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On good encodings for quantum 
annealer and digital optimization 
solvers
Alberto Ceselli  & Marco Premoli *

Several optimization solvers inspired by quantum annealing have been recently developed, either 
running on actual quantum hardware or simulating it on traditional digital computers. Industry and 
academics look at their potential in solving hard combinatorial optimization problems. Formally, they 
provide heuristic solutions for Ising models, which are equivalent to quadratic unconstrained binary 
optimization (QUBO). Constraints on solutions feasibility need to be properly encoded. We experiment 
on different ways of performing such an encoding. As benchmark we consider the cardinality 
constrained quadratic knapsack problem (CQKP), a minimal extension of QUBO with one inequality 
and one equality constraint. We consider different strategies of constraints penalization and variables 
encoding. We compare three QUBO solvers: quantum annealing on quantum hardware (D-Wave 
Advantage), probabilistic algorithms on digital hardware and mathematical programming solvers. We 
analyze their QUBO resolution quality and time, and the persistence values extracted in the quantum 
annealing sampling process. Our results show that a linear penalization of CQKP inequality improves 
current best practice. Furthermore, using such a linear penalization, persistence values produced 
by quantum hardware in a generic way allow to match a specific CQKP metric from literature. 
They are therefore suitable for general purpose variable fixing in core algorithms for combinatorial 
optimization.

Dedicated hardware performing quantum annealing (QA) is currently available and steadily  improving1,2. QA 
was independently proposed and refined multiple  times3–5 and is based on the principles of adiabatic quantum 
 computation6–8. The agreed present formulation of QA was introduced by Kadowaki and  Nishimori9. QA is an 
alternative to the digital algorithm of simulated  annealing10. The use of QA machines as general purpose optimizers 
to solve hard combinatorial optimization problems is in fact keep on gaining  interests11.

The industrial state-of-the-art in QA machines is considered to be D-Wave12: their device is composed by 
a set of physical qubits connected by physical links. Not all pairs of qubits are directly connected: a topology is 
given, which can be formally described as a graph G = (V ,E) , having one vertex v ∈ V  for each qubit, and one 
edge e ∈ E for each physical link. The device is able to solve instances of the following Ising Spin Glass Ground 
State Problem (IM)13 in a probabilistic way:

An instance of (IM) is ‘programmed’ on the machine by setting biases bi for each spin i ∈ V  (i.e., the magnetic 
field at site i) and coupling Ji,j for each edge (i, j) ∈ E (i.e., the coupling strength between spins i and j).

As described in the  literature7, the resolution of (IM) is carried out on a quantum processing unit (QPU) by 
adding a time-dependent quantum tunneling Hamiltonian to that of H(s). A corresponding Schrödinger equation 
is solved for such a time-dependent Hamiltonian: its resolution process approximates the tunneling dynamics 
of the system between different eigenstates of H(s).

The (IM) is NP-Hard: Ising models are equivalent to quadratic unconstrained binary optimization (QUBO), 
which considers quadratic functions to be minimized, with variable values restricted in the {0, 1} domain. In 
principle, the transformation among the two models is straightforward: a spin si ∈ {−1,+1} and a binary vari-
able xi ∈ {0, 1} are related with the simple equations si = 2xi − 1 and xi = si+1

2 .

(IM)
min H(s) =

∑

i,j∈E

Ji,jsisj +
∑

i∈V

bisi

si ∈ {−1,+1} ∀i ∈ V
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A variety of constrained combinatorial optimization problems can currently be solved through QUBO relaxa-
tions on digital machines by traditional methods, which are extensively studied (and engineered) in the opera-
tions research  community14–17. The process of solving constrained combinatorial optimization problems through 
quantum annealing, instead, is still a matter of research. It requires several transformation steps, summarized 
in the schema of Fig. 1.

First, the problem transformation into a QUBO requires modelling choices affecting the quality of solution. 
All constraints are relaxed; that is, they are replaced with a penalty term in the objective function representing 
the amount of their violation. Multipliers for the penalties must be set. Second, continuous and integer variables 
have to be encoded as binary variables. Third, when quantum annealing such as that of the D-Wave machine 
are considered, the interaction graph of the variables of the QUBO must match the graph of the machine. This 
mapping is obtained by the so-called minor-embedding18–20, which by itself is a NP-Hard  problem21. The machine 
may yield different results for the same problem for distinct mappings.

Indeed, while in principle the advantage of quantum annealing over software running on digital machines 
is huge, no recent investigation proves in practice the former to produce better computational results than the 
latter, unless embedded as subroutine in problem-specific algorithms.

One reason is arguably constraints feasibility: there is no guarantee that solutions produced by solving the 
(unconstrained) QUBO satisfy all the constraints of the original combinatorial optimization problem. Compli-
ance has to be checked after each execution, and restored by further processing if needed.

To the best of our knowledge, the only approach which proved to be able to directly exploit the characteristic 
of quantum annealing is the so-called sample persistence22,23: first introduced for simulated  annealing24, it identi-
fies variables whose value is persistent throughout repeated independent cycles of annealing. Such variables are 
candidate to be fixed to their persistent  value25. The remaining ones are said to form a core of difficult variables, 
which then becomes the subject of search  intensification26.

In this work we benchmark the performance of the bare QPU of D-Wave Advantage  QPU12 in solving 
QUBO formulations derived from constrained combinatorial optimization problems. Our main focus is not on 
the design of a specific algorithm, but rather on identifying which techniques are more suited to improve those 
computational methods whose structure matches the pattern of Fig. 1. As a case study, we choose the cardinality 
constrained quadratic knapsack problem (CQKP), which extends QUBO in a minimal way, including only one 
inequality and one equality constraint. We experiment on four reformulations of CQKP as QUBO. We restrict 
our experiments to instances of CQKP whose interaction graph can be embedded in a D-Wave QPU machine.

We propose a comparison on two steps of the framework depicted in Fig. 1 (grey boxes in the figure). First, 
we assess computational results in solving the QUBO reformulation of CQKP, in terms of execution time and 
quality of solution. The goal is to test the advantage given by D-Wave as a general purpose solver for QUBO 
formulations derived from constrained combinatorial optimization problems. We compare the performance 
of D-Wave with two traditional approaches: the state-of-the-art general purpose solver based on mathematical 
programming Gurobi 9.527 and the simulated annealing algorithm (SA)10, using its open-source CPU imple-
mentation provided by D-Wave28.

Second, we evaluate the goodness of values extracted via sample persistence from the solutions provided by 
D-Wave. The goal is to test the advantage to use D-Wave as a general purpose method to extract useful infor-
mation from the solutions of the QUBO to solve the original CQKP. We compare these information with those 
provided by SA and by an ad-hoc measure on CQKP.

The paper is structured as follows. First, we present related works. In the following sections, we describe the 
mathematical models of CQKP and its four reformulations as QUBO, and we present experimental set-up and 
results. In the last section conclusions are drawn.

Related works
Benchmarking. Several benchmarking works on D-Wave quantum annealing processing unit are present 
in the literature.

Figure 1.  Schema of the QUBO-based heuristic framework to solve constrained combinatorial optimization 
problems.
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Jünger et al. provide a seminal work of  benchmarking21. They provide an experimental comparison for 
the resolution of the max-cut problem of D-Wave 2000Q (the version of the QPU with 2048 qubits preceding 
Advantage), a branch-and-cut and semidefinite programming algorithms and an ad-hoc heuristic tailored on 
the grapth of the QPU. For the sake of fairness, they consider only instances that fits the graph of the quantum 
hardware, the so-called ‘Chimera’ graph, i.e., that do not need embedding. In their experiments D-Wave was 
able to provide, in a black-box set-up, solutions very near to the ground state energy ( < 1% of optimality gap); 
however, a traditional heuristic tailored on the Chimera graph performed better than D-Wave both in terms of 
quality and execution time. Their work was not replicated on Advantage machine, with 5640 qubits, and does 
not consider constrained problems requiring embedding to be solved by D-Wave.

Oshiyama and Ohzeki compare the performance on several classes of problem of four QUBO  solvers29: the 
D-Wave Hybrid Solver Service, the Toshiba Simulated Bifurcation Machine, the Fujitsu Digital Annealer and a 
traditional simulated annealing algorithm. Experiments showed mixed outcomes, with no clear winner between 
the three quantum-inspired solvers, which had sometimes worst performances than the traditional simulated 
annealing algorithm. Moreover, they do not consider the performances of the bare QPU of D-Wave, but rather 
a resolution service provided by D-Wave hybridizing the QPU with traditional approaches whose details are 
not known to the end-user.

Several works focus on comparing different version of D-Wave QPU, or different quantum-inspired solv-
ers, without considering traditional solver. Willsch et al. compare D-wave 2000Q with its successor D-Wave 
Advantage on the exact cover  problem30. Their tests consider increasing instance sizes and increasing density of 
nodes connections. While Advantage outperforms 2000Q on largest problem, both in terms of solution quality 
and execution time, 2000Q provides better solution on problems with sparse connections and small size. Huang 
et al. compare D-wave Advantage and Fujitsu digital annealer on three combinatorial optimization  problems31. 
Authors experiment on the decomposition of instances with size greater than the hardware limits, providing a 
schema based on block-structure of the problem formulation. In their conclusions, authors state that while the 
annealers provide good solutions on instances of small size and sparse connectivity, they struggle when facing 
large size or dense instances, and hence a decomposition algorithm is needed to improve solution quality and 
to reach feasibility.

Codognet presents a preliminary performance assessment of D-Wave Advantage and D-Wave hybrid soft-
ware for the resolution of constrained optimization  problems32, concluding that current generation of quantum 
annealers are not yet able to deal with constrained problems and must be embedded in a hybrid algorithm.

QUBO formulations. Lucas provides a seminal work for the design of optimization algorithms inspired by 
adiabatic  quantum33, presenting Ising formulation for many NP-hard problems. Glover et al. presents a didactic 
survey on QUBO formulation of combinatorial  problems34.

Theoretical background to transform fully connected interactions of quadratic terms into linear terms is 
present in  literature35,36. The resulting reformulation has a traditional counterpart in the Lagrangian relaxation 
of constraints. This latter needs the search for the best Lagrangian multipliers, and hence it needs an iterative 
process of sampling for the update of such multipliers. Kuramata et al. experiment this Lagrangian formulation 
on the quadratic assignment problem with D-Wave  Advantage37. Authors were not able to find a fair amount 
of feasible solutions with the sole QPU of D-Wave, and had to resort to a post-processing procedure to restore 
feasibility. None of these last two works include standard techniques to update Lagrangian multipliers, which 
still need to be investigated.

Comparison between encodings of integer variables to binary variables has been  investigated38,39. Authors 
compare binary, unary and one-hot encodings on the quadratic knapsack problem using Fujitsu Digital Annealer. 
Authors experiment with increasing instance sizes and take into consideration the rate of feasible solutions found, 
finding unary encoding to provide the best results.

Cardinality constrained quadratic knapsack problem
The cardinality constrained quadratic knapsack problem (CQKP) is the problem of selecting exactly k items 
from a set, maximizing a profit defined by a quadratic function, and such that the weight of the selected items 
does not exceed a threshold.

Let I be the set of items to select and xi ∈ {0, 1} be binary variables for each item i ∈ I , with value 1 if element 
i is selected, 0 otherwise. The formulation of CQKP is the following:

Constraint (CAP) imposes a limit on total ‘weight’ of selected items with ai ∈ R≥0 being the weight of item i ∈ I 
and b ∈ R≥0 being the limit on total weight of the selected items. Constraint (CARD) imposes to select exactly 
k ∈ Z≥0 items. Objective function (1) maximizes the ‘profit’ of selected items and is composed by a linear and a 

(1)max
∑

i∈I

lixi +
∑

(i,j)∈I×I:j>i

qi,jxixj

(CAP)s.t.
∑

i∈I

aixi ≤ b

(CARD)

∑

i∈I

xi = k

xi ∈ {0, 1}
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quadratic component: li ∈ R≥0 is the profit given by selecting item i ∈ I ; qi,j ∈ R≥0 is the profit given by selecting 
items i and j together, where matrix q is symmetric.

QUBO formulation of CQKP. CQKP is formulated as a QUBO by relaxing both constraints (CAP) and 
(CARD), adding a penalty term in the objective function involving the amount of their violation. There are two 
standard reformulation approaches: (i) considering the sum of the square of the violations of each constraint 
formulated as an equality; in this case the penalties are an additional QUBO term in the objective function; (ii) 
considering the sum of linear violations of each constraint in the objective function, in a traditional Lagrangian 
relaxation  approach40. In both cases, violations are multiplied by additional penalty values, whose optimal value 
should be found in order to obtain the best relaxed solution.

Square of violations of equality constraints. The relaxation of the equality constraint (CARD) is formulated as 
a QUBO as:

Inequality constraint (CAP) is first formulated as an equality with the introduction of the slack variable s ∈ Z≥0:

This additional variable must be encoded as a set of binary variables to comply with the QUBO format; the choice 
of encoding results in different formulations. We experiment on binary and unary encoding for the slack variable.

With the unary encoding, variable s is replaced by b binary variables with unary coefficients. The resulting 
QUBO is:

Unary coefficients result in lower value of quadratic coefficients; however, unary encodings requires a high 
number of additional variables and a highly degenerate formulation (i.e., a value v for the original variable s is 

encoded by 
(

b
v

)

 combinations of variables sj to value 1).

With the binary encodings, variable s is replaced by M = ⌊log2
(
∑

i∈I ai − b
)

⌋ + 1 binary variables, where 
variable sm, ∀m ∈ [0,M] , is multiplied by a coefficient cm defined as:

The resulting QUBO is:

Binary encoding requires a limited number of additional variables; however, the use of coefficients cm results in 
high quadratic coefficients, hence requiring a careful choice of the penalty multiplier for the QUBO, and with 
risk of numerical issues.

We do not take into consideration one-hot encoding. It combines the cons of unary and binary formulations: 
it leads to instances with high number of variables and high values of coefficients. Moreover, it also requires an 
additional constraint that must be relaxed.

Linear violations of equalities. As in traditional Lagrangian relaxation, constraints are relaxed by adding their 
violations to the objective function:

QUBO formulation of CQKP. The QUBO formulation to minimize CQKP is:

H
qubo
(CARD) =

(

∑

i∈I

xi − k

)2

(2)
∑

i∈I

aixi + s = b

H
qubo,unary
(CAP) =





�

i∈I

aixi +
�

j∈[1,b]

sj − b





2

cm =

{

2m ifm ∈ [0,M − 1]
(
∑

i∈I ai − b
)

+ 1− 2M ifm = M
∀m ∈ [0,M]

H
qubo,binary
(CAP) =





�

i∈I

aixi +
�

j∈M

cjsj − b





2

H linear
(CARD) =

∑

i∈I

xi − k

H linear
(CAP) =

∑

i∈I

aixi − b

(3)HCQKP =
∑

i∈I

−lixi +
∑

(i,j)∈I×I:j>i

−qi,jxixj + �(CARD)H(CARD) + �(CAP)H(CAP)
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where �(CARD) ∈ R and �(CAP) ∈ R are penalty multipliers for the violations of the corresponding constraints. 
We experiment on 4 formulations of (3), with 4 combinations of relaxation of the constraints.

• binary formulation, with both (CARD) and (CAP) relaxed as QUBO, with binary encoding of the slack 
variable of (CAP):

• unary formulation, with both (CARD) and (CAP) relaxed as QUBO, with unary encoding of the slack vari-
able of (CAP).

• qubo-card formulation, with (CARD) relaxed as QUBO and (CAP) relaxed linearly.
• linear formulation, with both (CARD) and (CAP) relaxed linearly.

Experiments
We experiment on instances from  literature41, characterized by the number of items in set I in set {50, 70, 100} and 
by the density of non-zeros values of quadratic profit coefficients in matrix q in set {25%, 50%, 75%, 100%} . Ten 
instances have been generated for each combination of density and number of items, for a total of 120 instances.

We chose to limit our experiments to instances of 100 items. While D-Wave Advantage has 5640 qubits, it 
can embed a clique with maximum 177 variables when all qubits and links of the machine are  working42. How-
ever, each broken qubit or link decreases the size of the clique that can be  embedded43. Moreover, performances 
decrease as the size of the clique increases. At the same time, traditional solvers struggle when the size of the 
problem reaches 100  items41,44.

For the unary formulations, we executed D-Wave on 41 instances out of the complete set of 120; the size of 
the instances not considered was too high to fit D-Wave machine.

Setup of solvers. Following D-Wave rule-of-thumbs we set: ‘annealing time’ to 100µs ; ‘anneal offset’ to 
α(log 2(1−c)/c − 1) , where c is the length of the chain to which apply the offset and α is set to value 0.2; ‘chain 
strength’ to the value given by the uniform torque compensation function provided by D-Wave. This latter param-
eter is the penalty term multiplying violations of equalities of the chain of copies of a variable.

For binary and unary formulations a single embedding per instance have been computed. For qubo-card 
and linear formulations three embeddings have been computed, one for each number of items of the experi-
mental instances.

Parameters of Gurobi are left to default values, with a time limit of 60 seconds for its execution. Gurobi stops 
its execution when it is able to prove optimality of its solution, or after reaching the time limit. Parameters of 
SA are left to default values.

As a further solving approach, we consider the draw at random of as many solutions as possible in a fixed 
amount of time, selecting the best solution found. In particular, we set the execution time to be equal to the 
execution time of D-Wave. To build a solution we pick k items. The probability to draw item i ∈ I is computed 
starting from the following measure:

to which we refer as ‘potential gain’. The probability of draw is given by the normalization of all potential gains:

Key performance indicators. We take into consideration two types of Key Performance Indicators (KPI).
First, as common computational KPIs, we consider the total execution time and the value of the objective 

function yielded by each solver. Second, more specifically, we evaluate the usefulness of persistence of values in 
the set of solutions yielded by a solver. We introduce a KPI to evaluate how much the information extracted from 
a set of samples can be used for search intensification in general purpose resolution procedures. Let us consider 
(i) a sorting S of the variables x in the QUBO, (ii) the value x′ of such variables in a heuristic solution, and (iii) 
the value x⋆ of such variables in the best known solution. The intuition is that only a small core of binary decision 
variables often exists, which are difficult to set in the optimization problem, thus requiring implicit enumeration 
procedures, while the remaining ones are easy to fix. Therefore, core  methods45 for combinatorial optimization 
consist in building S by putting each decision variable in order of confidence that its value in the optimal solution 
is actually the same value taken in x′ . That is, a promising fixing is performed by choosing first those variables 
appearing at the beginning of S, and fixing their values to x′ , allowing the search only for value of the remaining 
variables by a suitable optimization  algorithm26. Let w(S) be the index of the first variable in the sorting S such 
that x′w(S) �= x⋆w(S) . Intuitively, w(S) is the first position in which a core algorithm, fixing variables in the order of 
S, would make an error. We will refer to w(S) as ‘error point’.

Accordingly, let w(R) be the error point obtained by a uniform random sorting R. Let Q be the sorting 
obtained by using the persistence values of a sample of solver solutions. In the CQKP case, let x′ be defined by 
setting to 0 the |I| − k variables with lowest persistent value (setting to 1 the remaining k variables). Let w(Q) 
be the corresponding error point. As KPI for the quality of a particular formulation we therefore consider the 
probability that the random sorting performs better than the sorting induced by the solver. We formally define 
such probability as:

gi =
li +

∑

j∈I qi,j

ai
, ∀i ∈ I

(4)pi =
gi

∑

i∈I gi
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The denominator counts in how many ways w(Q) variables can be chosen at random, while the numerator 
counts how many of these subsets are variables of value 0 in the CQKP optimal solution (which are those a core 
algorithm would correctly exclude from the search). Formally, the expression of P[w(R) ≥ w(Q)] is exact when 
w(Q) ≤ |I| − k , since in this case only variables whose optimal value is 0 are correctly fixed. According to the 
parameters of our test instances, when w(Q) > |I| − k , the probability P[w(R) ≥ w(Q)] becomes negligible 
(nevertheless, the complete exact formula and its interpretation are reported in the supplementary material). By 
using �(Q) to measure the quality of Q and x′ in a randomized method, instead of more common metrics for 
specific  solutions22,23, we implicitly evaluate which impact various formulations can have in any core algorithm. 
The lower the �(Q) value, the better.

Computing effort. Figure  2 shows the comparison of computational results. Each sub-figures is related 
to a QUBO formulation: Fig.  2a for binary formulation, Fig.  2b for unary formulation, Fig.  2c for qubo-
card formulation and finally Fig. 2d for linear formulation. Each sub-figure is a scatter-plot with one point 
per solver, whose coordinates are the execution time on y-axis, while the x-axis contains the relative differ-
ence between the value zs of the QUBO yielded by a solver s and the minimum value of the QUBO among all 
solvers, i.e., |(zs −mins′∈solvers{z

′
s})/mins∈solvers{z

′
s}| . The closer a point is to the origin of the plane, the better. 

Figure 2a–c also show the magnification of the region of the plane containing points closer to the origin. Each 
value is averaged over all density values, all size of set of item I and all the 10 instances for each combination 
of density and number of items: i.e., each value is the average over 120 results. We restrict to this case as: (i) we 
did not notice differences in results provided by different density of quadratic coefficient matrix q, and (ii) we 
noticed minor differences arising by different number of items I, that are described in Supplementary Materials. 
Values of coordinates of all points of Fig. 2 and the complete results are reported in the Supplementary Material, 
Tables S2.1– S2.6.

The computation time of D-Wave results from the set-up of the execution parameters; hence, it has fixed 
value that is not influenced by the size of the instance solved, as long as the instance fits the hardware graph. In 
the set-up of our experiments D-Wave execution is in the range [0.2, 0.3] seconds. Such computation time does 
not include the time to perform minor embedding. On average, embedding took ∼ 30 seconds for instances with 

(5)�(Q) = P[w(R) ≥ w(Q)] ≈

(

|I| − k
w(Q)

)

/

(

|I|
w(Q)

)

Figure 2.  Scatter plots of execution time (on y-axis) and the relative difference between the objective function 
value zs resulting from a solver s and the minimum among all solvers (on x-axis), i.e., | zs−mins′∈solvers zs′

mins′∈solvers zs′
| . Values 

are averaged on all instances.  randam + Gurobi  D-Wave × SA  Gurobi 1sec.
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50 variables, ∼ 100 seconds for instances with 70 variables and ∼ 330 seconds for instances with 100 variables. 
It is fair not to consider such time in the comparison, as a single embedding can be pre-computed and used for 
each instance with the same interaction graph. In our case, such interaction graph is always a clique.

We also take into consideration results of Gurobi stopped after 1 second of execution (labelled as ‘Gurobi 1sec’ 
in the figures) and of the best solution found by drawing at random as many solutions as possible in 0.25 seconds 
(labelled as ‘random’ in the figures). The rationale is to compare the goodness of solvers which are executed in 
the same magnitude of time as D-Wave.

Clear patterns arise in the figures: D-Wave solutions lie in the bottom-right of the plane. Traditional state-
of-the-art mathematical programming solver Gurobi lies either in the top left or in bottom left of the plane. 
Traditional heuristic SA lies in the left part of the plot. Traditional fast methods of random draw and Gurobi 
stopped after 1 second lies closer to the origin than both D-Wave and Gurobi with 60 seconds time limit.

However, the value of the minimum solution found by D-Wave is never the lowest among all solvers. These 
findings match recent  literature21,32.

The comparison of different formulations (i.e., sub-figures in Fig. 2) allows to go one step beyond. Striking 
differences arise between formulations in which inequality constraint (CAP) is relaxed as QUBO (binary and 
unary), and formulations in which (CAP) is relaxed linearly (qubo-card and linear). For formulations binary 
and unary the solution provided by D-Wave is hundreds of times higher than the best solution found. For for-
mulation qubo-card the solution provided by D-Wave is ∼ 4 times higher than the best, while for formulation 
linear is close to the best ( ∼ 5 % worse).

For binary and unary, Gurobi either reaches, or is close to, the time limit of 60 seconds of execution. We 
recall that in our setting Gurobi stops execution only when it is able to guarantee optimality of the solution 
found. For qubo-card formulation, where the equality constraint (CARD) is relaxed as QUBO, Gurobi is able 
to prove optimality of its solution in reasonable time ( ∼ 0.6 seconds), while D-Wave is not able to find good 
heuristic solutions.

SA is always able to find solutions close to the best: for binary and unary formulations the solutions of SA 
are ∼ 11% and ∼ 15% worse than the best, while for qubo-card and linear formulations the solutions of SA 
are either equal or very close to the best solutions. The execution time of SA is highly related to the number of 
variables: for binary, qubo-card and linear formulations SA takes ∼ 1.5 , ∼ 0.9 and ∼ 0.8 seconds, respectively; 
for unary formulation instances, which have on average 140 variables for |I| = 50 case, 180 variables for |I| = 70 
case and 220 variables for |I| = 100 case, SA takes ∼ 12 seconds on average.

Only 1 second of execution of Gurobi suffices to find good solution ( ∼ 3.5% worse than best in binary case, 
∼ 10% worse than best in unary case, and the best solution in qubo-card and linear formulations).

Random solutions are better than those of D-Wave in binary, unary and qubo-card formulations, but still 
far from the best found (from 10% worse to 3 times worse than the best). In linear case, random solutions are 
worse than D-Wave solutions, and ∼ 40% worse than the best solution found.

Discussion. binary and unary formulations have additional complexity given by the encoding of the integer 
slack variable of the inequality (CAP), which is required for its formulation as QUBO. As discussed in the previ-
ous section, encodings have different cons which lead to higher complexity: binary encoding increases values 
of quadratic coefficients, while unary encoding increases the number of variables to consider. The increased 
complexity results: (i) in a higher computation time for Gurobi, which is able to quickly find good solution while 
struggling in proving their quality; (ii) in a minor worsening of solution and higher computation time for SA; 
and (iii) in a major worsening of results for D-Wave, whose solutions are hundreds or thousands of times worse 
than the best solution found, and worse than random drawn of solutions in the same amount of time.

In qubo-card and linear formulations the quality of D-Wave solutions improves, but still D-Wave is out-
performed by traditional solvers. Indeed, in linear case, when both constraints are relaxed linearly, Gurobi is 
able to find a proven optimal solution faster than the execution of D-Wave to find heuristic solution.

Summarizing, when each scatter-plot is analyzed independently, our results confirm those from the literature: 
in each formulation D-Wave solutions are dominated by at least one traditional solver. The fixed execution time 
provided by D-Wave, not linked to the size of the instance solved, is a promising feature, that may be useful if 
hardware of bigger size and improved accuracy becomes available.

Instead, when comparing scatter-plots with each other, our results are more insightful: using simple linear 
penalties lead to a decrease of orders of magnitude in the gap |(zs −mins′∈solvers{z

′
s})/mins∈solvers{z

′
s}| , in x-axis. 

Previous  analyses35–37, exploiting more involved linearization techniques, focused on problem size reduction, 
without proposing comparison with different formulations. Our results show that a linear penalization approach 
is not only useful to overcome limits in problem size, but has an actual impact on the quality of the solutions 
produced by the D-Wave QPU.

Sample persistence. Figure 3 shows boxplots of values of KPI �(S) . The first boxplot contains value of 
KPI �(S) computed from the sorting provided by the ascending value of the ad-hoc ‘potential gain’ measure (4); 
the second and third block of boxplots contain results of the sorting computed as the ascending mean values of 
variables on the complete set of solutions created during the execution of SA and D-Wave, respectively. For SA 
we take into consideration results of all 4 formulations of testing, while for D-Wave we do not consider unary 
formulation, for which it has been possible to execute only 41 instances out of 120. Results of this latter scenario 
and tables with complete results are discussed in Supplementary Materials. Error points w(S), needed to cal-
culate �(S) in (5), are computed using the integer feasible solution x⋆ given by solving the original instance of 
CQKP with Gurobi, with a time limit of 1 hour.
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We recall that the lower value of �(S) , the better. The sorting provided by the ad-hoc measure of potential 
gain yields the best value of �(S) , with a median value of 0.033. SA median values are always worse: for qubo-
card and linear cases, for which SA is able to find optimal solution of the relaxation, the median values are 
0.311 and 0.106, respectively; for binary and unary, for which SA found a solution ∼ 10% worse than the best 
found, the median value of the KPI is 0.089 and 0.068, respectively.

D-Wave has worse median values for binary and linear formulations, respectively 0.182 and 0.087. The 
median result for qubo-card case instead is 0.044, which is remarkably very close to the value of the potential 
gain measure.

Discussion. The introduction of our new KPI �(S) allows to highlight an insightful and unexpected result: 
D-wave in qubo-card formulation has comparable performance to the ad-hoc potential gain measure. Addi-
tionally, D-Wave is generic, unaware of the features of problem underlying the objective function it is solving, 
while potential gain measure is tailored on the CQKP problem. In this perspective, D-Wave might be used as a 
general purpose generator of a sorting, exploiting persistence to drive the selection of a core of decision variables 
which are difficult to set.

Conclusion
In this work we compared performances of four QUBO formulations for the CQKP and three QUBO solvers, 
with a focus on the bare QPU of D-Wave Advantage. In our comparisons we considered two aspects: the pure 
computational results and the goodness of information retrieved by sample persistence.

From the computational point of view, while the comparisons among solvers in distinct formulations sub-
stantially match the literature, the observations coming from the comparison of different formulations provides 
interesting insights. The best performance provided by D-Wave was given by the formulation in which the 
inequality constraint of CQKP was relaxed linearly. This is not matching the current best practice, which instead 
advises to transform it in a quadratic fashion. We explain this phenomenon mainly as follows: the linear relaxa-
tion allows to avoid the explicit addition of the slack variable of the constraint, which in turns would require to 
be encoded as a set of binary variables. More in details, the QUBO resulting from linear penalties has much more 
sparse interaction graph. All existing QPU architectures are build with a limited number of direct connections 
between qubits. When more connections than physical ones are required, chains of interconnecting qubits are 
needed. The coherence of their values is known to be an issue, and the QPU of D-Wave Advantage struggles to 
find good solution when facing such highly connected QUBOs. Being the objective function of the model with 
linear penalties more sparse, its embedding in the QPU requires much less qubits in these chains, ultimately 
leading to better performance.

On the analysis of sample persistence, we introduced a new KPI to evaluate how much the information 
extracted from sample persistence can be used for search intensification in general purpose resolution proce-
dures. The most insightful result was the following: D-Wave using a linear relaxation instead of the quadratic 
one carries persistence information that shows experimentally to be representative of an optimal solution. Spe-
cifically, it matches an ad-hoc metric on CQKP in identifying cores of variables which are difficult to set. Since 
the ad-hoc metric exploits specific combinatorial features of the CQKP, while D-Wave does not, the latter is 
applicable in a wider setting.

Data availability
Replication data are freely available at https:// doi. org/ 10. 13130/ RD_ UNIMI/ Y3GKUF.

Received: 27 December 2022; Accepted: 24 March 2023

Figure 3.  Comparison of �(S) values of different sorting methods. From left to right: the sorting by increasing 
value of the potential gain measure (4), the sorting by increasing average variable values in SA solutions over 
repeated starts, and the sorting by increasing average values in D-wave samples. Orange bars represent median 
values, which in details are 0.039 for the potential gain measure (4), 0.089 for SA-binary, 0.068 for SA-unary, 
0.106 for SA-linear, 0.311 for SA-qubo-card, 0.182 for D-Wave-binary, 0.044 for D-Wave-qubo-card and 
0.087 for D-Wave-linear.

https://doi.org/10.13130/RD_UNIMI/Y3GKUF
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