjusted p-value <0.05 were considered
significant. After that, common pathways of each Swab, BALFE, and Lung source with PB were found, and the
DEGs that had enriched those common pathways in PB were extracted. These DEGs were considered as SpeBDs.

DifBDs discovery. In order to find DifBDs, the pathway enrichment analysis for the three types of influenza
(HIN1, H3N2, and B) was performed independently by the Reactome database of Enrichr. The pathway enrich-
ment analysis for the SpeBDs was performed as well. A pathway was considered significant if the adjusted
p-value was smaller than 0.05. Then, a Venn diagram was constructed including the significant pathways of
SpeBDs, HIN1, H3N2, and B. Significant specific pathways of COVID-19 that were not enriched in any of the
influenza types were selected. After that, the SpeBDs of COVID-19 that had enriched those pathways were
extracted. These DEGs were considered as DifBDs.

Choosing the best biomarker signatures and validation by machine learning. RapidMiner Stu-
dio as a powerful tool for biomarker discovery was registered (version 9.7) and utilized to extract and validate
biomarker signature from SpeBDs and DifBDs?-%.

In this study a two-step machine learning approach was implemented, first we employed four classifiers
(k-NN, Random Forest, SVM, Naive Bayes) to supervise the wrapper feature selection method and extract the
best combination of biomarkers from the feature selection dataset (an external dataset different from discovery
datasets but containing SpeBDs or DifBDs). In the next step, the models based on optimal subset of biomarkers
and the corresponding algorithms (the same algorithms that were applied in feature selection to select them)
were validated on the validation dataset (another external dataset different from discovery and feature selection
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datasets). The logic behind this strategy was that the algorithm applied to supervise a wrapper method has had
the best performance ability for a subset of features, among other probable combination of features. So we can
use that algorithm for building a model (biomarker panel) based on the corresponding features (SpeBBSs or
DifBBSs) and test the model on an external dataset to validate the model. The purpose of employing four clas-
sifiers in this study was to get four subsets of genes and build four models and biomarker panels. In this way, we
had the chance to consider four biomarker panels with a high classification power and introduce the best one,
as our minimal biomarker panel.

Feature selection. A biomarker panel containing a less number of genes would be more practical to test in a
clinical assay?”?. So, we decided to choose a small set of most predictive biomarker signatures from SpeBDs to
be introduced as COVID-19 potential Specific Blood Biomarker Signatures (SpeBBSs) and from DifBDs to be
introduced as COVID-19 versus influenza Differential Blood Biomarker Signatures (DifBBSs). In order to do
that, we applied a machine learning method (feature selection) using the Optimize Selection (forward selec-
tion type) operator implemented in Rapid Miner. The Forward Selection is a kind of wrapper feature selection
approach. Here, we employed four classifiers (k-NN, Random Forest, SVM, Naive Bayes) to supervise the wrap-
per method and extract the best combination of biomarkers from the feature selection dataset.

The Forward Selection strategy initially uses only one attribute (in our case, each attribute is a SpeBD or
DifBD). Additional attributes are added until there is no more performance gain by adding an attribute.

Rapid Miner provides several other methods for feature selection including Brute Force, Evolutionary
algorithm, Backward Elimination, and many other methods*. The Optimize Selection (Brute Force) operator
examines all possible combinations of the attribute sets to select the most relevant attribute. This method is
not applicable in the case of high-dimensional data due to its comprehensive examination®. The evolutionary
algorithm selects the most relevant attributes of the dataset using evolutionary algorithms, e.g. genetic algorithm
(GA). Backward Elimination starts with all features and it removes the worst feature in each step®’. We tried
using Optimize Selection (Evolutionary) and Optimize Selection (Backward Elimination) operators of Rapid
Miner but these algorithms represented lower performances with the low number of features compared to the
Forward Selection strategy. The purpose of feature selection in this study is to select a small set of biomarker
signatures because such a panel would be more clinically applicable. We, therefore, chose to use Optimize Selec-
tion (Forward Selection) operator that has a higher performance in selecting a small set of biomarker signatures.

SpeBBSs discovery and validation. 'The count values of SpeBDs were extracted from dataset GSE166190 and
Bibert et al’s dataset-A’!, which included peripheral blood samples of healthy people and COVID-19 infected
patients. Table 2 listed the sample size and platform properties of these datasets.

The rlog function of the package DESeq2 was used to convert the raw counts to normalized logarithmic
counts. The dataset was then transposed (samples in rows and SpeBDs genes in columns), and after conversion
of disease status to binominal (Healthy =0 and COVID-19 =1) input dataset for machine learning was prepared.
After that, the two-step machine learning procedure was used to narrow down the SpeBDs for obtaining SpeBBSs
(feature selection phase using an external dataset (GSE166190)) and validating the SpeBBSs (validation phase
using another external dataset (Bibert et al’s dataset-A)). In each phase, the five indicators (ACC, Spe, Sen, MCC,
and AUC) were calculated for the feature selections and models constructed by the four algorithms.

DifBBSs discovery and validation. 'The count values of DifBDs were extracted from dataset GSE161731-B and
Bibert et al’s dataset B*!, which included peripheral blood samples of Influenza and COVID-19 infected patients.
The sample size and platform properties of these datasets are listed in Table 2. In order to construct the input for
RapidMiner software, the binominal disease status (Influenza=0 and COVID-19=1) was added to rlog trans-
formed, transposed counts files of the two datasets. The same two-step procedure for selecting and validating
the SpeBBSs was applied to select DifBBSs among DifBDs (feature selection phase using an external dataset
(GSE161731-B)) and validate them (validation phase using another external dataset (Bibert et al’s dataset-B)).
In each phase, the five indicators (ACC, Spe, Sen, MCC, and AUC) were calculated for the feature selections and
constructed models by the four algorithms.

Performance evaluation. The ten-fold cross-validation strategy was employed to evaluate the performance of
constructed models in this study. In ten-fold cross-validation, the input (samples) is divided into ten equal parts.
One of the ten parts is retained as the test data set. The other parts are used as inputs of the training subprocess.

Dataset ID Platform/platform ID Sample size and type Usage in this study

GSE166190 Tllumina HiSeq 4000/GPL20301 15 Healthy, 83 COVID-19 Feature selection for finding SpeBBSs
Bibert et al’s dataset-A | Illumina HiSeq 4000/- 27 Healthy, 103 COVID-19 Validation of SpeBBSs

GSE161731-B Tllumina NovaSeq 6000/GPL24676 | 17 Influenza, 77 COVID-19 | Feature selection for finding DifBBSs
Bibert et al’s dataset-B Illumina HiSeq 4000/- 22 Influenza, 103 COVID-19 | Validation of DifBBSs

Table 2. Datasets used for feature selection and validation of blood biomarker signatures by machine learning
methods.
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Cross-validation is repeated ten times and every time one of the subsets plays the role of the test dataset. The ten
results are then averaged to obtain a single result.

The performance of classification was obtained in terms of four common measurements. These measurements
were Accuracy (ACC), Sensitivity (Sen), Specificity (Spe), the Mathews correlation coefficient (MCC), and area
under the curve (AUC). The first four were calculated using true-positive (TP), true-negative (TN), false-positive
(FP), and false-negative (FN) indicators by the formula. And AUC was calculated by plotting a ROC curve.

When datasets are imbalanced in evaluating binary classification problems, MCC gives more information than
other measures like accuracy because it considers the balance ratios of the four measures (TP, TN, FP, and FN).
The accuracy score can be misleading since it does not fully consider the size of the four classes of measurements
in its final calculation. However, we provided this indicator as the most intuitive evaluation metric. The MCC
value is between —1 and 1. 1 is MCC of a model with the best performance. 0 is like a random prediction, and
-1 indicates a complete discrepancy between reality and prediction®. Also, we used AUC, which is a standard
parameter and a threshold-independent measure. AUC is the area under the ROC curve generated by plotting
sensitivity or true positive rate against false positive rate.

The following parameters were set for the four classifiers of this study:

k-NN: K: 5; Weighted vote: true; Measure types: MixedMeasures; Mixed measure: MixedEucideanDistance.
Random Forest: Number of trees: 100; Criterion: gain_ratio; Maximal depth: 10; Voting strategy: confidence
vote; Guess subset ratio: true. SVM: Kernel type: Dot; C: 0.00; Convergence epsilon: 0.001; Lpos: 1.0; L neg: 1.0;
epsilon: 0.0; Epsilon plus: 0.0; epsilon minus: 0.0. Naive Bayes : Laplace correlation parameter was set to true.

Results

Differential expression analysis and biomarker discovery using pathway enrichment analy-
sis.  SpeBDs discovery. 'The DEA between COVID-19 and Healthy PB samples of dataset GSE161731-A (Ta-
ble 1) resulted in 624 DEGs including 271 upregulated and 353 downregulated genes. The pathway enrichment
analysis of these up and downregulated DEGs resulted in 113 significant pathways which are listed in Tables S1
and S2.

The DEGs of differential analysis results between COVID-19 and Healthy BALF samples in Zhou et al. and
Li et al. studies were obtained. Then, the Venn diagram plotted for these two groups of DEGs from the BALF
source resulted in 890 DEGs including 475 upregulated and 415 downregulated genes. The pathway enrichment
analysis of these DEGs resulted in 36 significant pathways (Tables S3 and S4). Thirty-one of these significant
pathways were shared with the significant pathways of PB, and We extracted 95 DEGs from the PB dataset that
had enriched those common pathways (Figs. 2 and 3).

The DEA was performed between COVID-19 and Healthy Lung samples of datasets GSE147507, GSE150316,
GSE155241, and GSE159787. The plotted Venn diagram for the four datasets of Lung source resulted in 15
upregulated and 42 downregulated common genes, a total of 57 DEGs. The pathway enrichment analysis of
these 57 DEGs resulted in 9 significant pathways (Tables S5 and S6), 2 of these significant pathways were shared
with PB, and we extracted 54 DEGs of the PB dataset that had enriched those common pathways (Figs. 2 and 3).

The DEA between COVID-19 and Healthy Swab samples of dataset GSE156063 resulted in 207 upregulated
and 379 downregulated genes, a total of 586 DEGs. Pathway enrichment analysis of these DEGs resulted in
91 significant pathways which are listed in Tables S7 and S8; six of which were shared with the PB significant
pathways, and 74 DEGs of the PB dataset that enriched those common pathways were extracted (Figs. 2 and 3).

Finally, from all the DEGs extracted from the PB dataset in this step (from common pathways of PB with
BALF:95 DEGs, with Lung: 54 DEGs, and with Swab:74 DEGs), duplicated DEGs were removed, and 108 unique
SpeBDs were obtained (Fig. 3). A complete list of SpeBDs and their related extraction sources are listed in Figs. 2
and 3. Moreover, a pathway enrichment analysis was performed for the SpeBDs, and 152 significant pathways
were enriched (Table S9).

DifBDs discovery. In order to obtain DEGs of Influenza HINT1, the four related datasets including GSE111368-
A, GSE90732, GSE68310-A, and GSE61821-A were integrated. DEA resulted in 309 upregulated and 208 down-
regulated, a total of 517 DEGs. These DEGs were enriched in 79 significant pathways (Tables S10 and S11).

To obtain DEGs of Influenza H3N2, three datasets including GSE61754, GSE29385, and GSE61821-B were
integrated. The results of DEA were 1139 DEGs including 854 upregulated and 285 downregulated genes. The
DEGs were enriched in 11 significant pathways (Tables S12 and S13).

Also, the two datasets of Influenza B (GSE111368-B and GSE68310-B) were integrated, and the DEA resulted
in 976 DEGs including 512 upregulated and 464 downregulated genes. The pathway enrichment analysis for
these DEGs resulted in 186 significant pathways (Tables S14 and S15).

Finally, a Venn diagram of significantly enriched pathways of influenza HIN1, H3N2, B, and SpeBDs was
plotted (Fig. 4A). Eighty-three pathways were specifically enriched by SpeBDs and not by any of the Influenza
types. The 87 SpeBDs that enriched those pathways were extracted for further analysis and named DifBDs. A
list of uncommon pathways and DifBDs from them is provided in Fig. 4B.

Choosing the best gene signature and validation by machine learning. SpeBBSs discovery and
validation. In order to select the best subset of SpeBDs to be introduced as SpeBBSs, a feature selection method
was applied using an external dataset containing SpeBDs (GSE166190). Then, these biomarker signatures were
validated on another external dataset (Bibert et al’s dataset -A). All the four classifiers used for evaluating the
performance of the feature selection method indicated high robustness levels in terms of AUC and ACC (ACC
higher than 92.86% and AUC higher than 86.10% on the feature selection dataset). Also the models based on
these algorithms and the SpeBBSs had ACCs higher than 90.77% and AUCs higher than 96.30% on the valida-
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Figure 2. Common Pathways of PB with BALE, Lung, and Swab, their adjusted p-values in pathway enrichment
analysis, and the list of extracted SpeBDs from them. The figure is generated using RStudio version 2022.12.0
and Adobe Illustrator version 24.2.1.
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Figure 3. Extraction of SpeBDs from PB DEGs of COVID-19 patients with the help of the common pathways
between PB and the three sources from the respiratory system of COVID-19 patients (Swab, BALE and Lung).
A whole list of SpeBDs is indicated in this figure. Lung, Lung tissue biopsy; Swab, nasopharyngeal swab; BALE,
bronchoalveolar lavage fluid; PB, peripheral blood. The figure is created using Cytoscape version 3.8.2 and
Mlustrator version 24.2.1

tion dataset. Feature selection using Random Forest provided the highest ACCs and AUCs (95.92% ACC and
93.80% AUC on feature selection dataset and the model based on this classifier and the three selected SpeBBSs
had the 93.09% ACC and 98.00% AUC on the validation dataset) (Fig. 5A,B). Feature selection using this classi-
fier chose IGKC, IGLV3-16, and SRP9 as SpeBBSs. The feature selection and model based on this algorithm had
the second-highest performance regarding MCC on both datasets respectively (83.64% on the feature selection
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83 pathways that were enriched by SpeBDs and Extracted DifBDs from Pathways
not by any of Influenza types DEGs

I 2168880-Scavenging of heme from plasma Homo sapiens R-HSA
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5663220-RHO GTPases Activate Formins Homo sapiens R-HSA CHMPS, POLR2K, SPC24, IGLV4-60,
2980766-Nuclear Envelope Breakdown Homo sapiens R-HSA
141430-Inactivation of APC/C via direct inhibition of the APC/C complex Homo sapiens R-HSA RPS27L, CD70, MYL9, UBE2C,
68689-association with the ORC:origin complex Homo sapiens R-HSA CDC6 FMNL2, SPTB, RICTOR, CIT, IGLVI-
2132295-MHC class II antigen presentation Homo sapiens R-HSA ’ ’ ? ’
179409-mediated degradation of Nek2A Homo sapiens R-HSA APC-Cdc20 44, IGLV2-11, PSMC6, RPL41,
I 2029481-FCGR activation Homo sapiens R-HSA
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I [ 66663-Initial triggering of complement Homo sapiens R-HSA ~ _
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Figure 4. (A) Venn diagram representing the pathways enriched by SpeBDs, Influenza HIN1 PB DEGs,
Influenza H3N2 PB DEGs, and Influenza B PB DEGs constructed using an online tool available at https://bioin
formatics.psb.ugent.be/webtools/Venn/. The red circle mentions pathways that were enriched by SpeBDs and
not by the three Influenza types; these pathways are listed in part B: Eighty-three pathways were obtained from
pathway enrichment analysis of SpeBDs and were different from pathways obtained by pathway enrichment
analysis of Influenza HIN1, H3N2, and B DEGs; (B) is created using RStudio version 2022.12.0 and Adobe
Mlustrator version 24.2.1.
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Figure 5. The ten-fold cross-validation results of the feature selection method in choosing SpeBBSs and

the constructed machine learning models; (A) ROC curves representing classification ability of the feature
selection method by the four classifiers on GSE166190 dataset (the feature selection dataset); (B) ROC curves
representing classification powers of the constructed models based on the selected SpeBBSs and corresponding
algorithms (the same algorithms that were applied in feature selection step) on Bibert et al’s dataset A (the
validation dataset). These ROC curves show ROC (red lines) at various threshold settings (blue lines). In the
ROC curves, the x-axis shows 1-specificity, and the y-axis shows sensitivity. (C) Four measures indicating the
classification power of the feature selection method by the four classifiers on GSE166190 dataset (the feature
selection dataset); (D) Four measures indicating the power of constructed models based on the selected SpeBBSs
and the corresponding algorithms (the same algorithms that were applied in feature selection step) on Bibert
et al’s dataset A (the validation dataset). FS: feature selection.
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and 78.70% on the validation dataset) (Fig. 5C,D). Furthermore, they showed the highest sensitivity with an ac-
ceptable level of specificity.

DifBBSs discovery and validation. In order to select the most predictable subset of DifBDs to be introduced
as DifBBSs, a feature selection method was applied using an external dataset containing DifBDs (GSE161731-
B). Then, these biomarker signatures were validated on another external dataset (Bibert et al’s dataset B). The
forward selection method using all four classifiers had ACCs higher than 97.87% and AUCs higher than 95.00%
on the feature selection dataset. Models built based on them and the corresponding DifBBSs, represented higher
than 82.4 ACCs and higher than 83.60% AUCs on the validation dataset (Fig. 6A,B). Among them, the feature
selection using Naive Bayes had a high performance on the feature selection dataset and constructed model
based on this classifier and the corresponding DifBBSs represented the highest performance on the validation
dataset in terms of MCC; In addition, the feature selection and the model built based on this algorithm showed
high levels of sensitivity and specificity in both datasets (Fig. 6C,D). The forward selection method using this
classifier chosen FMNL2, IGHV3-23, IGLV2-11, and RPL31 as DifBBSs.

Discussion

Gene expression profiles of the disease-involved cells are not practical in the diagnosis of diseases. Rather,
such profiles might be valuable for selection of limited number of potential protein biomarkers which can be
detected via common techniques in biofluid samples. From both basic and clinical perspectives, comprehending
the associations between blood biomarkers and the pathogenic states and processes in the tissues affected by
the disease could be a great help in selecting the right molecule as potential biomarker. Therefore, in this study,
we considered the overlapping pathways between peripheral blood and the central involved body system in
COVID-19 in order to identify the disease’s novel and potential specific blood biomarkers’. Although, further
steps such as comparisons of DEGs of a disease against other diseases (e.g. what we did for Influenza in this
study) are indeed needed to get specific biomarkers for diseases, this strategy can help to find the potential spe-
cific blood biomarkers before comparing the DEGs of our desired disease against the rest of the diseases one by
one. SpeBDs were extracted from the overlapping pathways between PB and respiratory system-related samples
(Swab, BALFE, and Lung) of Covid-19 patients. The extracted 108 SpeBDs enriched 152 significant pathways that,
as we expected, are involved in multiple pathways in the immune system, such as classical antibody-mediated
complement activation, FCGR activation, creation of C4 and C2 activators, initial triggering of complement, role
of phospholipids in phagocytosis, complement cascade, regulation of actin dynamics for phagocytic cup forma-
tion, immune System, immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell, FCERI
mediated NF-kB activation, viral mRNA Translation, FCERI mediated Ca + 2 mobilization3>33.

In the next step, a machine learning method (feature selection) was utilized to narrow down the number of
SpeBDs and find the most predictive combination of them to select SpeBBSs. The five indicators (ACC, AUC,
MCC, Sen and Spe) were calculated to measure the power of machine learning models constructed by SpeBBSs.
Consequently, feature selection using Random Forest selected IGKC, IGLV3-16, and SRP9 as SpeBBSs with
the highest classification power. And the constructed model based on this algorithm and SpeBBSs also vali-
dated this biomarker panel on an external dataset. Interestingly, the involvement of these biomarker proteins
was previously shown by some studies. Immunoglobulin kappa constant, IGKC, encodes the constant domain
of kappa-type light chains for antibodies and Immunoglobulin lambda variable 3-16, IGLV3-16, encodes the
variable domain of lambda-type light chains of antibodies. Immunologically, plasma cells are responsible for
synthesizing antibodies and have been identified as possibly producing virus-neutralizing antibodies in COVID-
19934, Upregulated IGKC and IGLV3-16 expression may be involved in the differentiation of B lymphocytes
into immunoglobulins-secreting plasma cells, which could play an important role in the pulmonary immune
response®. SRP9 is a component of the signal recognition particle (SRP) complex, involved in targeting secretory
proteins to the rough endoplasmic reticulum membrane®. The SRP proteins also have a role in the virus-host
responses. Based on an experiment, the 7SL RNA component of the SRP interacts with SARS-CoV-2, and upon
binding, the viral proteins disrupt SRPs function, thus inhibiting protein trafficking to the cell membrane®®.
Moreover, it was shown that the uncleaved SRP9 could increase the translation elongation arrest and allows
translocation, including the insertion of transmembrane domains (e.g., Coronavirus envelope protein). This
process can finally lead to frameshifts in the translation process®.

In the next part, another pathway-based strategy was applied to obtain DifBDs. 87 DifBDs were extracted
from the 83 pathways enriched by SpeBDs but not by Influenza HIN1, H3N2, and B DEGs. The most important
of these pathways involves classical antibody-mediated complement activation, FCGR activation, activators,
initial triggering of complement, FCERI mediated NF-kB activation, binding and Uptake of Ligands by Scaven-
ger, complement cascade, regulation of actin dynamics for phagocytic cup formation, role of phospholipids in
phagocytosis and mobilization. It can be seen that a number of non-specific pathways have been removed from
the previous 152 pathways.

Then, DifBBSs were selected from 87 DifBDs using a feature selection approach. The five indicators of ACC,
AUC, MCC, Sen and Spe were calculated to measure the power of machine learning methods and models con-
structed by DifBBSs. Accordingly, the feature selection by the best classifier (the Naive Bayes) selected FMNL2,
IGHV3-23, IGLV2-11, and RPL31 as DifBBSs. These DifBBSs along with the Naive Bayes were validated on an
external dataset as a biomarker panel with the highest performance. Formin-like protein 2, FMNL2, is a formin-
related protein from a family of large proteins with multidomain that play an essential role in controlling a
cytoskeletal organization®®. There is a significant interaction between the native 1 integrins expressed on human
and mouse pulmonary epithelial cells and the S-protein of SARS-CoV-2%#. The critical role of p1 integrins in
mediating cellular adhesive interaction with the SARS-CoV-2 S-protein have recently shown in studies®. As
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Figure 6. The ten-fold cross-validation results of the feature selection method in choosing DifBBSs and

the constructed machine learning models; (A) ROC curves representing classification ability of the feature
selection method by the four classifiers on GSE161731-B dataset (the feature selection dataset); (B) ROC curves
representing classification powers of the constructed models based on the selected DifBBSs and corresponding
algorithms (the same algorithms that were applied in feature selection step) on Bibert et al’s dataset-B (the
validation dataset). These ROC curves show ROC (red lines) at various threshold settings (blue lines). In the
ROC curves, the x-axis shows 1-specificity, and the y-axis shows sensitivity. (C) Four measures indicating the
classification power of the feature selection method by the four classifiers on GSE161731-B dataset (the feature
selection dataset); (D) Four measures indicating the power of constructed models based on the selected DifBBSs
and the corresponding algorithms (the same algorithms that were applied in feature selection step) on Bibert

et al’s dataset B (the validation dataset). FS: feature selection.
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FMNL?2 involves in the regulation of p1-integrin traffic and function?!, it is possible that as COVID-19 progress,
FMNL2 regulation shifts from cell-to-cell adhesion to cell-to-substitute adhesion.

IGHV3-23 (Immunoglobulin Heavy Variable 3-23) and IGLV2-11 (Immunoglobulin Lambda Variable 2-11)
belong to a cluster of genes in the immunoglobulin (Ig) structure. During acute phase infection in COVID-19,
these two variable chains are parts of top frequent paired heavy and light chain clonotypes that are identified
in the repertoire of more general clonotypes**~**. RPL31 (Ribosomal Protein L31) is a member of ribosomal
proteins (RPs). One direct evidence of ribosomal heterogeneity comes from ribosomopathy, caused by defec-
tive RPs and/or rRNAs. In a study, the putative role of ribosomal heterogeneity in COVID-19 susceptibility
and severity is investigated as an important role*’. Furthermore, recent studies showed RPL31 as a diagnostic
biomarker for this infection®.

Conducting the pathway analyses based on a manually curated aggregate of multiple data sources can be the
limitation of the present work. On the other hand, the reliability of the findings is maintained by a promise with
known mechanisms and between the expression profiling data from different datasets.

Conclusion

In summary, to find potential specific biomarkers for diagnosis of COVID-19, we focused on disease pathways,
which include multiple pathways that can vary between different disease-related compartments. Consequently,
more works that simultaneously analyze multiple mechanisms in peripheral blood and inflamed tissues are
required. By the way, our findings shed a light on some pathways and molecules which can be valuable candidates
for more investigations. Moreover, investigating differential biological pathways in similar diseases can help us
identify differential diagnostic biomarkers for diseases. The present study identified several candidate biomarkers
for specific detection of COVID-19 and differential diagnosis compared to influenza strains in blood. Further
practical studies are necessary to validate these combinatorial biomarkers.

Data availability

Data from no human is directly involved in the present study’s analysis. All the original data are available in
public databases or supplementary material of a published article on the following links: [GEO] repository,
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156063], [hnGSA-BIG] repository, [https://ngdc.
cncb.ac.cn/gsa-human/browse/HRA000143], [GSA-BIG] repository, [https://ngdc.cncb.ac.cn/gsa/browse/
CRA002390], [GEO] repository, [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgitacc=GSE147507], [GEO]
repository, [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150316], [GEO] repository, [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155241], [GEO] repository, [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE159787], [GEO] repository, [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgitacc=GSE16
1731], [GEO] repository, [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111368], [ GEO] repository,
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90732], [GEO] repository, [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE68310], [GEO] repository, [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE61821], [GEO] repository, [https://www.ncbinlm.nih.gov/geo/query/acc.cgi?acc=GSE61754], [GEO]
repository, [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29385], [ GEO] repository, [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166190], [Bibert et al’s study supplementary material], https://
www.frontiersin.org/articles/10.3389/fimmu.2021.666163/full].
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