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Overlap in meaning is a stronger 
predictor of semantic activation 
in GPT‑3 than in humans
Jan Digutsch 1,3* & Michal Kosinski 2

Modern large language models generate texts that are virtually indistinguishable from those written 
by humans and achieve near‑human performance in comprehension and reasoning tests. Yet, their 
complexity makes it difficult to explain and predict their functioning. We examined a state‑of‑the‑art 
language model (GPT‑3) using lexical decision tasks widely used to study the structure of semantic 
memory in humans. The results of four analyses showed that GPT‑3’s patterns of semantic activation 
are broadly similar to those observed in humans, showing significantly higher semantic activation in 
related (e.g., “lime–lemon”) word pairs than in other‑related (e.g., “sour–lemon”) or unrelated (e.g., 
“tourist–lemon”) word pairs. However, there are also significant differences between GPT‑3 and 
humans. GPT‑3’s semantic activation is better predicted by similarity in words’ meaning (i.e., semantic 
similarity) rather than their co‑occurrence in the language (i.e., associative similarity). This suggests 
that GPT‑3’s semantic network is organized around word meaning rather than their co‑occurrence in 
text.

Modern large language models (LLMs) employ artificial neural networks that generate texts virtually indistin-
guishable from those written by humans and achieve near-human performance in comprehension and reasoning 
tests (e.g.,1,2). LLMs are not provided with grammar rules or dictionaries, but are repeatedly presented with a 
fragment of text (e.g., a Wikipedia article) with one word removed (e.g., “Paris is the capital of _____”), and have 
to predict the missing word. In the training process, typically involving trillions of trials drawn from huge text 
corpora, LLMs become skilled language users, spontaneously discovering linguistic rules and word associations.

LLMs’ complexity means that it is difficult to explain their functioning and anticipate their future behavior. 
Both users and creators are often surprised by their emergent properties, both useful (e.g., the ability to translate 
between languages or write computer code;3) and problematic (e.g., gender and racial biases;1). It is also unclear 
whether they are mere stochastic  parrots4 limited to modeling word  similarity5, or if they recognize concepts and 
could be ascribed with some form of understanding of the meaning of the words they so skillfully use.

The challenge of understanding complex LLMs is not new. The last decades brought significant progress in 
understanding a much more complex entity capable of generating and comprehending language: the human 
brain. The methods used to better understand the human brain can be adapted for studying the artificial brain, 
and there is a growing interest in doing so (e.g.,6,7).

To understand and produce language, humans utilize semantic memory that stores information about words 
and their  meaning8–11. To unravel the structure of semantic memory, researchers often study the patterns of 
semantic activation, or the phenomenon in which exposure to one word facilitates the processing and retrieval 
of other  words12. For example, when asked “What do cows drink?,” people tend to answer “milk” instead of 
“water” (only calves drink milk), revealing that “cow” and “drink” activate “milk” in semantic memory. The 
research reveals that semantic activation occurs mostly between words that often co-occur in the language (i.e., 
associative similarity; “wrong–way”) and words with overlapping meaning (i.e., semantic similarity; “annoy-
ing–irritating”;13,14). Moreover, while semantic and associative similarity often goes hand in hand, activation 
readily spreads between the words of similar meaning that rarely co-occur in the language (i.e., purely semanti-
cally related words, such as “cow” and “sheep”). This suggests that purely semantically related words are closely 
connected in the semantic memory, likely through their mutual connections to simple concepts. “Cow” and 
“sheep,” for example, are both linked with “horns,” “milk,” and “farm”10,15.

The present research aims to contribute to our understanding of the structure of the semantic memory 
of humans and LLMs by comparing their patterns of semantic activation. In humans, semantic activation is 

OPEN

1Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund, 
Dortmund, Germany. 2Stanford University, Stanford, CA 94305, USA. 3Institute of Behavioral Science and 
Technology, University of St. Gallen, St. Gallen, Switzerland. *email: jan.digutsch@unisg.ch

http://orcid.org/0000-0002-1320-8869
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-32248-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5035  | https://doi.org/10.1038/s41598-023-32248-6

www.nature.com/scientificreports/

typically measured using semantic priming, where the exposure to one word (i.e., prime) facilitates the process-
ing and retrieval of another word (i.e., target). Semantic priming is commonly measured using lexical decision 
tasks8, where participants are presented with a prime (e.g., “lemon”) followed by a real word (e.g., “lime”) or a 
non-word (e.g., “leton”). Participants have to decide, as quickly and accurately as possible, whether the second 
word is a real word. Their speed and accuracy are interpreted as a proxy for semantic activation. For example, 
when preceded by “lemon,” “lime” is more quickly recognized as a real word than when it is preceded by “dog”.

In LLMs, semantic activation can be measured directly from words’ distances in the model’s lexical space. 
Early models derived lexical space from word co-occurrences in the training data (e.g.,16). They were followed by 
models capturing words’ context in the training data (e.g.,17,18). Most recent LLMs employ dynamic lexical space 
that changes depending on the word’s context in a given task (e.g.,19). Studies comparing language models’ and 
humans’ lexical spaces show that they are increasingly similar as the models become more complex (e.g.,20–22).

The present research compares semantic activation patterns between humans and OpenAI’s Generative Pre-
trained Transformer 3 (GPT-3;1), using word pairs typically used in human  studies23. Analysis 1 compares the 
semantic activation of GPT-3 and humans across three semantic relatedness conditions and shows that GPT-3’s 
semantic activation patterns broadly mirror those observed in humans. Analyses 2 and 3 compare semantic 
activation across 12 types of prime-target associations and show that, when compared with humans, GPT-3’s 
lexical space is more strongly organized around semantic (rather than associative) similarity. Finally, analysis 
4 compares the relative importance of semantic versus associative activation across five GPT-3 variants as well 
as three other language models. It shows that the newer the model, the more its semantic space is organized 
around the semantic similarity.

Methods
Lexical decision tasks (n = 6646) and human participants’ responses (n = 768 students from three universities) 
were obtained from the Semantic Priming Project database (23; https:// www. monta na. edu/ attme mlab/ spp. html). 
As it is publicly available and de-identified, its analysis does not constitute human subject research.

Lexical decision tasks consist of a target word (e.g., “lemon”) matched with three primes (first-associate, 
other-associate, and unrelated). Human participants’ response times were standardized for each participant 
separately and then averaged for each word pair. Following Mandera et al.24, we excluded all non-word trials, 
erroneous responses, and trials with reaction times deviating more than three standard deviations from the 
within-person mean.

We used GPT-3’s most recent engine aimed at capturing words’ similarity (“text-embedding-ada-002”; all 
settings were left at their default values). It employs a 1536-dimensional semantic space. The location of words 
or phrases in this space is described by 1536-value-long numerical vectors (i.e., embeddings). In analysis 4, we 
additionally used four older GPT-3 variants ("text-similarity-[ada/babbage/curie/davinci]-001"), as well as older 
language models ("xlm-roberta-base", "albert-base-v2";25,26).

Semantic activation in GPT-3 was operationalized as the cosine distance between prime and target words’ 
embeddings. Cosine similarity is similar to the correlation coefficient, ranging from − 1 (dissimilar) to 1 (simi-
lar). The cosine similarity between “lime” and “lemon,” for example, equals 0.35, which is much closer than the 
similarity between “tourist” and “lemon” (− 0.03). Note that this measure of activation is non-directional: “lime” 
activates “lemon” as much as “lemon” activates “lime”.

We considered an alternative approach, previously used by Misra et al.19: presenting GPT-3 with prime words 
(or sentences containing the prime words) and recording the probability distribution of possible completions. 
Yet, we believe that this strays too far from the original format of the lexical decision task, which is context-free 
and does not require participants to complete word sequences. Moreover, the context surrounding the prime 
becomes a confound, even if it is a mere punctuation sign. The probability of “race” significantly differs among 
“car race” (log(P) = − 10.27), “car, race” (log(P) = − 9.29), and “car-race” (log(P) = − 6.52).

Separately for humans and GPT-3, semantic activation scores across all prime-target pairs (i.e., first-associate, 
other-associate, and unrelated) were standardized (mean of 0 and standard deviation of 1) before conducting 
statistical analysis. To facilitate visual comparisons between humans and GPT-3, the semantic activation displayed 
was converted to percentiles on the plots.

Results
Analysis 1. We first compare the semantic activation between humans and GPT-3 across three prime word 
types: The first-associate prime (e.g., “lime”) is a word to which the target is the most common response (e.g., 
“Which word comes first into your mind when hearing lemon?”); an other-associate prime (e.g., “sour”) is a ran-
domly selected word to which the target is a less common response; and an unrelated prime (e.g., “tourist”) is a 
randomly selected word to which the target has not appeared as a response (and vice versa).

Figure 1 presents the density distribution of semantic activation for humans (left panel; approximated by the 
lexical decision task reaction times) and for GPT-3 (right panel; approximated by the cosine similarity between 
prime and target word embeddings). Like human respondents, GPT-3 shows the highest semantic for first-
associate word pairs, followed by other-associates and unrelated word pairs.

However, the differences in mean semantic activation between the priming conditions were larger for 
GPT-3 than for humans (ANOVA’s F(26511) = 1343.70, p < 0.001; η2 = 29.22% or a large effect size versus 
F(26511) = 104.76, p < 0.001; η2 = 3.12% or a small effect size;27). This is to be expected, as GPT-3’s semantic acti-
vation is measured directly (via cosine similarity), while in humans it is approximated (via semantic priming). 
Moreover, in contrast with humans, GPT-3 does not suffer from inattention, fatigue, and other response biases. 
Therefore, GPT-3’s results are expected to be more pronounced across all our analyses.

https://www.montana.edu/attmemlab/spp.html
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Analysis 2. The results of Analysis 1 showed that semantic activation patterns in GPT-3 broadly mirror those 
observed in humans, but the effect of the priming condition is stronger for GPT-3. Here, we take a closer look 
by comparing semantic activation across 12 types of prime-target word pairs, following the classification used by 
the Semantic Priming Project  database23.

The results presented in Fig. 2 show clear differences between semantic activation in humans (red bars) and 
GPT-3 (blue bars). While for humans semantic activation did not depend strongly on semantic association, clear 
differences were observed for GPT-3. Its semantic activation was strongest for script (68th), antonyms (68th), 
categories (63rd), and synonyms (62nd) and weakest for backward and forward phrasal associates (30th and 
29th, respectively) and action (28th).

This indicates that in GPT-3 (but not in humans), semantic activation was strongly driven by semantic rather 
than associative similarity. Antonym, synonym, and category word pairs share many semantic features (e.g., 
lime and lemon are both sour fruits of similar shape;14,15) and relatively rarely co-occur in language. In contrast, 
forward and backward phrasal associates share little semantic similarity but often co-occur in language.

Analysis 3. Analysis 2 showed an interesting difference between humans and GPT-3: GPT-3’s lexical space 
seems to be organized more strongly around semantic similarity than in humans. Yet, as in Analysis 1, the clearer 
pattern of GPT-3’s results could be driven by the direct approach to measuring its semantic activation. We fur-

Figure 1.  Semantic activation across priming conditions.

Figure 2.  Semantic activation and prime-target association type. Word pairs in brackets are examples. Error 
bars represent 95% confidence intervals.
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ther explore this issue by comparing semantic activation between GPT-3 and humans on the level of individual 
word pairs.

Table 1 presents word pairs with the largest differences in semantic activation between GPT-3 and humans. 
For example, “introvert” highly activates “extrovert” in GPT-3 (3.81 SD above the mean), but not in humans 
(3.06 SD below the mean).

The results confirm the results of Analysis 2. Compared with humans, GPT-3 is particularly prone to be 
activated by semantically similar word pairs such as antonyms (e.g., “introvert–extrovert” and “understand–mis-
understand”) and synonyms (e.g., “clumsy–klutz” and “england–britain”). Humans, on the other hand, are rela-
tively more driven by associatively similar words, such as forward phrasal associates (e.g., “mountain–top” and 
“real–people”).

Analysis 4. Analyses 1–3 indicated that, when compared with humans, the semantic space of the most recent 
engine of GPT-3 was organized around semantic, rather than associative relatedness. Here we compare the 
relative importance of the associative versus semantic relatedness across several LLMs. Associative relatedness 
was approximated by averaging the semantic activation for forward and backward phrasal associates. Semantic 
relatedness was estimated by averaging the semantic activation for antonyms, synonyms, and categories (see 
"Analysis 2" Section and Fig. 2).

The results, presented in Fig. 3, show that the more recent and more complex the model the more its semantic 
space is organized around semantic rather than associative relatedness.

Discussion
Our results show that semantic activation in GPT-3 broadly mirrors those observed in humans. GPT-3’s semantic 
activation was significantly higher for first-associated (e.g., “lime–lemon”) word pairs than other-associated (e.g., 
“sour–lemon”) or unrelated (e.g., “tourist–lemon”) word pairs (Analysis 1). However, the analysis of prime-
target association types in Analysis 2 revealed that GPT-3’s semantic activation is more strongly driven by the 
similarity in words’ meaning (i.e., semantic similarity) than their co-occurrence (i.e., associative similarity). This 
effect is stronger in GPT-3 than in humans. In fact, in Analysis 3, the most drastic differences in semantic activa-
tion between GPT-3 and humans were observed for synonyms (more similar according to GPT-3) and phrasal 
associates (more similar according to humans). This suggests that semantic similarity is a stronger predictor of 
semantic activation in GPT-3 than in humans. Moreover, Analysis 4 reveals that the role of semantic similarity 
in predicting semantic activation is greater in the more complex and more recent models.

That semantic activation occurs both in humans and GPT-3 is unsurprising. As humans are affected by their 
semantic activation patterns while generating language, models trained to do the same would benefit from pos-
sessing—or simulating—a similar mechanism. It is also possible that the spreading activation  (see28) is an inher-
ent property of any complex neural network aimed at generating human-like language. To some extent, LLMs 
may be mirroring (at least on the functional level) semantic structures present in humans. GPT-3’s susceptibility 

Table 1.  Largest differences in semantic activation between humans and GPT-3. Association types printed in 
regular font come from the Semantic Priming Project database; those printed in italics were missing and were 
added by us.

Prime Target Association type

Z-score

Humans GPT-3

Introvert Extrovert Antonym − 3.06 3.81

Understand Misunderstand Antonym − 5.23 0.89

Clumsy Klutz Synonym − 5.65 0.45

Britannica Britain Unclassified − 3.57 2.40

England Britain Synonym − 2.94 2.99

Quality Characteristic Synonym − 6.63 − 0.70

Outgoing Extrovert Synonym − 4.28 1.42

Advise Advice Unclassified − 1.64 4.00

Pro Con Antonym − 3.71 1.73

Trait Characteristic Synonym − 5.52 − 0.12

Crutch Leg Instrument 1.82 − 1.21

Ribs Broken Unclassified 1.76 − 1.10

Mountain Top Forward phrasal associate 1.84 − 0.98

Brake Go Antonym 1.40 − 1.32

Braces Young Unclassified 1.22 − 1.48

Approval Yes Unclassified 2.00 − 0.64

Clerk Person Unclassified 1.69 − 0.92

Real People Forward phrasal associate 1.35 − 1.26

Acre Land Supraordinate 1.56 − 1.04

Loud Pain Unclassified 1.21 − 1.40
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to semantic activation is not the first example of neural networks mirroring human-like psychological processes. 
Past research has shown, for example, that LLMs mirror human gender and ethnic  biases1, and neural networks 
trained to process images suffer from human-like optical  illusions29,30. None of those functions were engineered 
or anticipated by their developers.

What is surprising, however, is the relatively larger importance of semantic similarity for GPT-3 and the 
relatively larger importance of associative similarity for humans. It is possible that it is an artifact of the meas-
urement approach used in humans and GPT-3. Semantic priming effects measured using lexical decision tasks 
in humans are likely affected by processes beyond semantic activation, such as expectancy (i.e., an intentional 
generation of potential completions of a word sequence;31) or semantic matching (i.e., a retrospective search for 
the target-prime relationship;32). This could be a potential source of noise or bias that is not present in the more 
direct measure of semantic activation applied to GPT-3 (cosine distance).

Studying LLMs such as GPT-3 could boost our understanding of human language. LLMs are trained to mimic 
human behavior and could be used as model participants in psycholinguistic studies, enabling researchers to 
quickly and inexpensively test hypotheses that could be later confirmed in humans  (see33 for a recent example). 
Unlike humans, LLMs do not suffer from fatigue and lack of motivation, and can respond to thousands of tasks 
per minute. Moreover, artificial and biological neural networks aimed at processing language may have conver-
gently evolved similar neural structures. As artificial neural structures are easier to study than biological ones, 
studying LLMs could further the understanding of mechanisms and processes occurring in the human brain. 
This is not a new idea: The structures of the artificial neural networks trained to process images mirror those 
observed in the ventral visual  pathway34. More broadly, the study of convergent evolution has greatly benefited 
biology, neuroscience, psychology, and many other disciplines (e.g.,35). Yet, we should tread carefully: As our 
results illustrate, LLMs’ behaviors are sometimes significantly different from those observed in humans, despite 
their superficial similarities.

Data availability
Data and code used in the analyses can be found at https:// psyar xiv. com/ dx5hc.
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