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RGN as a prognostic biomarker 
with immune infiltration 
and ceRNA in lung squamous cell 
carcinoma
Yang Liao 1,2, Wen Cheng 1,2, Ruiyu Mou 1,2, Xiaojiang Li 1,2* & Yingjie Jia 1,2*

Regucalcin (RGN) is a potent inhibitory protein of calcium signaling and expresses in various 
tissues. However, the role of RGN in the tumor immunological microenvironment in lung squamous 
cell carcinoma (LUSC) remains unclear. This study identified the expression of RGN from public 
databases and immunohistochemistry with clinical specimen. The association between RGN and the 
tumor immune microenvironment (TIME) was investigated in LUSC by ESTIMATE and CIBERSORT 
algorithms. Similarly, the Tumor IMmune Estimation Resource (TIMER) database was used to 
identify the correlation between RGN and immune cells. The ceRNA network was established based 
on the data obtained from public databases. Finally, prediction of drug response to chemotherapy 
and immunotherapy was performed to evaluate clinical significance. This study found that RGN 
expression was significantly downregulated in tumor tissues and closely related to clinical factors 
and prognosis of LUSC patients. Differentially expressed genes (DEGs) grouped by the expression 
of RGN were mostly involved in immunobiological processes such as humoral immune response 
and leukocyte mediated immunity. RGN and its related miRNA (has-miR-203a-3p) and lncRNAs 
(ZNF876P and PSMG3-AS1) constructed the novel prognosis-related ceRNA network. Plasma cells, 
T cells CD4 memory resting, Macrophages M0, Macrophages M1, Mast cells resting, Mast cells 
activated and Neutrophils showed significantly different levels of infiltration between high and low 
RGN expression groups. The TIMER database showed that RGN expression was positively correlated 
with certain immune infiltrating cells. High RGN expression group showed a higher TIDE score, a 
higher dysfunction score and a lower MSI score, presenting a possible lower efficacy after accepting 
the immunotherapy than low RGN expression group. RGN expression was closely associated with 
prognosis of LUSC patients and played an important role in tumor microenvironment. This suggests 
that RGN could be a promising biomarker for assessing immunotherapy efficacy and prognosis.

As a leading cause of cancer-related mortality, lung cancer is among the deadliest malignancies globally, and 
nearly 1.8 million people are diagnosed with lung cancer every  year1. Small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC) are two types of lung cancer. Lung squamous cell carcinoma (LUSC) accounting 
for approximately 40% of all lung cancer is a highly aggressive subtype of NSCLC, and its diverse histological 
morphology is associated with poor clinical  prognosis2. The landscape of LUSC treatments has gradually 
evolved from chemotherapy surgery to immunotherapies and combined treatments in different stage of LUSC 
patients. Importantly, several molecular targets such as programmed death-ligand 1 (PD-L1) was identified and 
demonstrated high sensitivity and response rates for  immunotherapies3,4. Notwithstanding, therapeutic resistance 
and tumor recurrence appear to be major therapeutic challenges in the treatment of  LUSC5. Hence, novel essential 
biomarkers are urgently needed to develop and change treatment strategies in the era of precision medicine.

The tumor immune microenvironment (TIME), which contains tumor, immune, stromal, and extracellular 
components, strongly supports the behavior of the tumor in terms of progression and  metastasis6. As a critical 
determinant of cancer evolution and outcome, TIME tends to associated with different clinical outcomes based 
on different immune infiltration levels. A recent study indicated that the TIME of LUSC is characterized by 
immunogenic and heterogenous, with predominant infiltration of activated CD8+ T  cells7. For Chinese LUSC 
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patients, low tumor mutation burden (TMB) and high CD8+ tumor infiltrating lymphocytes (TILs) density 
were independently associated with longer disease-free survival (DFS), which presented remarkable correlation 
between the TIME and  LUSC8.

The regucalcin (RGN) gene, which is located on the X chromosome in humans, encodes a potent inhibitory 
protein of calcium signaling and expresses in various types of cells and  tissues9,10. As a senescence marker protein 
closely correlated with osteoporosis, the expression of RGN is regulated by the aging  process11,12. Through 
maintaining intracellular  Ca2+ homeostasis and suppressing signal transduction in diverse cells, regucalcin plays 
a huge role in regulating cellular functions and physiological processes. Furthermore, a study showed that 
the induction of RGN expression in Min6 cells was effective in suppressing lipopolysaccharide (LPS)-induced 
inflammatory cytotoxicity in the  TIME13. However, the role of RGN and its specific mechanisms in the crafting 
of the tumor immunological microenvironment in LUSC remain unclear.

In this study, we evaluated the relationship between RGN and prognosis of LUSC patients based on the 
data from TCGA and GEO databases. Notably, the association between RGN expression and the TIME was 
investigated in LUSC by bioinformatics techniques including ESTIMATE and CIBERSORT algorithms. All results 
provide novel insights into the functional role and prognostic value of RGN in LUSC, and reveal its potential 
mechanistic basis related to immune infiltration.

Materials and methods
Data and sources. The Cancer Genome Atlas (TCGA: https:// cance rgeno me. nih. gov/) was used to obtain 
the expression profile of RGN mRNA in LUSC tissues. GEPIA website (http:// gepia. cancer- pku. cn/) including 
TCGA and GTEx (https:// www. gtexp ortal. org) databases was used to compare the expression of RGN in LUSC 
and normal tissues. GSE12428, GSE19188, GSE33532, GSE141479, GSE37745 and GSE29013 datasets in GEO 
database (https:// www. ncbi. nlm. nih. gov/ geo/) were applied to obtain RGN expression in normal or tumor 
tissues. The mRNA profile data in public databases we downloaded was annotated and standardized.

Differentially expressed single gene. To explore the differential expression of RGN mRNA in different 
types of tumor and normal tissues, we used the “limma” package in R software to analyze the downloaded  data14. 
The “pROC” package was applied to construct a receiver operating characteristic (ROC) prediction model for 
the normal and LUSC groups. The results were visualized in histogram plots by the R package “ggplot2”.

Validation of the expression of RGN by immunohistochemistry and qRT-PCR. Ten paraffin-
embedded lung squamous cell carcinoma tissues and para-carcinoma tissues from the First Teaching Hospital 
of Tianjin University of Traditional Chinese Medicine were used for immunohistochemistry (IHC) staining. 
Experiments involving human tissues were in accordance with the principles of the Declaration of Helsinki 
and were approved by the Institutional Review Board of the First Teaching Hospital of Tianjin University of 
Traditional Chinese Medicine. Written informed consent was obtained from all participants. All tissues were 
incubated overnight with a primary antibody for RGN (1:500, PA5-56057, ThermoFisher) at 4 °C. After washing 
in Phosphate-Buffered Saline (PBS) for 10  min, each section was incubated by secondary goat anti rabbit 
antibody for two hours at room temperature. Then, these tissue sections were stained with diaminobenzidine 
for 3  min and counterstained with hematoxylin. The IHC staining results were analyzed and scored by two 
investigators assessed in a blinded fashion.

Total RNA was extracted from tissues with TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to 
the manufacturer’s protocol. NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, USA) was applied 
for concentration measurement. Reverse transcription to cDNA was performed according to the instruction of 
PrimeScript™ RT reagent kit (Takara, Dalian, China). qRT-PCR was carried out in the Q1 Real-Time System 
(ABI) with SYBR PrimeScript RT-PCR kit (Takara, Dalian, China). The primer sequences were as follows: RGN 
forward, 5′-AAG ATT GAG TGT GTT TTG CCAGA-3′; RGN reverse: 5′-GTC TAC AAA GAG CAG AGA GTTGG-
3′; β-actin forward: 5′-CTG GCC GTG ACC TGA CGG AC-3′; β-actin reverse: 5′-GCC TCG GGG CAC CTG AAC 
CT-3′. The relative mRNA expression was calculated by the  2−ΔΔCt method.

Survival and clinical feature analysis. To identify the clinical relevance of RGN, we performed survival 
analysis based on TCGA-LUSC data. Besides, GEPIA website was used to explore the relationship between 
RGN and  DFS15. The correlation between RGN expression and overall survival (OS) in LUSC from GSE3141, 
GSE37745 and GSE29013 datasets was also evaluated by R package “survival”. Then, the associations between 
RGN and several clinical features (including age, sex, and tumor stage) were visualized by boxplots. Finally, 
univariate and multivariate Cox regression analyses were used to assess the prognostic role of RGN and other 
clinical features.

Gene set enrichment analysis. Based on the gene expression matrix from TCGA-LUSC dataset, Gene Set 
Enrichment Analysis (GSEA) was performed to investigate potential biological functions and pathways related 
to RGN in  LUSC16. The gene set permutations were performed 1000 times per analysis, and the significantly 
enriched results were selected with a false discovery rate (FDR) < 0.05 and P < 0.05.

Identification of differentially expressed genes and functional analysis. According to the level 
of RGN expression, LUSC patients were divided into two groups which were filtered for the identification of 
differentially expressed genes (DEGs) in TCGA database with the “limma” package. Filtration conditions were 
log2 fold change (FC)| > 1 and P < 0.05. Then, we constructed heatmaps and correlation plots of the 40 DEGs (20 
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top upregulated genes and 20 top downregulated genes) using the “ggplot2” package. Furthermore, we used the 
R package “clusterProfiler” for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) 
enrichment analyses.

Construction of a protein–protein interaction network. The protein–protein interaction (PPI) 
network involving 20 top upregulated genes and 20 top downregulated genes was constructed using the Search 
Tool for the Retrieval of Interacting Genes (STRING; https:// string- db. org/) database. The criteria for selection 
is the confidence score higher than 0.4. We used Cytoscape 3.8.0. to present the PPI network in which the 
disconnected nodes were hided and to analyze the subnetworks by the MCODE  plugin17.

Construction of the ceRNA regulatory network. The miRNA–RGN and lncRNA–miRNA interaction 
pairs were obtained from starBase (https:// starb ase. sysu. edu. cn/), miRDB (https:// mirdb. org/), TargetScan 
(http:// www. targe tscan. org/) and DIANA-LncBase (http:// www. micro rna. gr/ LncBa se)18–21. Pearson’s correlation 
with the criteria of coefficient < − 0.2 and P < 0.01 was performed to explore the expression correlation among 
miRNAs, mRNAs and lncRNAs. Then, differential expression and survival analyses were applied to further 
screen eligible mRNAs and lncRNAs. The lncRNA-miRNA-mRNA regulatory network was constructed and 
visualized using Cytoscape 3.8.0.

Immune clustering analysis. First, the infiltration levels of different immune cell types were quantified 
by single sample Gene Set Enrichment Analysis (ssGSEA) with R package “GSVA”22. We then divided all LUSC 
samples from TCGA database into high-, middle- and low-immune cell infiltration clusters. Then, we obtained 
tumor purity, ESTIMATEscore, immunescore and stromalscore of all LUSC samples in the three subtypes by 
the R package “ESTIMATE”, which reflected the infiltration levels of immune cells and stromal cells within 
the tumor  microenvironment23. We also explored the expression of RGN and PD-L1 to validate the difference 
among three clusters. The R package “ggpubr” was applied to present vioplots. Finally, we used the R package 
“CIBERSORT” to count the proportion of immune cells of all LUSC samples on the foundation of the three 
 clusters24.

The Tumor IMmune Estimation Resource database analysis. As a comprehensive database 
for the analysis and visualization of relationship between immune infiltrate levels and several variables, the 
Tumor IMmune Estimation Resource (TIMER) database (https:// cistr ome. shiny apps. io/ timer/) was applied to 
determine the relationship between RGN expression levels and immune infiltration based on the CIBERSORT 
 algorithm25. We focused on tumor-infiltrating immune cells, including B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages, and dendritic  cells26. SCNA module in the TIMER database was employed to explore 
the correlation between somatic CNA and abundance of immune infiltration. In addition, we interrogated 
correlations between RGN expression and gene markers of tumor-infiltrating immune cells in LUSC.

Prediction of drug response. To predict the half-maximal inhibitory concentration (IC50) of common 
chemotherapeutic in the high- and low-RGN expression groups in LUSC patients, we used the R package 
“pRRophetic”27. The differences in the IC50 between the two groups were compared by the Wilcoxon signed-
rank test, and the results were visualized by boxplots using the R package “ggplot2”. The Cancer Immunome Atlas 
(TCIA; https:// tcia. at/) database was utilized to assess the immune responses of immunotherapy in different 
RGN expression patients. Finally, the Tumor Immune Dysfunction and Exclusion (TIDE; http:// tide. dfci. harva 
rd. edu/) was also applied to evaluate the potential clinical effects of immunotherapy in LUSC.

Ethics statement. Experiments involving human tissues were in accordance with the principles of the 
Declaration of Helsinki and were approved by the Institutional Review Board of the First Teaching Hospital of 
Tianjin University of Traditional Chinese Medicine. Written informed consent was obtained from all participants.

Results
Identification of RGN mRNA expression in LUSC and verification by IHC. The flowchart of 
the present research is shown in Fig. 1. In order to explore RGN expression level in various types of tumors, 
we analyzed the data downloaded from TCGA and GEO databases. In tumor and normal tissues of pan-
cancer, mRNA expression of RGN was decreased significantly in seventeen types of cancer, including BLCA, 
BRCA, HNSC, LIHC, LUAD, LUSC, etc. (Fig. 2A). Based on comparisons of RGN expression in pan-cancers, 
we summarized that LIHC, ACC, KICH, THCA and KIRP were the top 5 types of cancers with the highest 
expression (Fig. 2B). Furthermore, LUSC was founded to be associated with a significantly lower expression 
level of RGN in comparison to normal tissues in RNA-sequencing profile data from public databases (Fig. 2F). 
We observed that the corresponding area under the ROC curve (AUC) for distinguishing between the LUSC 
and normal groups was 0.983 in TCGA database and 0.700 in GSE14228 dataset (Fig. 2G). Paired analysis of 
tumor and normal tissues was used to validate RGN expression in LUSC and normal tissues (Fig. 2H). Finally, 
we performed IHC and qRT-PCR to evaluate the expression of RGN, and the results presented low RGN protein 
and mRNA expression level in LUSC tissues compared with adjacent non-tumor tissues (Fig. 2C–E).

Assessment of prognosis of LUSC patients. To study the correlation between RGN expression and 
prognosis of LUSC patients, we analyzed survival data from TCGA and GEO databases and performed survival 
analysis in GEPIA database. Notably, Kaplan–Meier survival curves exhibited that overexpression of RGN was 
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associated with worse prognosis of LUSC patients in terms of OS. We did not discover significant result related to 
DFS (Fig. 3A). We performed chi-square test to explore the detailed correlation of RGN expression with a panel 
of clinical features. As shown in Table 1, RGN expression was closely correlated with age (P = 0.017), gender 
(P = 0.009), tumor stage (P = 0.001) and pathologic N stage (P = 0.027). The boxplots indicated that female LUSC 
patients or patients with age greater than 70 years tended to express more significant mRNA expression of RGN. 
Besides, higher RGN expression was displayed in stage IV, T1 stage and N3 stage (Fig. 3B). Finally, we found 
that RGN expression was significantly downregulated after immunotherapy (nivolumab) based on GSE141479 
dataset (Fig. 3C, P = 0.021). Univariate and multivariate Cox regression analyses showed that stage, age and RGN 
were independent predictors for poor survival in the TCGA-LUSC cohort (Fig. 3D,E).

Functional enrichment analysis. To examine the functional enrichment of different expression levels of 
RGN, GSEA was performed between the RGN low group and RGN high group in LUSC patients from the TCGA 
cohort. Immunologic signature, GO and KEGG gene sets were taken as references. KEGG and GO enrichment 

Figure 1.  Flow chart for the study design.
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Figure 2.  Identification of RGN expression in LUSC from TCGA, GEO databases and clinical specimens. 
(A) RGN expression between normal and tumor tissues in pan-cancer from TCGA database. (B) Expression 
levels of RGN mRNA in pan-cancer. (C,D) Representative immunohistochemistry images of RGN in LUSC 
and adjacent non-tumor tissues. The expression level of RGN in tumor tissues was significantly lower than 
that in adjacent non-tumor tissues. (E) RGN mRNA expression in tumor adjacent non-tumor tissues. (F) The 
level of RGN expression was lower in LUSC compared with normal tissues in different datasets. (G) Diagnostic 
value of RGN expression in LUSC in GSE14228 dataset and TCGA database. (H) Paired analysis of tumor and 
normal tissues based on RGN expression in LUSC in GSE19188 and GSE33532 datasets. *P < 0.05; **P < 0.01; 
***P < 0.001.
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Figure 3.  Clinical correlation analysis. (A) Kaplan–Meier survival curves of different levels of RGN expression 
obtained from TCGA, PrognoScan and GEPIA databases. (B) RGN expression was significantly correlated with 
clinical factors, including age, gender, tumor stage, T-stage and N-stage. (C) RGN expression was significantly 
downregulated after immunotherapy. (D) Univariate and multivariate Cox regression analyses showed that 
stage, age and RGN were independent predictors for poor survival in the TCGA-LUSC cohort.
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terms exhibited that RGN expression was positively correlated with chemokine signaling pathway, cytokine–
cytokine receptor interaction, cell recognition, humoral immune response, etc. The global expression changes 
produced in LUSC patients were negatively correlated with cell cycle, DNA replication, ribosome assembly, 
nucleoid, etc. (Fig.  4A–D). Additionally, GSEA also revealed an association with immunologic signature 
terms, including “GSE10325 CD4 T-cell vs lupus CD4 T-cell up”, “GSE19198 1 h vs 24 h IL21 treated T-cell 
up”, “GSE15930 naïve vs 24 h in vitro stim CD8 T-cell down”, “GSE18893 tconv vs treg 24 h TNF stim up”, etc. 
(Fig. 4E,F).

Table 1.  Correlation between RGN mRNA expression and clinicopathologic features in TCGA database. 
*P < 0.05.

Clinical features

RGN expression

P-valueLow (%) High (%)

Age

 ≤ 70 116 (42.8) 90 (33.2) 0.017*

 > 70 155 (57.2) 181 (66.8)

Gender

 Female 57 (21.0) 85 (31.4) 0.009*

 Male 214 (79.0) 186 (68.6)

Race

 White 245 (90.4) 244 (90.0) 0.633

 Black/African American 22 (8.1) 20 (7.4)

 Asian 4 (1.5) 7 (2.6)

Laterality

 Bilateral 247 (89.8) 241 (87.3) 0.424

 Left 12 (4.4) 11 (4.0)

 Right 16 (5.8) 24 (8.7)

Tumor stage

 Stage I 111 (41.0) 160 (59.0) 0.001*

 Stage II 109 (40.2) 66 (24.4)

 Stage III 49 (18.1) 39 (14.4)

 Stage IV 2 (0.7) 6 (2.2)

Pathologic M stage

 M0 267 (98.5) 262 (96.7) 0.160

 M1 4 (1.5) 9 (3.3)

Pathologic N stage

 N0 160 (59.0) 189 (69.7) 0.027*

 N1 84 (31.0) 55 (20.3)

 N2 26 (9.6) 17 (6.3)

 N3 1 (0.4) 10 (3.7)

Pathologic T stage

 T1 53 (19.6) 70 (25.8) 0.085

 T2 164 (60.5) 156 (57.6)

 T3 42 (15.5) 33 (12.2)

 T4 12 (4.4) 12 (4.4)

Radiation therapy

 Yes 35 (12.9) 28 (10.3) 0.348

 No 236 (87.1) 243 (89.7)

New tumor event after initial treatment

 Yes 71 (26.2) 74 (27.3) 0.771

 No 200 (73.8) 197 (72.4)

Cigarettes per day exposures

 ≤ 3 156 (57.6) 177 (65.3) 0.064

 > 3 115 (42.4) 94 (34.7)

Prior malignancy diagnosis

 Yes 32 (11.8) 34 (12.5) 0.793

 No 239 (88.2) 237 (87.5)
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Analysis of DEGs grouped according to RGN expression. According to the high and low RGN 
expression groups, we identified a total of 87 downregulated genes and 335 upregulated genes (|log2FC| > 1 
and P < 0.05) in TCGA database (Supplementary Table  1). Then, we selected separately the top 20 genes in 
downregulated and upregulated groups to exhibit gene correlations and expression levels (Fig.  5A,B). In 
addition, we constructed a PPI network and its subnetworks based on the STRING database using the Cytoscape 
software (Fig.  5C). Finally, GO and KEGG functional enrichment analysis were performed to distinct the 
functions of DEGs. The results demonstrated that the DEGs were associated with leukocyte mediated immunity, 
immunoglobulin production, endocytic vesicle, antigen binding, staphylococcus aureus infection, phagosome, 
etc. (Fig. 6).

Construction of prognosis-related ceRNA network. Based on the results of starBase, miRDB and 
TargetScan databases, we screened 24 miRNAs which were associated with the expression of RGN (Fig. 7A). 
Then, correlation, survival and differential expression analyses were performed to further select eligible miRNAs 
for subsequent analyses. We found that miR-203a-3p and miR-205-3p were negatively correlated with RGN 
expression (Fig. 7B). Importantly, the expression of these miRNAs in LUSC tissues was significantly higher than 

Figure 4.  GSEA for LUSC samples with high and low RGN expression. (A,B) The enriched gene sets in KEGG 
by samples with high and low RGN expression. (C,D) The enriched gene sets in GO with samples with high and 
low RGN expression. (E,F) The enriched gene sets related to immunologic signature with samples with high and 
low RGN expression.
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that in normal tissues (P < 0.05) (Fig. 7C). Besides, Kaplan–Meier curves presented that higher expression of 
miR-203a-3p or miR-205-3p was significantly associated with longer OS of LUSC patients (Fig. 7D).

The lncRNAs related to miR-203a-3p or miR-205-3p were obtained from starBase and DIANA-LncBase 
databases. Correlation analyses revealed that ZNF876P and PSMG3-AS1 were negatively correlated with miR-
203a-3p, while no genes significantly related to miR-205-3p were observed (Fig. 7E). Additionally, miR-203a-3p 
and miR-205-3p were negatively correlated with RGN (Fig. 7F). As shown in Fig. 7G, the expression of ZNF876P 
and PSMG3-AS1 were downregulated in LUSC tissues compared with normal tissues. Furthermore, survival 

Figure 5.  Analysis of DEGs between high and low RGN expression groups. (A) Heatmap of the top 20 
upregulated and top 20 downregulated DEGs between the high and low RGN expression groups of LUSC 
samples in TCGA database; red dots indicate high expression, whereas blue dots indicate low expression. (B) 
Correlations of expression level among the top 20 upregulated and top 20 downregulated DEGs. (C) The PPI 
network of RGN and DEGs.
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analyses showed that lower expression of ZNF876P was significantly associated with longer OS of LUSC patients. 
Although the survival curve of PSMG3-AS1 did not show significant difference, it can be observed that the low 
expression group before 9 years also had a longer survival period (Fig. 7H). Therefore, based on the ceRNA 
hypothesis, we constructed the ceRNA network about RGN (Fig. 7I).

Construction and validation of LUSC clustering. We used ssGSEA method for the RNA-sequencing 
data of LUSC samples downloaded from TCGA database to examine the immune cells infiltration, and we 
obtained the abundance levels of 29 immune-related cells and types in LUSC samples. Then, all LUSC samples 
were assigned into high-, middle-, and low-immune cell infiltration clusters based on immune infiltration 
evaluated by unsupervised hierarchical clustering algorithm (Fig. 8A). Importantly, we calculated Stromal Score, 
Immune Score, ESTIMATE Score and Tumor Purity by ESTIMATE algorithm for validating the applicability 
of the clustering result. Our results revealed that Stromal Score, Immune Score, and ESTIMATE Score in low 
immune cell infiltration cluster were lower than that of other two clusters, but Tumor Purity at a relatively 

Figure 6.  GO and KEGG pathway enrichment analysis. (A) The bar plot of KEGG pathway enrichment 
analysis (BP, biological process; CC, cell component; MF, molecular function). (B) The bar plot of GO pathway 
enrichment analysis.
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Figure 7.  Construction of prognosis-related ceRNA network. (A) RGN was closely associated with 24 
miRNAs. (B) The correlation analysis of RGN and two target miRNAs (miR-203a-3p and miR-205-3p). (C) The 
expressions of miR-203a-3p and miR-205-3p in LUSC and normal tissues. (D) Kaplan–Meier curve analysis 
of miR-203a-3p and miR-205-3p for the overall survival in LUSC patients. (E) Two target lncRNAs (ZNF876P 
and PSMG3-AS1) were negatively correlated with miR-203a-3p. (F) ZNF876P and PSMG3-AS1 were positively 
correlated with RGN. (G) The expression of ZNF876P and PSMG3-AS1 in LUSC and normal prostate tissues. 
(H) Kaplan–Meier curve analysis of ZNF876P and PSMG3-AS1 for the overall survival in LUSC patients. (I) 
The diagram of the final ceRNA network.
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high level in low group (Fig. 8C). The violin plot also shown that the degree of Tumor Purity was highest in 
low immune cell infiltration cluster (Fig. 8B). Similarly, the boxplot further presented immune infiltration of 

Figure 8.  Construction and validation of LUSC clustering. (A) All LUSC samples in TCGA database were 
divided into three clusters based on immune infiltration level. (B) The violin plot of the difference in Tumor 
Purity among high-, middle-, and low-immune cell infiltration cluster. (C) The enrichment levels of 29 
immune-related cells and types in the high-, middle-, and low-immune cell infiltration cluster. The Tumor 
Purity, ESTIMATE Score, Immune Score and Stromal Score of every patient gene were showed combine 
with the clustering information. (D) The relationship between PD-L1 expression and the three subtypes. (E) 
The proportion of immune cells among the high-, middle-, and low-immune cell infiltration cluster using 
CIBERSORT algorithm. (F) The relationship between RGN expression and the three subtypes. *P < 0.05; 
**P < 0.01; ***P < 0.001; ns not significant.
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immune-related cells and types in the three clusters by CIBERSORT algorithm (Fig.  8E). Furthermore, we 
discovered that PD-L1 expression was significantly different in low-, middle-, high- immune cell infiltration 
clusters, and RGN expression showed significant difference between middle and high groups (Fig. 8D,F).

Immune cell infiltration analysis. In order to identify the correlation between the immune 
microenvironment and RGN expression, we built a heatmap containing the ratio of 22 types of tumor immune 
infiltrating cells (Fig.  9A), and confirmed the correlation among 22 immune cell types in the LUSC group 
(Fig. 9B). The vioplot showed expression levels of different immune cells in RGN low profile and RGN high 
profile in LUSC patients, and we observed significant differences in Plasma cells, T cells CD4 memory resting, 
Macrophages M0, Macrophages M1, Mast cells resting, Mast cells activated and Neutrophils (Fig. 9C). In addition, 
we applied the TIMER database to estimate the correlations of RGN expression with immune cell infiltration. 
It was obviously that RGN expression was positively correlated with immune infiltration of B cell, CD8+ T 
cell, CD4+ T cell, Macrophage, Neutrophil and Dendritic cell (Fig. 9D). We also explored the comparison of 
tumor infiltration levels in LUSC with different somatic copy number alterations for RGN. The results showed 
that the infiltration of Dendritic cell was associated with the high level of copy number alterations for RGN in 
LUSC (Fig. 9E). Finally, we investigated the correlations of RGN expression with the markers of six immune 
cells in LUSC, including B cell markers (CD19, CD79A), CD8+ T cells markers (CD8A, CD8B), CD4+ T cell 
markers (CD4), M1 macrophage markers (NOS2, IRF5, PTGS2), M2 macrophage markers (VSIG4, MS4A4A), 
neutrophil markers (CEACAM8, ITGAM, CCR7) and dendritic cell markers (HLA-DPB1, HLA-DQB1, HLA-
DRA, HLA-DPA1, CD1C, NRP1, ITGAX). Our results revealed that significant positive correlations between 
RGN expression and these markers except IRF5 (Fig. 10, Supplementary Table 2).

Prediction of drug response to chemotherapy and immunotherapy. The pRRophetic algorithm 
was used to predict the IC50 of common therapeutic in high- and low-RGN expression patients. As shown 
in Fig. 11A, several chemotherapeutic drugs including docetaxel and gemcitabine had lower IC50 in the low 
expression group, indicating that these patients were more sensitive to this chemotherapeutic drug. According 
to the data mining from the TCIA database, the results indicated that low- and high-RGN expression groups had 
significant difference in response to immune checkpoint inhibitors targeting CTLA-4. However, these groups 
did not show differences in the prediction of PD1-targeted immunotherapy (Fig. 11B). Furthermore, we used 
the TIDE database to assess the potential clinical effects of immunotherapy in different RGN expression groups. 
As a result, high expression group presented a higher TIDE score, a higher dysfunction score, and a lower MSI 
score, which demonstrated that these patients tended to have a lower efficacy after accepting the immunotherapy 
than LUSC patients with low RGN expression (Fig. 11C).

Discussion
As an important regulatory protein in  Ca2+-dependent signaling pathway, RGN expression was regulated by 
extracellular and intracellular calcium levels. Protein kinase C (PKC) pathway was able to enhance nuclear 
localization of RGN for modestly promoting gene  expression28,29. For liver cancer, researchers have noticed that 
RGN expression was also induced by various hormonal stimulation, including calcitonin, insulin and estrogen. 
Additionally, it was reported that the consequences of the aging process decreased liver RGN  expression30.

In the course of tumor development, RGN could exert complex biological cell functions and show antitumor 
activity. RGN expression was associated with preventive effects against the proliferation of tumor and progression 
of cancer  cells31. Similarly, RGN was also found to play a role as a suppressor protein in carcinogenesis, and high 
expression of endogenous RGN was suggested to reveal preventive and therapeutic effects on  carcinogenesis32. 
Overexpression of RGN can suppress bone metastatic activity of MDA-MB-231 human breast cancer  cells33. A 
recent study has demonstrated that RGN could promote dormancy of prostate cancer, and patients expressing 
higher level of RGN could show significantly longer recurrence-free survival (RFS) and  OS34. The effects of RGN 
include activation of p38 MAPK and inhibition of Erk signaling pathway. Besides, secretory miR-23c level in the 
exosomes was upregulated by RGN to suppress angiogenesis.

In our study, we explored the biological landscape of RGN in LUSC in novel dimensions. For the first time, 
we discovered that RGN expression was significantly downregulated in tumor tissues compared with normal 
tissues and closely related to clinical factors and prognosis in LUSC patients according to TCGA and GEO 
databases. On the foundation of the expression of RGN mRNA, we identified DEGs which were mostly involved 
in immunobiological processes such as humoral immune response and leukocyte mediated immunity. Then, 
we found that RGN was related to tumor-infiltrating immune cells in LUSC. Meanwhile, the TIMER database 
provided an estimation of the immune infiltration levels. To our knowledge, our analyses provide novel insights 
into the prognostic role of RGN and potential role of RGN in the tumor immunology of LUSC.

Previous studies pointed out that RGN expression played a role in regulating various oncogenes and tumor 
suppressors by exerting growth suppressive  effect35. It was noting that high RGN expression was closely associated 
with prolonged survival of patients with cancers including prostate cancer, lung adenocarcinoma and colorectal 
 cancer36–38. We founded that RGN was differentially expressed in normal and tumor tissues and associated with 
prognosis of LUSC patients. Intriguingly, RGN expression was at a lower level in tumor samples compared 
to normal samples, but our Kaplan–Meier survival curves demonstrated that LUSC patients with high RGN 
expression tended to have poor survival. Our controversial findings may confuse the role of RGN in the initiation 
and subsequent progression of LUSC. In terms of mechanism, RGN is in a pathway that may be enhanced or 
otherwise regulated in LUSC. A study has revealed that HIF-1α protein binds directly to the HRE binding motifs 
within the RGN promoter to regulate the the expression of  RGN39. The expression of HIF-1α was significantly 
higher in LUSC than those in normal lung tissues and related to worse survival  time40,41. Therefore, we speculated 
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Figure 9.  Correlation analysis between RGN expression and immune cells in LUSC. (A) The ratio of 22 types 
of tumor immune infiltrating cells in LUSC samples. (B) The correlation among 22 immune cell types in the 
LUSC group. (C) Comparison of the level of the 22 infiltrating immune cell types and RGN between the high- 
and low-expression groups; red reflects high expression, whereas green reflects low expression. (D) Scatterplots 
of correlations between RGN expression and immune cells, including CD4+ T cell, macrophage, B cell, CD8+ 
T cell, neutrophil or dendritic cell. (E) The correlation between somatic copy number variation and immune 
infiltration levels of six immune cells in LUSC.
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the upregulated RGN with a worse prognosis in our research might be the result of regulation of high levels of 
HIF-α, especially in the hypoxic tumor microenvironment after tumor formation. Besides, instead of functioning 
in isolation, RGN presents different expression levels at various stages of disease and produces biological effects 
by complex regulatory mechanisms including non-coding RNAs and epigenetic modifications. A study presented 
that epigenetic re-programming of RGN in NSCLC led to reduced expression of  Regucalcin42. In summary, owing 
to lack of sufficient related studies, it is worth performing relevant experiments to explore specific mechanisms 
for further explaining the role of RGN in LUSC.

Recently, considering the importance of immune microenvironment in the progression of cancer and the 
efficacy of individualized immunotherapy, many biological and clinical researches have focused on  TIME43,44. 
As a vital factor in tumor development, the immune landscape can be explored to identify more genomic and 
clinical characteristics in different immune infiltration patterns. In our study, we divided the LUSC samples into 

Figure 10.  The mRNA expression of RGN was related to gene markers of immune cells.
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three clusters based on the enrichment of 29 immune cell types. Then, we found that Stromal Score, Immune 
Score, and ESTIMATE Score calculated by ESTIMATE algorithm in low immune cell infiltration cluster were 
lower than that of other two clusters, but Tumor Purity at a relatively high level in low group. Besides, there were 
also obviously difference in the proportion of 17 immune cells in three clusters using CIBERSORT algorithm. We 
also discovered that PD-L1 and RGN expression was significantly different in low-, middle-, high- immune cell 
infiltration clusters, which could validate the heterogeneity of immune microenvironment in LUSC. By mining 
the TIMER database, we further revealed that RGN expression was positively correlated with high levels of 
immune cell infiltration such as macrophages. Tumor islet-infiltrating M2 macrophages influence the prognosis 
of NSCLC patients, and the analysis of M2 macrophages and PD-L1 in combination may enhance the accuracy 
of prognostic  prediction45. In addition, positive correlations were observed between RGN expression and certain 
immunological markers including CD4, CD8, CD163, CCR7, CD1C, etc. The tumor microenvironment of 
tumorigenesis was particular rich in CD163+  macrophages46. Researchers discovered that preoperative prognostic 
nutritional index level was associated with CD4+ T and CD8+ T lymphocyte infiltration status in patients with 
surgically resected  LUSC47. Furthermore, GO and KEGG analysis showed that the DEGs grouped by RGN 

Figure 11.  Prediction of RGN-related drug responses in LUSC patients. (A) Prediction of the IC50 of common 
therapeutic agents in high- and low-RGN expression patients. (B) Distribution of RGN expression in CTLA4 
or PD1 scores by TCIA database. (C) Distribution of RGN expression in TIDE, MSI, dysfunction and exclusion 
scores by TIDE database. ***P < 0.001; ns not significant.
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expression level were associated with leukocyte mediated immunity, immunoglobulin production and humoral 
immune response, which also displayed strong correlations between RGN and immune infiltration in LUSC.

The research evidence of RGN in immune microenvironment is relatively insufficient. A study has 
demonstrated that RGN could exert anti-inflammatory effects on adipocyte cocultured with  macrophages48. Our 
results also observed that the high RGN expression group often showed the low level of macrophage infiltrations, 
including macrophage M0 and M1. Under the stimulation of IFN-γ or other factors, macrophage M0 was 
polarized into macrophage M1 and produced a large amount of pro-inflammatory factors, including IL-1, IL-6 
and TNF-α, etc. These inflammatory cells and related inflammatory mediators in TIME may contribute to 
tumorigenesis and cancer  progression49. Therefore, RGN may regulate TIME by influencing and/or interacting 
with macrophages in LUSC, which was a possible mechanism. Our analysis implied that RGN may be important 
for regulating immune cell infiltration and activation in tumor microenvironment of LUSC, and further study 
was urged to investigate role of various immune cells and types in tumor microenvironment.

Notably, there are several inevitable limitations existing in our study. The data we used were mainly obtained 
from TCGA and GEO database, therefore we could not validate the prognostic role of RGN from other databases 
or own tissue samples. Additionally, further in vivo and in vitro studies are urged to investigate the potential 
biological function of RGN and the detailed mechanism by which these significant immune cells participated 
in LUSC progression.

Conclusion
Our study provides novel insights into the potential role of RGN in LUSC. RGN is downregulated in LUSC and 
considered to be closely associated with LUSC prognosis. We also constructed a prognostic ceRNA network 
related to RGN. Importantly, RGN expression is strongly correlated with immune infiltration in LUSC. Although 
further systematic experimental studies are required, our findings showed that RGN could play an important role 
in the infiltration of immune cells and be a promising prognosing biomarker to improve the current therapeutic 
practice of LUSC.

Data availability
The datasets presented in this study can be found in online repositories. The names of the repository/repositories 
and accession number(s) can be found below: The Cancer Genome Atlas (TCGA; https:// portal. gdc. cancer. gov/); 
GEPIA (http:// gepia. cancer- pku. cn/); GTEx (https:// www. gtexp ortal. org); Tumor Immune Estimation Resource 
(TIMER; (https:// cistr ome. shiny apps. io/ timer/); The STRING (https:// string- db. org/); The starBase (https:// 
starb ase. sysu. edu. cn/); miRDB (https:// mirdb. org/); TargetScan (http:// www. targe tscan. org/); DIANA-LncBase 
(http:// www. micro rna. gr/ LncBa se); The Cancer Immunome Atlas (TCIA; https:// tcia. at/) and the Tumor Immune 
Dysfunction and Exclusion (TIDE; http:// tide. dfci. harva rd. edu/).
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