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Survival strategies of artificial 
active agents
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Artificial cells can be engineered to display dynamics sharing remarkable features in common with 
the survival behavior of living organisms. In particular, such active systems can respond to stimuli 
provided by the environment and undertake specific displacements to remain out of equilibrium, 
e.g. by moving towards regions with higher fuel concentration. In spite of the intense experimental 
activity aiming at investigating this fascinating behavior, a rigorous definition and characterization of 
such “survival strategies” from a statistical physics perspective is still missing. In this work, we take 
a first step in this direction by adapting and applying to active systems the theoretical framework 
of Transition Path Theory, which was originally introduced to investigate rare thermally activated 
transitions in passive systems. We perform experiments on camphor disks navigating Petri dishes and 
perform simulations in the paradigmatic active Brownian particle model to show how the notions of 
transition probability density and committor function provide the pivotal concepts to identify survival 
strategies, improve modeling, and obtain and validate experimentally testable predictions. The 
definition of survival in these artificial systems paves the way to move beyond simple observation and 
to formally characterize, design and predict complex life-like behaviors.

Natural biological systems are capable of developing strategies to survive and reproduce, forming the basis for 
the process of Darwinian  evolution1. Artificial life aims at recreating traits of these systems to gain a deeper 
understanding of the complex information processing that defines biological phenomena and  evolution2,3. As a 
part of this approach, several recent efforts to produce artificial cells with widely varying components, but often 
with pieces isolated from natural living cells, have shown fascinating dynamics. In particular, they can respond 
dynamically to stimuli when away from thermal equilibrium, e.g. through self-division4. Some synthetic systems 
can also execute specific patterns of moves that ultimately result in the delay of the eventual approach to chemi-
cal  equilibrium5. A notable example is the motile chemical  droplet6–8. In this specific case, a liquid droplet is 
charged with chemical potential in the form of fuel that is consumed during the reaction. Motion is the emergent 
mechanism or behavior that slows the droplets eventual decay towards  equilibrium6.

From a statistical physics perspective, being out-of-equilibrium represents the most general feature that these 
artificial agents have in common with biological  organisms9. For this reason, in the following, we shall say that 
a synthetic agent is also “surviving” if it is not in equilibrium with its environment. The survival of an agent is 
typically associated with specific features of its behavior, such as e.g. the migration towards regions with higher 
concentration of nutrients (fuel) or away from regions with a high concentration of products resulting from 
fuel consumption (waste). In this sense, the quest for survival is closely related to a target-search  problem10–17.

The observation that active agents are capable of undertaking specific target-search motion ultimately deter-
mining their survival raises a number of questions: Do the survival “strategies” undertaken by a given active agent 
exhibit common universal features or are they intrinsically heterogeneous and specific to the characteristics of 
the agent itself? To what extent are the survival strategies determined by the initial conditions? Is it possible to 
assign a probability for an artificial agent or a biological cell initially placed in a specific location to ultimately 
survive on a long time scale? In this work, we set the stage to address these fundamental questions from a physics-
based, statistical mechanical perspective.

To define, characterize, and predict the survival strategies undertaken by an active agent, we expand to non-
equilibrium conditions some concepts and notions of Transition Path Theory, the classical statistical–mechanical 
theory describing rare spontaneous stochastic transitions between metastable  states18–22. In particular, we resort 
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on the pivotal concept known as the committor  function19,22–26, which has already been successfully exploited 
to investigate long-range correlations and nucleation pathways in active-matter  systems26,27. In general terms, 
this quantity, encoding the probability for a stochastic system to reach a predetermined goal as a function of 
the initial conditions, has been widely exploited in the framework of chemical  physics22,28, as it was shown to 
provide an ideal reaction coordinate for thermally activated transitions of passive systems, such as e.g. structural 
rearrangements of  biomolecules29,30. In this context, it is defined as the probability for the molecule prepared 
in some initial configuration to reach a given product state (e.g. for a protein, its native structure) without first 
backtracking to a competing state (e.g. the protein unfolded state).

To address our questions concerning survival strategies in artificial systems, we consider the classical example 
of a camphor disk in water or, to be more precise, an improved camphor–camphene–polymer disk capable of 
long-term self-propulsion31,32. We also consider one of the simplest paradigmatic theoretical models of active sto-
chastic dynamics, namely the active Brownian particle (ABP)33,34. This model is obtained through a generalization 
of the Brownian dynamics with the addition of a self-propulsion speed with variable orientation that keeps the 
system out of equilibrium (see “Materials and methods” section). Both the camphor disk and the ABP navigate 
in a circular enviroment in which particular sub-regions affect differently their surviving odds. By comparing the 
target-search strategies obtained by simulations of ABPs to experimental trajectories of camphor disks, similar 
qualitative behaviors of the committor emerge, thus unveiling features of survival strategies which depend on 
the particular environment but are independent of the specific agent. Furthermore, looking at the ABP as a first 
tentative model for the camphor disk dynamics, an analysis of the committor and of other typical quantities of 
Transition Path Theory provides direct assessment of the model validity and suggestions on its improvement.

Results and discussion
Statistical physics model of survival dynamics. The camphor disk moves in a two-dimensional envi-
ronment given by the Petri dish and, at each time t, the system’s configuration is specified by its instantaneous 
position r(t) = (x(t), y(t)) and velocity v(t) = (vx(t), vy(t))

31,32 (see also “Materials and methods” section). The 
same holds for an ABP with the difference that, in this case, the modulus of the self-propulsion velocity, v, is 
fixed and only its direction ϑ(t) explicitly appears in the definition of the system’s configuration (see “Materials 
and methods” section). On the other hand, the state of a passive Brownian particle, used as a reference system, 
only includes the instantaneous position r(t) . More generally, we then denote with Ŵ(t) a system’s microstate and 
with Xt = {Ŵ(0) → Ŵ(�t) → Ŵ(2�t) → · · · → Ŵ(t = n�t)} the whole “history” of the system up to time t, 
i.e. a time-ordered sequence of microstates Ŵ visited, starting from some initial state Ŵ(0) at the initial time t = 0.

With real-life situations in mind, we bundle the environment in three different disjoint regions (T, R, and Q) 
which affect differently the surviving odds of the agent. Adopting for convenience a terminology commonly used 
in the description of reactive processes, the “target” region T is a portion of configuration space with abundance 
of fuel or nutrients. In the following, we shall also refer to it as the “safe zone” , because in T a out-of-equilibrium 
condition can persist for time intervals much larger than the characteristic time scale of the system. In contrast, 
the reactant region R is a “death zone”, characterized by absence of fuel or nutrients or the abundance of con-
sumption waste or poisoning substances. In R, the system rapidly thermalizes with the bath and becomes passive. 
Finally, in the transition region Q (anywhere outside both T and R) the agent does not risk rapid thermalization 
but is also unable to sustain activity for a very long time, for example because of limited resources.

We now define a survival move as any local transition that does not lead the agent to visit region R or brings 
the agent out of it. Then, we define a surviving path associated with an initial condition Ŵ0 as a stochastic trajec-
tory Xt initiated in Ŵ0 and composed by a sequence of survival moves.

In essence, the survival path ensemble is a natural adaptation to active systems of the concept of the transition 
path ensemble, which is commonly used to describe rare thermally activated transitions in passive systems. The 
information about survival “strategies” is encoded in the survival path ensemble, and can be decoded by analyzing 
a set of stochastic descriptors (distributions and probability fields), which characterize the system’s dynamics.

In particular, the configurations that are most likely visited by the surviving particles can be inferred by 
computing the local surviving-path density mS(Ŵ|Ŵ0) , defined as the probability that a surviving trajectory 
Xt initiated at Ŵ0 visits the microstate Ŵ . The mS distribution allows for important insight about the dynamics 
of surviving particles. However, it does not provide detailed information on the sequence of moves ultimately 
leading to survival. It also does not allow computing the probability of survival, given the initial conditions. To 
provide these missing pieces of information, we rely on the notion of the committor function, which for any 
point in Q gives the probability of reaching the safe zone before the death zone (mathematical properties of the 
committor function for passive and active particles are discussed and compared in the Materials and Methods 
section). In this sense, the committor function coincides with a survival probability and it enables us to obtain 
a predictive mathematical characterization of the survival strategy.

Illustration and comparison with experiment. To illustrate our statistical physics scheme and to assess 
its predictive power, it is instructive to compare theoretical predictions obtained from numerical simulations 
with the results of experiments performed on artificial active agents. In particular, we have used self-propelled 
camphor disks floating on a water surface and exploring a confining environment provided by a Petri dish of 
radius σ (more details are provided in the “Materials and methods” section).

We focus our analysis on three different initial conditions, with positions located in small circular regions, 
denoted by 1, 2, and 3, respectively.
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Survival‑path density. As a first step in our analysis, we focus on the survival-path density associated with ini-
tial conditions in the three small regions of the Petri dish. For sake of simplicity, we choose to marginalize this 
distribution with respect to the angular orientation, i.e. to compute

This distribution can be estimated from a statistical analysis of long stochastic trajectories obtained in simula-
tions (by integrating numerically the ABP stochastic equations of motion). However, differently from the ABP 
model, in experiments we are not able to directly measure an internal angular variable ϑ specifying the direction 
of their self-propulsion velocity. Then, in this case, the survival-path density is simply computed by a frequency 
histogram of the positions visited by the agent, see Supporting Information—SI for additional details.

In Fig. 2 we show that the distributions obtained in the plain ABP model share qualitative features in common 
with those extracted from the experiment.

As expected, these results suggest that the survival paths are likely to visit the portion of the Petri dish 
located in the direction opposite to the death region relative to the initial condition. This reflects the fact that 
the chances of survival of a particle initially heading towards the death region are rather low. A less intuitive 
common feature of theoretical and experimental distributions is the presence of a ring-shaped high survival-path 
probability density region, near the boundary of the Petri dish. In the theoretical results, this ring is very thin 
and lies near the edge of the disk. Camphor particles cannot come so close to the boundary, because of finite-
size and hydrodynamic effects. Yet, a circle of relatively large survival-path probability density is clearly visible 
in all panels reporting the experimental results. This feature suggests that a successful survival strategy consists 
in reaching the target region by sliding along the boundary. This mechanism will be referred to as the “shuttle 
surviving mechanism” (more below).

The experimentally observed survival strategy displays also a few qualitative differences with respect to the 
prediction of the standard version of the ABP model. For example, the survival-path distributions obtained from 
the experimental trajectories display concentric circular “orbits”, a feature that is not captured by the predictions 
of the standard ABP model. In addition, the experimental results for the second initial condition (panel (b)) are 
peaked in a region in the upper-left quadrant, while the theoretical ABP distribution is maximum just above 
the initial position (panel (e)).

To further analyze the origin of this observed discrepancies, in Fig. 3 we show a number of different survival 
trajectories obtained in experiment and we compare them with typical trajectories generated by the simulations 
in the standard and in the so-called “chiral” variants of the ABP model (defined in “Materials and methods” 
section). For comparison, in Fig. S3 of SI are reported some typical trajectories reaching the death region before 
the safe region.

First of all, we note that the experimental pathways display a wide spectrum of variability (see Fig. 3a–d). 
In particular, while some trajectories are similar to the motion of a standard ABP (Fig. 3a), others present a 
dominant circular contribution to the motion of the disk (Fig. 3b,c), which in some cases gives rise to “rosette” 
shaped trajectories (Fig. 3d). This quasi-circular motion is responsible for the emergence of concentric ring-like 
structures in the survival probability densities (see, e.g., Fig. 2b). The trajectories generated using the standard 
ABP do not vary considerably, and they show a single type of trajectory shape (see Fig. 3e,f).

The reason for the observed high variability in the experimental trajectories depends on several factors. First 
of all, the self-propelled camphor disks do not maintain the same level of activity (and thus, the same speed) 
throughout a single experiment, with a velocity that can vary considerably during the acquisition time. In addi-
tion, small asymmetries in their nearly circular shape can emerge spontaneously throughout an experimental 
run due to an asymmetric loss of the self-propelling fuel or due to hydrodynamic interactions with the bound-
ary. This effect can give rise to asymmetries in the propulsion direction, thus promoting circular trajectories.

The standard ABP model, in contrast, assumes a constant drift velocity and no average rotation of the pro-
pulsion direction. Arguably, these features limit the heterogeneity in trajectory shape of standard ABP particles 
and explain why the chiral ABP model accounts better for the shape variability of the trajectories observed in 
experiments. In particular, the inclusion of the additional angular drift gives rise to circular trajectories, exem-
plified in Fig. 3g.

Interestingly, chiral ABP gives rise to circular orbits while preserving a prominent “shuttle” surviving strategy, 
such as the one reported in Fig. 3h. In fact, depending on whether the angular drift ω is pushing the particle’s 
orientation towards the boundary (or away from it), the chiral ABP will be able to detach from the confining 
wall more difficultly (or more easily) than a standard ABP with similar self-propulsion speed v.

The Chiral ABP also improves the representation of the survival strategies. First of all, the regions with high 
survival-path probability density are broader than in the simple ABP model and display bent ellipsoid shapes 
(particularly evident, e.g. in Fig. 2i). In addition, also the location of the high-density region in panel (b) is cor-
rectly reproduced in panel (h). However, at least within the range of parameters we explored in this work, the 
chiral ABP does not fully capture the wide delocalization of the survival-path probability and the presence of 
concentric high-density rings. Both these features reflect the occurrence of very long circular trajectories the 
type shown in Fig. 3c.

In spite of this limitation, this analysis illustrates well how the study of the survival transition-path density 
can offer insight to improve on a statistical physics model for the dynamics of a specific active agent.

At the same time, this comparison illustrates that the information that can be assessed by considering the 
survival-path density alone is partial, since it does not enable us to predict the probability of surviving starting 
from a given initial condition, nor does it yield the order of events that characterize a successful survival strategy.

(1)ms(r|ra) :=
∫

dϑ0

∫

dϑ ms(r,ϑ |ra,ϑ0) , (a = 1, 2, 3).
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Committor function. To complement the information provided by the survival probability density and obtain a 
more complete characterization of the survival strategies, we used the same simulation and experimental set-ups 
to compute the committor function for the same set of initial conditions. This time, however, we do not mar-
ginalize over the initial angle ϑ , thus also investigating how the starting direction of the self-propulsion affects 
the chance of survival (Fig. 4). Since camphor disks do not have an inner identifiable angle variable ϑ , in the 
following discussion we will consider as initial angle for the process the exit angle ϕ , as obtained by comparing 
the position of the particles in the trajectory frames registered just before and just after the particle leaves one of 
the three circular regions 1–3. For consistency, by considering different integration time steps as the equivalent 
of experimental frames, the same procedure is used to measure the exit angle ϕ of the ABPs.

We stress the fact that, in the limit in which the circular regions 1, 2, and 3 associated with the initial condi-
tions have negligible size, the committor of a passive Brownian particle does not depend on ϕ . Hence, in this 
limit, any modulation in the committor q with the exit angle ϕ represents a clear signature of the particle’s activ-
ity. In practice, to accumulate significant statistics the three circular regions where the initial position is located 
must have finite size (see Fig. 1). However, we checked that this finite-size effect introduces only a very weak 
modulation with ϕ , much smaller than the contribution coming from the particle’s activity (see Fig. S4 in SI).

In Materials and Methods, we discuss the partial differential equation obeyed by the committor for an ABP 
and in the SI we provide a numerical scheme to solve this equation for low-dimensional systems.

In Fig. 4 we compare the experimental results for q(ra,ϕ) with the predictions obtained in the standard and 
in the chiral ABP models. In both models and in experiment, the committor function shows a strong modulation 
with ϕ , with a similar qualitative behavior. This suggests that the general properties of the committor function do 
not depend on the details of the self-propulsion mechanism. Some of these features are in fact easy to interpret: 
for instance, the value of the committor always marks a drop when the exitangle heads directly toward the death 
region R . Some other features, on the other hand, reflect a more complex underlying mechanism: For example, 
in the cases of particles exiting from point 3, the committor reach their maximum when the exit angle points 
in the direction opposite to the target. The reason for this counter-intuitive fact is that particles can efficiently 
reach the target following the “shuttle” strategy, i.e. by first traveling to the boundary of the disk and then slide 
along it, till they reach the target zone. In the standard ABP, this effect increases with the persistence length of 
the particle (see Materials and Methods), leading to a general increase of the committor function for all three 
points considered (see Fig. S5, in SI).

Another interesting feature of our results emerges from observing that the experimentally measured commit-
tor associated with point 2 is largest when the camphor disk leaves region 2 heading “North-East” ( ϕ ∈ [0,π/2] ). 
However, the survival-path density is maximum in the region located at “North-West”, relatively to the initial 
condition (see Fig. 2b). This feature clearly illustrates how the information encoded in the committor q and 
the survival-path density ms is not trivially correlated. Indeed, the camphor disks that survive by crossing the 
“North-West” region tend to explore this part of the disk for a relatively long time, before they can finally reach 

Figure 1.  Experimental and simulation setup. The death zone R is a circular region at the center of the Petri 
dish, while the safe region T is a circular segment on the left side of the dish. The committor is evaluated in 
the three circular regions labeled from 1 to 3. Here (and in the following) R and T refer respectively to the 
projections on the physical space of the reactant R and target T which are generally defined in the whole 
configuration space. The shape, position, and size of regions R and T in the Petri disk where arbitrarily chosen 
in order to ensure that the system’s configuration does not display any symmetry. The size of the R and T regions 
have been chosen large enough to guarantee the collection of sufficient statistics in simulations and in our 
experiments with camphor disks.
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Figure 2.  Survival path density ms(r|ra)—for three different initial conditions ( a = 1, 2, 3)—extracted from 
experiment (a–c) by tracking the motion of the camphor particles, evaluated from numerical simulation in the 
standard ABP model (d–f), and in the chiral ABP model (g–i).

Figure 3.  (a–d) Typical experimental trajectories of a self-propelled camphor disk reaching the target T 
starting from the circular region 2. (e,f) Typical trajectories of the standard ABP (no angular drift, ω = 0 ). (g,h) 
Examples of trajectories of the chiral ABP.
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the safe zone, hence the relatively large surviving probability density of this area. On the other hand, the disks 
that leave point 2 heading “North-East” have the largest probabilty to reach the safe zone, because they tend to 
hit the border of the disk and then rapidly slide toward the safe zone via the “shuttle” mechanism.

We have found that the standard ABP model is able to pinpoint some non-trivial qualitative feature of the 
committor, arising from the interplay between the activity of the particles and its environment. The agreement 
with the experimental results is, however, significantly improved using the chiral ABP. In particular, the addi-
tion of the angular drift provides a modulation of the committor curve of point 2 that follows closely the one 
observed in the experiments, with a maximum survival-path probability for an exit angle of π/2 rather than π.

Finally, a remark about Fig. 4 is in order: The error bars of experimental data represent the statistical error as 
obtained from the various experimental trajectories starting from one of the given initial points 1–3. However, 
these trajectories were recorded during only 5 different experimental runs (see SI) and in each run, the defects 
in the shape of the disk might induce the particle to have a clockwise or counterclockwise rotation lasting 
throughout the entire run. Therefore the number of clockwise trajectory slices and counterclockwise slices are 
not evenly distributed in the dataset, which could generate some additional asymmetry in the data. For example, 
the blue experimental curve, which is expected to be symmetric, is instead displaying some asymmetry even 
beyond the error bars.

Conclusions
Considering non-equilibrium dynamics as the most general and distinctive feature of life, here we have shown 
for the first time that the framework of Transition Path  Theory20–22 can be successfully applied to investigate 
the survival behavior of active agents. In particular, we showed how powerful concepts such as the reactive 
probability density and the committor function provide important and complementary insight on survival and 
target-search strategies of camphor disks and ABPs in a Petri dish. While the survival-probability density is large 
in the regions that are most visited by a particle escaping a death zone and ultimately reaching a safe zone, the 
committor function expresses by definition the survival probability of a particle as a function of its micro-state

By inspecting this information and comparing the experimental trajectories of camphor disks with the sto-
chastic simulations of ABPs, similar and general features of survival strategies for the considered system emerge. 
These include a qualitatively similar dependence of the surviving odds on the initial direction of motion and a 
prominent “shuttle” effect consisting in navigating along the boundaries of the confining environment to reach 
the target more efficiently. This surviving mechanism is quite expected for ABP particles, which tend to slide 
along steep walls because of the large persistence of their motion.

Furthermore, an analysis of the transition-path density and of committor function may directly suggest pos-
sible modeling improvements. In our case, it showed how the similarity between experiments and simulations 
is increased once a chiral ABP model is adopted instead of the standard ABP.

We emphasize that, in the ABP models we adopted in this work, the time scale for fuel consumption and 
waste production are assumed to be infinitely longer than those associated with the intrinsic stochastic dynamics 
of the Brownian particle. In this asymptotic regime, the committor and transition path density do not explicitly 
depend on time, reflecting the fact that the survival strategy of the active particle is not adapting to the changes 
in the environment it contributed to generate (e.g. by depositing waste or consuming fuel). A possible direction 
of improvement of the present theoretical description would be to introduce history-dependent biasing forces to 
mimic the effect of waste production and fuel consumption. If the characteristic time scales associated with the 
dynamics of these biases is chosen to be comparable with that of the diffusive dynamics of the active Brownian 

Figure 4.  Committor q as a function of the exitangle ϕ for the three different initial conditions. Mean and 
standard errors of camphor-disk experiments are given by the symbols and the associated vertical bars 
respectively. Solid lines represent the results of the plain ABP (with a persistence length ℓ = 0.2 , see “Materials 
and methods” section) and dashed line are the results of the chiral ABP.
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particle, then the committor and transition path density will develop an explicit time dependence. In this case, 
the time evolution of these quantities would reflect the adaptation of the survival strategy, in response to the 
change of the environment.

Our work sets the stage for a even more qualitative and quantitative research on fundamental questions 
regarding survival and the definition of life in general. The statistical mechanical approach adopted in this study 
can be applied to several other systems. Examples include bacteria foraging nutrients or escaping from toxic 
 substances34–37, nanoparticles acting as drug delivery  agents38–41, sperm cells navigating towards the  egg42, and 
autonomous robots.

This study provides a link between chemical equilibrium and emergent behavior by way of the committor. 
In this way we hope that such fundamental yet elusive biological concepts such as the thrive for survival can be 
quantitatively characterized using this or a similar framework. This will advance not only our designs of future 
technologies but deepen our understanding of living systems.

Materials and methods
Experimental setup. The experiment consists of a camphene–camphor–polymer self-propelled disk float-
ing on a water surface and exploring a confining environment provided by a Petri dish with a radius σ centered 
in the origin. As depicted in Fig. 1, the reactant region is selected as the circular region located at the center of 
the dish with a radius of rR = 0.1σ and the T region as the circular segment characterized by xT < − 0.8σ . We 
select three non-overlapping circular regions with radius rc = 0.1σ , numbered from 1 to 3, as the points where 
the committor function is evaluated, see Fig. 1. We then compute the committor in the three points as a function 
of the exitangle ϕ defined as the angle with which the searcher leaves the circular region under consideration and 
computed using the particle position in the first and the last trajectory frames in which the particle is observed 
to be out and in the circle, respectively. The exitangle ϕ is then discretized in four angular slices: a slice with 
−π/4 ≤ ϑ < π/4 labeled equivalently as ϕ = 0 or ϕ = 2π , a slice with π/4 ≤ ϑ < 3π/4 labeled as ϕ = π/2 , a 
slice with 3π/4 ≤ ϑ < 5π/4 labeled as ϕ = π , and a slice with 5π/4 ≤ ϑ < 7π/4 labeled as ϕ = 3π/2.

Active particle experiments. Materials and instrumentation. Digital camera, LED flat panel, Petri dishe 
(Ø= 9 cm), 4 mm pill press, nitrile gloves, hot plate with magnetic stirrer, 100 ml beaker, glass cover, magnet, 50 
ml flat beaker, nitrile rubber sheet Chemicals: (1R)-(+)-camphor (98% purity, CAS: 464-49-3, Sigma-Aldrich), 
camphene (95% purity, CAS: 79-92-5, Sigma Aldrich), Polyisobutylene (PIB, CAS:9003-07-0, Sigma Aldrich), 
MilliQ purified water.

Active particle preparation and observation. Camphene, camphor and PIB were weighed off at the desired 
weight ratio (45% camphene, 45% camphor and 10% PIB) and added to a beaker containing a stirrer magnet. 
The beaker was then covered with a glass cover and placed on a hot plate set to 180 ◦ C. Once some of the cam-
phene had melted, the magnetic stirrer was activated and left stirring until all of the camphor and PIB had been 
dissolved in the liquid camphene. The liquid mixture was then transferred into a flat beaker lined with a sheet 
of nitrile rubber (harvested from a glove) to prevent the material from sticking to the glass. Once solidified, the 
material can be stored in an airtight container or in the freezer to prevent the volatile components (camphene 
and camphor) from evaporating.

For active particle preparation, the material was pressed into a disk-shaped pill. The disk was then placed onto 
a ca. 0.4 mm thick water layer inside a Petri dish with a diameter of either 12 or 19.5 cm. The ratio between pill 
and dish diameter was kept at 1:30. The Petri dish was illuminated from below with an LED panel to improve 
contrast. Footage was obtained using a top mounted camera. All experiments were performed at room tem-
perature ( 22± 2 ◦C).

Two types of cameras were used to obtain video footage of the active particles. We used either a NEX VG20EH 
from SONY (25 fps) or a Logitech C920 Webcam (30 fps). Footage was either saved on the camera on SD-card 
or directly recorded to a laptop.

To process the data, raw footage was concatenated, cropped and compressed to .mkv format using the 
FFMPEG distribution. FFMPEG was also used to edit the footage in any additional way as well as to extract 
individual frames from the footage. Additional image processing to maximize contrast for each frame and 
extracting positions of the object was done using the ImageJ  software43. The resulting dataset contains active 
particle positions ( xn and yn ) for all n frames.

Stochastic models of active motion. Standard ABP model. The conventional ABP model describes 
the stochastic dynamics of an active particle characterized by a self-propulsion speed along a direction ϑ that 
evolves according to a rotational diffusion process: In two-dimensions, the equations of motion in the Itô dis-
cretization form read: 

Here, �t is the integration time step, ri = (xi , yi) denotes the position at time ti = i�t , and ui = (cosϑi , sinϑi) 
is the instantaneous orientation of the self-propulsion speed v. The external potential U(r) has been introduced to 
model possible obstacles in the environment that can hinder navigation. Finally, µ is the effective mobility of the 
agent, D and Dϑ represent the translational and rotational diffusion coefficients respectively, and the components 
of ξ i = (ξx,i , ξy,i) and ηi are independent centered Gaussian random variables with unit variance. We note that, 

(2a)ri+1 =ri + vui �t − µ∇U(ri)�t +
√
2D�t ξ i ,

(2b)ϑi+1 =ϑi +
√

2Dϑ�t ηi .
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in the limit of null drift velocity, the equations of motion (2a) and (2b) decouple and the stochastic dynamics 
reduces to the standard (i.e. passive) Brownian motion.

Chiral ABP model. As a generalization of the ABP, we also introduce a drift term in the evolution of the direc-
tional angle. Namely, we consider the chiral  ABP44 of which the ABP is a special limiting case obtained by setting 
the angular drift term to zero. In this case, the discretized equations of motion are read: 

Simulation setup. Since the motion of the camphor disks used in experiments is not significantly affected by 
translational diffusion, we set D = 0 also in our ABP and chiral ABP simulations. Then, the characteristic time 
scale is determined by τ = 1/Dϑ , while the natural length scale is given by the radius of the Petri dish σ . For 
reference simulation of passive Brownian particles we again integrated Eq. (2a) by setting v = 0 and D = σ 2/τ.

We modeled the confining boundary of the Petri dish using a circularly symmetric quartic potential 
U(x, y) = (x2 + y2)2 which acts on the agent only if it is closer than 0.01σ to the boundary. The mobility µ 
couples the external potential to the motion of the particle, thus σ 2/τµ can be seen as an energy scale. We 
emphasize that, while for the passive Brownian particle Einstein’s relation ( D/µ = kBT ) holds, for an ABP, any 
connection to the thermal energy kBT is lost since active particles do not obey fluctuation-dissipation theorem.

Consequently, only two single dimensionless parameters are left for the problem: the persistence ℓ = vτ/σ , 
which corresponds to the persistence of motion when the angular drift is set to zero, and the quality  factor45 
M = ωτ/2π , which measures the importance of the angular drift term. Conventionally, the activity of an active 
particle is measured by the Péclet number Pe , a parameter measuring the importance of the motion due to the 
self propulsion with respect to the motion of a purely passive reference particle. In our case, Pe = vτ/σ coincides 
with the persistence.

In this paper, we consider the cases of a standard ABP ( ω = 0 ) with Pe = 0.2 and Pe = 0.4 . For the simulation 
of chiral ABPs, at the beginning of each new trajectory, Pe is extracted from a uniform distribution in between 
2.4 and 4.4 and the quality factor M is extracted from a Gaussian distribution with zero mean and variance equal 
to 1.6. Such distributions have been chosen to qualitatively maximize the similarity between the experimental 
results and the simulations.

For each circular point, we simulate 104 trajectories starting from the point with a random orientation angle 
ϑ and ending when they either reach the target or the reactant. This is enough to ensure that the error of the 
mean of the simulated committor is below 10−2 in all cases.

Committor function of an ABP solves modified Backward Kolmogorov equation. In the following, we focus on 
the standard ABP description of active motion and derive a partial differential equation which enables to numer-
ically compute it using standard finite difference methods.

We consider the case in which the ABP is in some initial condition Ŵ(0) = (r0,ϑ0) with the position r placed 
outside R and T . In this case, the probability of long-time survival corresponds to the odds that the agent reaches 
T before entering R . The survival probability coincides with the definition of the committor function when R is 
identified with a reactant state and T with a target (product).

In the limit of vanishing self-propulsion speed, the ABP equations of motion reduce to a conventional over-
damped Langevin equation. In this case, the committor function is mathematically equivalent to the solution 
of the problem:

where the operator Ĥ† := −D
(

∇
2 − 1

kBT
∇U(r)·∇

)

 is the adjoint of the Fokker-Planck operator Ĥ46 (also 
referred to as the Backward Kolmogorov operator).

Let us now derive the equivalent of Eq. (4) for an ABP. To this end, we consider the propagator, i.e. the condi-
tional probability P(Ŵ, t|Ŵ0) , for the particle to be in Ŵ = (r,ϑ) at lag time t given it was at Ŵ0 = (r0,ϑ0) at time 
t = 0 (see Supplemental Material of Ref.15 for an explicit expression of this propagator). In the region outside 
R and T (where the fuel concentration is uniform) and for t > 0 , P(Ŵ, t|Ŵ0) obeys the Fokker-Planck equation 
associated with the stochastic equations of motion (2a) and (2b):

in short, − ∂tP = ĤP . It is convenient to recast this expression in the form of a continuity equation:

Here, Ji and Jϑ are the spatial and angular components of the Fokker–Planck current, respectively: 

(3a)ri+1 =ri + v ui �t − µ∇U(ri)�t +
√
2D�t ξ i ,

(3b)ϑi+1 =ϑi + ω�t +
√

2Dϑ�t ηi .

(4)Ĥ† q(r) =0, subject to

{

q(r)
∣

∣

r∈R = 0

q(r)
∣

∣

r∈T = 1
,

(5)−∂tP(Ŵ, t|Ŵ0)=
∑

i=x,y

∂i
(

vui − D∂i − µ∂iU(r)
)

P(Ŵ, t|Ŵ0)− Dϑ∂ϑ∂ϑP(Ŵ, t|Ŵ0),

(6)−∂tP(Ŵ, t|Ŵ0) =
∑

µ=x,y,ϑ

∂µJµ(Ŵ, t|Ŵ0).
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To obtain an explicit expression for the committor function q(Ŵ) for an ABP, we introduce a modified propa-
gator P∂W(Ŵ, t|Ŵ0) , which expresses the probability of performing a transition from Ŵ0 to Ŵ in time t under the 
constraint of not having entered neither the region R nor T (in the following region W := R ∪ T ) before time t. 
In the SI we show that, in the region outside W , P∂W and P obey the same Fokker-Planck equation Eq. (5). In 
turns, P∂W defines a modified probability current J∂Wν  through Eqs. (7a) and  (7b).

We consider an explicit mathematical expression for the definition of the committor function, obtained by 
integrating over the time interval t the flux of the modified probability current J∂Wν  through the boundary of 
region T:

where dσ(r′) is an infinitesimal hyper-surface at r′ ∈ ∂T and n̂i(r′) is the i-th component of an oriented three-
dimensional versor, orthogonal to the surface ∂T , at the point r′.

In the SI, we show that starting from this equation one obtains the generalization of Eq. (4) to the case of active 
Brownian dynamics. The associated partial differential equation obeyed by the committor q(Ŵ) corresponds to 
the static Backward Kolmogorov equation associated with the Fokker–Planck operator Ĥ , i.e.

In two dimensions, this equation can be very efficiently solved with a finite-difference algorithm (see also 
SI). Equivalently, the committor function can also be estimated using stochastic methods, i.e. by integrating the 
equations of motion (2a) and (2b) and then counting how many times the particle reaches T before visiting R.

The possibility of computing the committor function does not only enable us to predict the survival probabil-
ity as a function of the initial condition Ŵ0 , but also provides crucial information to decode the survival strategy. 
Indeed, in the statistical mechanical description of rare events, iso-committor hyper-surfaces are commonly 
employed to measure the advancement of the transition along an optimal reaction  coordinate29,30. The concept 
of reaction coordinate is strictly applicable only to microscopically reversible systems undergoing spontaneous 
transitions. Notwithstanding this, the iso-committor surfaces associated with our ABP problem still encode the 
information about the optimal survival strategy. To see this, let us focus on survival trajectories of agents placed at 
the border of the death region R . Surviving agents are those that manage to move away from R and reach the safe 
zone T . In this case, propagating toward the target by orthogonally piercing iso-committor surfaces represents 
the most convenient option, since at each step the chance of survival is maximally increased.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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