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Atypical connectivity aids 
conversation in autism
Kyle Jasmin 1,2*, Alex Martin 1 & Stephen J. Gotts 1

It is well-established that individuals with autism exhibit atypical functional brain connectivity. 
However, the role this plays in naturalistic social settings has remained unclear. Atypical patterns 
may reflect core deficits or may instead compensate for deficits and promote adaptive behavior. 
Distinguishing these possibilities requires measuring the ‘typicality’ of spontaneous behavior and 
determining how connectivity relates to it. Thirty-nine male participants (19 autism, 20 typically-
developed) engaged in 115 spontaneous conversations with an experimenter during fMRI scanning. 
A classifier algorithm was trained to distinguish participants by diagnosis based on 81 semantic, 
affective and linguistic dimensions derived from their use of language. The algorithm’s graded 
likelihood of a participant’s group membership (autism vs. typically-developed) was used as a measure 
of task performance and compared with functional connectivity levels. The algorithm accurately 
classified participants and its scores correlated with clinician-observed autism signs (ADOS-2). In 
support of a compensatory role, greater functional connectivity between right inferior frontal cortex 
and left-hemisphere social communication regions correlated with more typical language behavior, 
but only for the autism group. We conclude that right inferior frontal functional connectivity increases 
in autism during communication reflect a neural compensation strategy that can be quantified and 
tested even without an a priori behavioral standard.

Neural studies of autism have often used functional connectivity analyses to identify networks that are under- or 
over-connected relative to neurotypical controls. Many of these studies have assessed connectivity during the rest-
ing state, and have identified both decreases (often among cortical social processing areas), and increases (often 
involving subcortical structures)1–3, although much heterogeneity clearly  exists4. Other studies have examined 
connectivity during social or language tasks, which also report both  decreases5,6 and  increases7 in connectivity. 
However, the relationship between atypical connectivity and behavior has remained unclear. Some atypical pat-
terns may cause social impairments  (see8). Others, especially those that emerge only during tasks, might instead 
reflect alternative neural strategies that compensate for core  deficits9,10. Determining which patterns promote 
adaptive behavior, and which hinder it will be crucial for understanding autism more fully and developing 
connectivity-based  interventions8,11.

One common technique for assessing the role of a given network in behavior has been to test for correlations 
with some measure of symptom severity, such as the Social Responsiveness  Scale12, a questionnaire undertaken 
by parents or teacher that measures aspects of social cognition and autistic mannerisms. This tool has strong 
psychometric properties and may therefore accurately measure core autism-related deficits, as it is completed by 
someone (often a parent or teacher) who knows the individual well. However, tools like SRS that measure autistic 
traits may be insufficient for assessing behavioral compensation. This is because compensation reflects not the 
severity of core social deficits, but the degree to which overt behavior superficially resembles typical behavior in 
the face of these core  deficits9. Assessing neural compensation in complex spontaneous social behavior therefore 
requires quantifying how typical behavior is during social interactions and then relating the degree of typicality 
to functional connectivity obtained during the same interactions. Evidence for compensation in autistic par-
ticipants would consist of increasingly dissimilar functional connectivity relative to neurotypical controls in a 
relevant brain network as behavior becomes increasingly control-like.

We recently reported a study investigating face-to-face conversation in autism which makes it possible to 
examine compensatory behavior. Autism and typical participants engaged in spontaneous ‘face-to-face’ social 
interactions with an experimenter through video and audio links while being scanned with functional  MRI13. 
Measurements of neural activity during the task were compared with resting state. Some task and resting state 
results were similar, namely increased connectivity between subcortical structures (thalamus and ventral stria-
tum) and the cortex. By contrast, the cortico-cortical pattern differed markedly between the resting and task 
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states: during social interaction, widespread increases in connectivity, rather than decreases, were detected 
within a distributed, bilateral network of brain  regions13. We hypothesized that the overconnectivity may reflect 
a compensatory strategy to meet the demands of the difficult social task, but we lacked an objective measure of 
task performance that would have allowed us to test this account.

Here we now report an objective measure of the autism phenotype as it relates to language produced during 
the conversations in that experiment, which was developed by training a classifier algorithm on the transcribed 
speech of the autism and typical participants. The metric was validated by assessing how accurately it classified 
participants by diagnostic category and how well it correlated with clinician ratings on the ADOS-2, the ‘gold 
standard’ autism diagnostic interview  tool14. Finally, functional connectivity was assessed. If connectivity dif-
ferences during conversation are compensatory, then these differences should correspond to a less pronounced 
autism phenotype during the interactions.

Methods and materials
Participants. Nineteen males (aged 14.7 to 28.2 years) with autism and 20 male typically-developed par-
ticipants (aged 15.1 to 32.0 years) took part. Participants with autism were recruited from the Washington, DC 
metropolitan area and met DSM-5 criteria for Autism Spectrum Disorder (APA, 2013) as assessed by an experi-
enced clinician. All participants with autism received the ADOS-2 Module  414. The scores from participants with 
autism met cut-off for the ‘broad autism spectrum disorders’ category according to criteria established by the 
National Institute of Child Health and Human Development/National Institute on Deafness and Other Commu-
nication Disorders Collaborative Programs for Excellence in  Autism15. The distributions for full-scale IQ, verbal 
IQ, and age did not differ statistically between the autism and typical  groups13. The experiment was approved by 
the NIMH Institutional Review Board (protocol 10-M-0027, clinical trials number NCT01031407). All methods 
were performed in accordance with the relevant guidelines and regulations.

Procedure. Each session consisted of three spontaneous conversations between the participant and the 
experimenter. Prior to scanning, participants were told that they would engage in three unstructured and infor-
mal conversations. Using a  questionnaire16, participants rated their level of interest in various topics such as 
music, games, and transportation vehicles, and indicated their top three interests, from which the experimenter 
selected two to serve as conversation topics. The topic of the final conversation was always work or school life, 
depending on participant’s age. The topics of conversations are listed in Supplementary Table 2 of Jasmin et al., 
 201913. Before each conversation run, the experimenter sat in front of a blue screen facing a camera. The run 
began with 16 s of rest. Then, live video and audio from the experimenter were presented to the subject and the 
interaction task began. Conversations proceeded for 6 min. After each interaction, the video faded to black and 
a ‘STOP’ slide was displayed to the participant, followed by 30 additional seconds of rest to allow for delayed 
hemodynamic effects.

Behavioral data processing. Although 117 conversations took place, for two conversations audio record-
ing was unsuccessful and therefore transcription was not possible. These two conversations, from two differ-
ent typically-developed participants, were excluded from analysis, along with their brain data, resulting in 115 
conversations available for analysis. The audio recordings of the conversations were transcribed by professional 
transcriptionists and the text was analyzed with the Linguistic Inquiry Word Count (LIWC; pronounced “Luke”), 
2007  Edition17. LIWC outputs 81 variables that reflect linguistic aspects of a text (e.g. total word count, number 
of words per sentence), as well as counts of words in particular linguistic, semantic and affective categories (e.g. 
affective words, sensory words, pronouns, articles). LIWC has been used previously to analyze typed language 
production in  autism18–20, but not transcribed spoken language as far as we are aware.

The values of the LIWC output variables were z-scored, and a cross-validated linear support vector machine 
(SVM) model was trained on the conversations using a leave-one-out approach (CVSVMModel function in MAT-
LAB 2020b). That is, each conversation was tested with the other 114 conversations serving as the training set. The 
output scores of the left-out conversations were transformed using the fitSVMPosterior function to probabilities 
that reflected the certainty of the classification decision for each  conversation21. Lower scores indicated more 
certainty of autism classification according to the model, and higher scores indicated more certainty of typical 
classification. The probability scores for each conversation were then averaged together to yield a single composite 
score for each participant, which if lower than 0.5 indicated an overall classification of autism by the algorithm.

Performance of the classifier was assessed by computing accuracy (percent correct classifications relative 
to actual diagnosis). Statistical significance of classifier accuracy was determined by permutation test: a null 
distribution was compiled by permuting the diagnosis label for the participants, running a leave-one-out cross-
validation (as above, with one conversation left out), and averaging the resulting probability scores by participant. 
The classifications derived from permuted data were compared to the actual clinical diagnostic status over 1000 
permutations, and the reported p-value reflects the proportion of these permutations that resulted in accuracy 
that was better for the permuted labels than the actual labels.

External validity of the machine classifier measure was assessed by correlating the machine-derived classifier 
scores with clinician-derived ADOS-2 (Social Communication) scores from the same participants. As a final 
control procedure, to exclude the possibility that any patterns of results were driven by systematic differences in 
experimenter behavior, another SVM classifier was trained on language produced by the experimenter during the 
same conversations with identical analysis pipeline and validation procedure applied. For an analysis of which 
LIWC categories most strongly drove the classification, see Fig. S3. As previously reported, gross measures of 
linguistic behavior of the autism and typical groups were similar: there were no statistical differences in the pro-
portion of time that participants (vs. the experimenter) spent speaking [t(37) = 0.31, p = 0.76], the total number 
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of words produced [t(37) = –1.4, p = 0.17] the count of speaking turns [t(37) = 0.46, p = 0.65], or the number of 
words per sentence [t(37) = 0.01, p = 0.99].

MRI imaging and ROI selection. EPIs and a T1 image were acquired on a GE HDxt 3 T scanner. The 
functional scan TR was 2 s, 64 × 64 matrix, sagittal acquisition to reduce effects of speech articulator movement. 
Pre-processing was performed with AFNI. Extreme values were attenuated with 3dDespike, then volumes were 
slice-time corrected and co-registered to the T1 scan. Motion and physiological noise were reduced by regressing 
out cardiac and respiratory movements (RETROICOR), along with timeseries for white matter, ventricles, and 
the first 3 principal components of a combined white-matter and ventricle mask (aCompCorr). Full details are in 
Jasmin et al., 2019. Having established a behavioral measure of typical language use, we then used a data-driven 
procedure to localize brain areas that showed the greatest functional connectivity in autism relative to the neu-
rotypical control group. First, for each functional MRI conversation scan, a global connectivity map (or ‘whole-
brain connectedness map’) was calculated. To do this, (1) each gray matter voxel was correlated with every other 
gray matter voxel, (2) those correlations were averaged together, and (3) the average correlation was stored back 
in the original voxel’s  location1,13,22,23. Next, a contrast of Autism > Typical participants was performed on the 
connectedness maps after fitting a linear mixed effects model on the data with AFNI’s 3dLME, controlling for 
Motion and Age (model = [Connectedness ~ Group + Age + Motion + (1 | Participant)].

Different combinations of voxel-wise significance thresholds and cluster extent thresholds result in differ-
ent patterns of significant results. We sought to identify the brain areas most robust to choice of threshold by 
assessing voxel-wise and cluster-wise significance across a range of thresholds. The Autism > Typical contrast 
was thresholded at P < 0.005, 0.001, 0.0005, 0.0001, 0.00005, and 0.00001, with corresponding cluster extent 
thresholds of k ≥ 51, 22, 15, 7, 5, and 2 (determined using AFNI’s 3dClustSim with empirically derived spatial 
autocorrelation function, -acf;  see24,25). The significance maps from each thresholding procedure were binarized 
(1 if significant, 0 otherwise) and combined to produce a map that illustrated the maximum threshold survived 
by each voxel). Only three regions showed significantly greater whole-brain functional connectivity in autism at 
every threshold tested: right mid-superior temporal sulcus (mSTS), right anterior STS, and right IFG/operculum 
(Fig. 1; Table S1). These regions were selected for further analysis (at P < 0.0001, corrected, where each had 10 
or more voxels, mitigating effects of between-subject anatomical variability).

For each of these three target ROIs, we assessed the correlation between whole-brain functional connectivity 
and Classifier Score by again fitting linear models with whole-brain connectedness (“Connectivity”) predicted 
by Classifier Score, Group (Autism or Typical) and their interaction. The interaction effect, critical for assessing 
compensation, was tested for each of the ROIs at a Bonferroni-corrected threshold of P < 0.05/3 tests = 0.0167.

Ethical approval and consent to participate. The experiment was approved by the NIMH Institutional 
Review Board (protocol 10-M-0027, clinical trials number NCT01031407). Informed consent was obtained for 
all participants.

Results
First, we assessed the accuracy and validity of the behavioral measure by evaluating how well the classifier could 
distinguish Autism and Typical participants when trained on participants’ speech. As a control, we also assessed 
whether the classifier could distinguish Autism and Typical participants if trained on the experimenter’s speech. 
External validity was assessed by comparing how the classifier scored autism participants during the interactions 
to how a clinician had scored the same participants using the ADOS-2. Finally, the relationship with functional 
connectivity was assessed. If elevated functional connectivity is compensatory, it should correlate with typical 
behavior for the Autism participants, but not for Typical participants (who should have no need to compensate).

Figure 1.  Right IFG, right mSTS, and right aSTS showed greatest autism > typical whole-brain connectedness 
across statistical thresholds. Inflated surfaces of the right hemisphere (large) and left hemisphere (small, inset). 
Colors indicate most stringent threshold survived.
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Classifier accuracy and validity. The overall accuracy of the classifier trained on participant speech was 
74% (P = 0.002 by permutation test; Fig. 2A). Autistic participants with more Typical classifier scores also dis-
played fewer autistic signs during their diagnostic observation performed a clinician (correlation with ADOS-2 
Social Communication scores, Spearman r = –0.51, P = 0.03; Fig. 2B). It is of note that the two autism participants 
who were misclassified as typically developed by the classifier had the minimum ADOS-2 Social Communica-
tion scores required for diagnosis (i.e., a score of 7).

As a control, the same classification analyses were performed on the experimenter’s speech. Classifier accuracy 
dropped to 59%, which was statistically indistinguishable from chance (p = 0.13 by permutation test; Fig. S1). 
The scores derived from the experimenter’s speech furthermore did not correlate with ADOS-2 scores (Spear-
man r = –0.20, P = 0.42; Fig. S1). ROC curve analyses also indicated good classification when using participant 
speech, but poor classification when using experimenter speech (Fig. S2).

Typical language behavior is associated with elevated functional connectivity. Having estab-
lished the validity of the linguistic measure, we examined its relationship with functional connectivity during the 
sessions. Three regions of interest were examined: mSTS, aSTS and RIFG. For each of these, the interaction of 
Group with Classifier Score was tested. Only the test for RIFG survived Bonferroni correction. (Right mSTS sur-
vived an uncorrected threshold of P < 0.05; for transparency we report this analysis in the Supplement (Fig. S4), 
and the pattern was qualitatively similar to that found in the RIFG). For RIFG, the slope of the correlation 
between functional connectivity and classifier score differed between the two groups (interaction t(35) = –2.7, 
p = 0.01; Fig. 3): in the Autism group, more typical classifier scores were associated with higher functional con-
nectivity (r(17) = 0.56, p = 0.01), but this pattern failed to be detected in the Typical group (r(17) = –0.18, p = 0.44; 
Fig.  3). The Supplement contains further analyses establishing that the results are not attributable to global 
factors such as head motion, respiration, or arousal levels (Fig. S5) and that the linear model is robust (Fig. S6).

Our neural measure, average “connectedness” with the whole brain, gives a broad indication of the level of 
functional involvement of a given region (in this case RIFG). However, the specific pattern of connectivity with 
the RIFG is unclear without follow-up analyses. We therefore ran an exploratory seed-based functional con-
nectivity analysis using the RIFG to determine which other regions were involved in overconnectivity. A group 
comparison (Autism > Control, P < 0.001, corrected) was performed after fitting a linear mixed effects model 
to the data with 3dLME [Connectedness ~ Group + Age + Motion + (1 | Participant)]. The results indicated that 
more than twice as many left-hemisphere voxels were over-connected with RIFG (5317 voxels) compared to 
right-hemisphere voxels (2452 voxels). The most prominent results were in left hemisphere areas associated 
with language and social interaction, such as left inferior frontal gyrus, left superior temporal gyrus, temporal 
pole, and left temporo-parietal junction (Fig. 4). The compensatory effect of right IFG connectivity appears to 
be driven strongly by its coordination with contralateral left hemisphere language areas.

Discussion
In a previous study we detected widespread functional connectivity increases in autism during conversation. Here 
we found that autism participants with higher functional connectivity, particularly involving the RIFG, produced 
more typical language during conversations. This result helps to clarify the relationship between functional 

Figure 2.  Classifier scores distinguished autism and typical participants and correlated with ADOS-2 social 
communication scores. (A) Histogram of mean classifier scores by diagnostic group and (B) ranked clinician 
ADOS-2 social communication subscores of autism symptom severity plotted by ranked classifier score.
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connectivity and performance of a naturalistic social task in autism, namely that functional connectivity increases 
are in some cases compensatory—helping rather than hindering social communication.

Why did RIFG emerge as a particularly important region for compensation? Conversation of course relies 
heavily on speech and language production, and our behavioral measure was derived entirely from spoken lan-
guage. Although language is typically left-lateralized, there is evidence that the contralateral right hemisphere 
homologs of left-hemisphere language areas are recruited when task demands are high, both in typically-devel-
oped individuals and patient groups (so called ‘spillover’  processing26). Relating to autism and RIFG specifically, 
activity in RIFG (the homolog of Broca’s area) has been shown to increase when autism participants integrate 
language with social information such as age and  gender27. Under this ‘spill-over’ account, the reason RIFG is 
heavily involved is that conversation is difficult for autism participants, and contralateral LIFG cannot meet 
task demands on its own. Our results are also consistent with a recent paper by Persichetti and colleagues, who 
found that the relative lack of cross-hemisphere interactions from right-hemisphere language homolog regions 
in autism was associated with poorer verbal  ability28. A second and not-necessarily mutually exclusive possibility 
is that RIFG is playing a role in ‘executive function’, a process that has been proposed to assist compensation in 
developmental  disorders10.

A minor result from Jasmin et al., 2019, was that RIFG connectivity with R parahippocampal gyrus was posi-
tively correlated with SRS scores, suggesting that functional connectivity increases correlate with more severe core 
autism deficits. That result is not necessarily inconsistent with the findings reported here. SRS and ADOS-2 scores 
are only weakly  correlated29,30, which suggests they may measure at least partly different aspects of the condition.

Limitations. The primary limitation of this study is the sample size. Although a very large amount of data 
was collected on each participant, the sample size in terms of number of participants is on the low side of cur-
rent studies involving group comparisons in ASD. Future work should endeavor to replicate this finding in much 
larger samples. It would also be helpful to have a replication sample in the design, so that any discoveries could 
be confirmed within the same experiment.

The results do not fully address the question of which patterns of connectivity reflect underlying deficits 
and which may have developed to compensate for deficits. Further work should clarify this by quantifying 
other aspects of behavior and relating this to ongoing neural connectivity. The present study only used counts 
of spoken words in various categories as raw data. Other studies could examine, for example, acoustic aspects 
of vocal production such as prosody, eye movements, or hand gestures. Still other studies might address more 
subtle communication abilities such as how theory of mind problems are solved.

Further work should investigate a more diverse set of participants. Participants in this study had normal to 
relatively high IQ. It remains to be seen whether individuals with lower IQs also compensate, and if they do, 
whether they use a similar or different neural strategy. It has been suggested that females with autism may com-
pensate more successfully than  males31. Future studies could concentrate on other populations such as female 
participants, or perhaps so-called ‘unaffected’ siblings of individuals with autism, who may exhibit only mild 
autistic traits and receive no diagnosis due to a covert neural compensation  strategy10.

In this study, the experimenter was neurotypical, making it difficult to distinguish whether the participant’s 
autism status or the match/mismatch in diagnosis affected the results. Behavioral research has shown that people 
tend to have better rapport when they have similar  neurotypes32. Future neural studies should investigate the rela-
tionship between language and compensatory functional connectivity in dyads where both partners have autism.

Finally, the classifier training method we used treated all observations (the 115 conversations) as independ-
ent, although in actuality these observations were contributed by only 39 participants. We made this choice to 

Figure 3.  Typical language production was correlated with higher RIFG connectivity in autism participants. 
Scatter plot of whole-brain connectivity of RIFG plotted against classifier score for the autism (red) and typical 
(teal) groups.
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maximize the size of the training set and prioritize measurement stability. Future work, in larger samples of 
participants, could opt for more sophisticated models that take into account non-independence of observations.

Conclusions
The findings suggest that right inferior frontal functional connectivity increases in autism during spontaneous 
social communication reflect a neural compensation strategy. The classifier-based behavioral method described 
here has wide applicability for studying compensation in developmental disorders. A main benefit is that it is 
not necessary to have an a priori definition of typical behavior. Behavior of any two groups of participants who 
are matched for relevant variables but differ categorically in diagnostic category could be submitted to a clas-
sification algorithm, and the resulting probability score could be used as an index of behavioral ‘performance’ 
and linked with neural measures.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
request.

Received: 23 January 2023; Accepted: 24 March 2023

Figure 4.  Compensation takes place through cross-hemispheric connectivity between left hemisphere social 
communication areas and right IFG. Coronal and axial sections, and inflated surfaces showing clusters with 
significant autism > typical functional connectivity with RIFG during conversation (P < .001, corrected). More 
than twice as many significant voxels were in the left hemisphere, and the strongest results were in regions 
involved with social communication and language.
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