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A blood and bronchoalveolar 
lavage protein signature of rapid 
 FEV1 decline in smoking‑associated 
COPD
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Prescott G. Woodruff 5, Christopher B. Cooper 8, Russell P. Bowler 23, Jeffrey L. Curtis 3,4,24,25, 
Kelly B. Arnold 1,25* & SPIROMICS investigators *

Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased 
risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression 
could facilitate development of disease‑modifying therapies. Although individual biomarkers exhibit 
some predictive value, performance is modest and their univariate nature limits network‑level 
insights. To overcome these limitations and gain insights into early pathways associated with rapid 
progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals 
with COPD [n = 45, mean initial forced expiratory volume in one second  (FEV1) 75.6 ± 17.4% predicted]. 
We applied a data‑driven analysis pipeline, which enabled identification of protein signatures that 
predicted individuals at‑risk for accelerated lung function decline  (FEV1 decline ≥ 70 mL/year) ~ 6 years 

OPEN

1Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. 2Research Service, VA 
Ann Arbor Healthcare System, Ann Arbor, MI, USA. 3Division of Pulmonary & Critical Care Medicine, University 
of Michigan, Ann Arbor, MI, USA. 4Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 
USA. 5Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, 
San Francisco, CA, USA. 6Center for Environmental Medicine, Asthma, and Lung Biology, University of North 
Carolina at Chapel Hill, Chapel Hill, NC, USA. 7Marsico Lung Institute/Pulmonary and Critical Care Medicine, 
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 8Division of Pulmonary and Critical Care Medicine, 
Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA. 9Department of Medicine, 
Columbia University Medical Center, New York, NY, USA. 10Division of Pulmonary, Critical Care and Occupational 
Medicine, University of Iowa, Iowa City, IA, USA. 11Division of Genetics, Genomics and Precision Medicine, 
University of Arizona Health Sciences, Tucson, AZ, USA. 12Marsico Lung Institute/Cystic Fibrosis Research Center, 
Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 13Collaborative Studies 
Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 
USA. 14Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, USA. 15Department 
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA. 16Department of Radiology, University 
of Iowa, Iowa City, IA, USA. 17Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School 
of Medicine, Baltimore, MD, USA. 18Department of Internal Medicine, Wake Forest School of Medicine, Atrium 
Health, Wake Forest Baptist, Winston Salem, NC, USA. 19Department of Medicine, Weill Cornell Medical Center, 
New York, NY, USA. 20Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, 
Chicago, IL, USA. 21Department of Internal Medicine, Division of Respiratory Medicine, Mayo Clinic, Scottsdale, 
AZ, USA. 22Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt 
Lake City, UT, USA. 23Division of Pulmonary and Critical Care, National Jewish Health, Denver, CO, USA. 24Medical 
Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA. 25These authors jointly supervised this work: 
Jeffrey L. Curtis and Kelly B. Arnold. *A list of authors and their affiliations appears at the end of the paper. *email: 
kbarnold@umich.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-32216-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8228  | https://doi.org/10.1038/s41598-023-32216-0

www.nature.com/scientificreports/

later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the 
complement cascade is associated with accelerated decline. Our results propose potential biomarkers 
and early aberrant signaling mechanisms driving rapid progression in COPD.

Chronic obstructive pulmonary disease (COPD), a leading cause of death in the United  States1, accounts annu-
ally for > 600,000  hospitalizations2 and $30 billion in direct health  expenditures3. The course of COPD is hetero-
geneous. Such heterogeneity is exemplified in part by the highly variable rates of annualized decline in forced 
expiratory volume in one second  (FEV1) observed in prospective observational cohort  studies4–7. This variability 
between rates of lung function decline causes some individuals to experience relatively stable courses, while oth-
ers experience accelerated loss of function that leads to severe breathlessness and increased risk of hospitalization 
and  death6. Because phenotypic diversity is underpinned by biological heterogeneity, there is growing interest 
in identifying molecular biomarkers to predict multiple aspects of COPD progression. Such molecular mark-
ers could help explain heterogeneity and facilitate the early detection of individuals at risk for accelerated lung 
function decline, enabling personalized management to arrest disease progression. Biomarkers could also direct 
research into underlying pathogenic mechanisms to uncover novel therapeutic targets.

To date, accelerated  FEV1 decline has been associated with individual blood proteins, including club cell 
secretory protein 16 (CC16)8,9, soluble receptor for advanced glycation end-products (sRAGE)8,  fibrinogen8, 
C-reactive protein (CRP)8,10, and interleukin 6 (IL-6)11, although contradictory reports  exist10,12–14. The ratio of 
leptin to adiponectin in plasma also demonstrated predictive value for rapid lung function decline but showed 
only moderate sensitivity (63.5%) and specificity (65.1% )15. While valuable, univariate analyses of candidate 
biomarkers have provided limited insights into underlying mechanisms of progression, a shortcoming that could 
be complemented by network-level analysis of large numbers of proteins.

Previous studies have also been limited to measuring biomarkers in a single tissue compartment due to sample 
availability. However, data indicate that combinations of proteins appear to be better predictors of multiple COPD 
outcomes (including  FEV1 decline) than individual  factors8, especially when derived from multiple compart-
ments. Cross-sectional studies integrating datasets across multiple molecular levels and anatomical locations has 
improved the ability to classify individuals with a smoking history by COPD status and uncovered novel disease-
associated  pathways16–18. Accordingly, analyses of lung function decline may benefit from evaluating systems-level 
integrated networks that are more likely to capture the diverse biology driving airflow  obstruction19,20.

Data-driven modeling is one approach that will enable inference of network-level relationships driving pro-
gression. By permitting data integration across multiple tissue compartments, data-driven modeling generates 
systemic networks (“signatures”) of co-varying biological factors associated with disease phenotypes. Identified 
signatures can be linked to pathogenic mechanisms, providing insight into potential targets for follow-up experi-
ments or as biomarkers for therapeutic intervention. These approaches have been successfully used to identify 
blood and bronchoalveolar lavage (BAL) protein signatures associated with disease state and progression in 
idiopathic pulmonary  fibrosis21,22. We have also used them to integrate blood and sputum protein signatures 
associated with COPD  exacerbation23.

Here, to gain insights into cross-compartment mechanisms associated with a greater lung function decline 
in COPD, we applied an integrative data-driven modeling pipeline to proteins recovered from matched blood 
and BAL samples from participants in the bronchoscopy sub-study24,25 of the SubPopulations and InteRmediate 
Outcome Measures In COPD Study (SPIROMICS)26. Our results suggest that proteomic signatures can effectively 
detect individuals at increased risk of accelerated lung function decline. They also provide insights into COPD 
progression mechanisms that can be further investigated in validation cohorts and follow-up murine studies.

Results
Participant characteristics. We evaluated participants of the SPIROMICS bronchoscopy sub-study who 
had COPD, paired baseline (Visit 1/ V1) and final (Visit 5/ V5) spirometry, plus matched proteomic measure-
ments from plasma samples and BAL samples (n = 45) (Supplementary Fig. S1). Participants’ mean (± SD) age at 
V1 was 63 ± 7.7 years; they had a follow-up time of 6.3 ± 0.9 years (Table 1). To characterize rapid progression, we 
dichotomized participants based on their annualized  FEV1 decline (∆FEV1): greater decliners (< 30th percentile) 
(n = 14) versus lesser decliners (≥ 30th percentile) (n = 31) (Fig. 1a). This threshold equaled a ∆FEV1 of –70 mL/
year. Greater decliners trended non-significantly to be male (85.7% vs. 54.8%) but were well-matched for other 
demographic criteria. Despite significantly higher  FEV1% predicted (p = 0.017) and absolute  FEV1 (p = 0.015) 
at V1, they experienced a 3.6-fold greater ∆FEV1 compared to their lesser decliner counterparts (− 104.6 ± 32.0 
vs. − 28.8 ± 21.5 mL/year). The observed association between faster decline and higher baseline lung function is 
in line with previous  reports4,27.

Individual blood and BAL proteins cannot discriminate between rates of longitudinal lung 
function decline. We first determined whether differences existed between greater decliners and lesser 
decliners in multi-compartment protein expression measured early in the study, using the concentrations of 
1305 blood and 25 BAL proteins measured with SOMAScan and Luminex technology, respectively. To reduce 
biases associated with the unequal distribution of women across classes (14.3% vs. 45.2%), we first removed 
proteins (n = 8) that exhibited significant associations with sex (Supplementary Fig.  S2). Across the remain-
ing 1322 proteins, 28 (2.1%) had a mean concentration that differed significantly (p < 0.05) between groups 
(Fig. 1b). Of these, 13 were increased in greater decliners  [log2 fold change (FC) > 0] and 15 were increased in 
lesser decliners (FC < 0). The top six most significantly different proteins (p < 0.01) were all identified in blood: 
Heparin-binding EGF-like growth factor (HBEGF; FC = 0.05), BCL2-related protein A1 (BCL2A1; FC = 0.03), 
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inactivated Complement C3b (iC3b; FC =  − 0.05), Calcium-Dependent Phospholipase A2 (PLA2G5; FC = 0.03), 
Leptin (FC =  − 0.11), and Properdin (CFP; FC =  − 0.03). None of the 28 proteins remained significant after 
Benjamini–Hochberg adjustment.

Data‑driven modeling identifies a proteomic multi‑compartment signature that prospectively 
differentiates progression phenotypes. We next used data-driven modeling approaches to identify a 
multi-compartment signature of co-varying proteins associated with greater  FEV1 decline. Here, we combined 
all 1322 protein measurements (1297 blood and 25 BAL) into a single dataset, then applied elastic net (EN) in 
tandem with partial-least squares discriminant analysis (PLSDA). First, EN regularization was applied iteratively 
to 2000 subsets of randomly resampled data. Then, based on their selection frequency throughout the iterations, 
proteins were ranked (most to least frequent) and fed stepwise into the PLSDA algorithm. We evaluated PLSDA 
model performance at each step using sixfold cross-validation (CV) and selected the model with the highest CV 
accuracy as the optimal signature.

Using this feature selection pipeline, we identified a signature of 52 proteins (51 blood and 1 BAL) that 
distinguished greater decliners  (FEV1 decline ≥ 70 mL/year), along the latent variable 1 (LV1) axis, with 98.4% 
calibration and CV accuracy, 100% sensitivity, and 96.8% specificity (Fig. 2a-c). Permutation tests performed 
on participant scores across the first two principal components of PCA models generated with the 52-feature 
signature, show no significant influence of baseline ICS use (p = 0.35) or smoking status (p = 0.57) on participant 
classification (Supplementary Fig. S3). To confirm the accuracy of the selected features, we compared its cross-
validated accuracy to 1000 random signatures, generated by selecting iterative groups of 52 random proteins 
from the original dataset. None of the random signatures outperformed the optimal model (p < 0.0001) (Sup-
plementary Fig. S4). We also observed a significant, albeit moderate, Pearson correlation between LV1 scores 
and plasma concentrations of CRP  (rp = 0.33, p = 0.03), a protein previously associated with  FEV1  decline8,10. 
However, LV1 scores exhibited no significant correlations with other reported blood markers of spirometric 
decline, including IL-611  (rp = 0.18, p = 0.29),  fibrinogen8  (rp =  − 0.01, p = 0.93), and matrix metalloproteinase 9 
(MMP-9)10  (rp =  − 0.27, p = 0.08).

Lack of a formal definition of “rapid progression” in COPD has led to literature variability, so we explored 
whether the identified 52-feature signature maintained significance across alternative characterization 
approaches. Recently, using the entire SPIROMICS dataset, Anderson et al. proposed a threshold-based defini-
tion, classifying progression into three groups based on annualized  FEV1 declines: rapid decliners (> 100 mL/
year), decliners (20–100 mL/year), and stable/ improvers (< 20 mL/year)28. The limited number of subjects in our 
bronchoscopy sub-study exhibiting such extreme decline hindered direct exploration of this definition. How-
ever, an exploratory PCA using the 52-feature multi-compartment signature demonstrated significant signature 
enrichment in rapid decliners thus defined (Supplementary Fig. S5), suggesting our model reliably extends to 
this more rigorous definition.

A regression-based analysis also found that participant scores on LV1 correlated highly with annualized 
declines in  FEV1  (rp = 0.758, p < 0.0001), even after adjustment for age, race, height, sex, baseline  FEV1% predicted, 
smoking status, pack-years, and ICS use (p < 0.0001) (Fig. 2d). Alternative estimations of  FEV1 decline using all 
available longitudinal spirometry (rather than just V1 and V5) produced similar results, as did classifications 
using  FEV1% predicted in lieu of absolute  FEV1 volumes (Supplementary Fig. S6). These results suggest that our 
approach captures complex progression trends and is largely not skewed by demographic factors influencing 
lung capacity. For the remainder of our analysis, we use the -70 mL/year definition.

Table 1.  Baseline characteristics of COPD cases. Two-sample, two-tailed t-test or Fisher’s exact test were 
used to determine significant differences. *Demographic information from baseline visit (Visit 1). † P-values 
are associated with differences between greater decliner and lesser decliner groups. ‡ Decline in  FEV1 (mL/
yr) ≥ 70 mL/year (see Methods).

All (N = 45) Greater  decliners‡ (N = 14) Lesser decliners (N = 31) P-Value†

Age* 63.4 (± 7.75) 64.2 (± 6.24) 63.1 (± 8.41) 0.65

Currently Smoking* 15 (33.3%) 5 (35.7%) 10 (32.3%)  > 0.99

BMI* 27.8 (± 4.91) 27.9 (± 3.67) 27.8 (± 5.43) 0.93

Sex (Male) 29 (64.4%) 12 (85.7%) 17 (54.8%) 0.09

Race (White / Other) 37/8 (82.2%) 12/2 (85.7%) 25/6 (80.6%)  > 0.99

ICS use* (yes) 17 (37.8%) 3 (21.4%) 14 (45.2%) 0.18

FEV1* (% predicted) 75.6 (± 17.4) 84.2 (± 13.1) 71.1 (± 17.7) 0.017

FEV1/FVC* 0.58 (± 0.09) 0.60 (± 0.08) 0.57(± 0.10) 0.27

FEV1* (L) 2.27 (± 0.68) 2.63 (± 0.60) 2.11 (± 0.66) 0.015

Visit 5  FEV1 (L) 1.94 (± 0.67) 1.97 (± 0.67) 1.93 (± 0.68) 0.85

Time from baseline to Visit 5 (yrs) 6.31 (± 0.86) 6.25 (± 0.76) 6.33 (± 0.91) 0.79

Time from baseline to bronchoscopy (months) 20.3 (± 11.6) 20.4 (± 10.0) 20.3 (± 12.5) 0.96

∆FEV1 (mL/yr) − 52.4 (± 43.3) − 104.6 (± 32.0) − 28.8 (± 21.5)
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To contextualize the performance of the 52-feature multi-compartment signature, we compared it to cross-
validated analyses based on proteins identified in the univariate analysis (Fig. 1b) and the literature. Unsurpris-
ingly, the 52-feature signature performed significantly better than independent PLSDA models generated with 
each of the top six most differentially expressed proteins (Supplementary Fig. S7) and a combinatorial model 
generated using all six (Fig. 2e). The signature also significantly outperformed cross-validated models built 
with published combinations of proteins associated with spirometric decline (sensitivity, specificity: sRAGE 
and Fibrinogen, 57.1%, 58.0%; Leptin: Adiponectin ratio, 63.5%, 65.1%) (Fig. 2f). To explore how the identi-
fied signature characterize controls with relation to COPD subjects, we generated an additional PCA with the 
52 signature-identified proteins and a reference groups of tobacco-exposed people with preserved spirometry 
(TEPPS) (n = 38) who have a history of smoking but no airflow obstruction  (FEV1/FVC > 0.7) (Supplementary 
Table S1). Using a permutation test with participants’ scores across the first two principal components, we 
show that TEPPS responses were significantly different from Greater Decliners (p < 0.0001) but not from Lesser 
Decliners, suggesting our signature can uniquely characterize smoking controls from Greater Decliners alone 
(Supplementary Fig. S8).

The progression signature is enriched for proteins involved in the complement system. Hav-
ing generated a high-performing progression signature, we sought to understand the biological implications of 
its components. Unsupervised hierarchical clustering identified greater decliners with 88% accuracy (Fig. 3a). A 
Metascape analysis found 20 significantly enriched ontology clusters (Fig. 3b), with only three, related to aging 
and phosphorylation-dependent signal transduction, shared between groups. Lesser decliners displayed unique 
enrichment of 16 clusters related primarily to inflammation and immune functions. Notably, the only uniquely 
enriched cluster in greater decliners was associated with the complement system (q = 4.10e-04) (Fig.  3c-d). 
Proteins in this cluster included blood albumin, bone sialoprotein 2  (IBSP), intracellular adhesion molecule 
1  (ICAM1), interferon-gamma  (IFN-γ), kynureninase  (KYNU), and three complement proteins (iC3b, C3d, 
Properdin). These three complement proteins were involved in 10 of 20 total clusters and represented three of 
the top eight loaded proteins in the PLSDA, indicating a potentially significant impact of complement processes 
in COPD progression.

Dysregulated complement protein signatures are associated with accelerated  FEV1 
decline. These enrichment data, coupled with the known importance of the complement cascade to immu-
nity, suggest that complement proteins may be more globally altered in greater decliners than was captured in the 
original signature. To explore this possibility and focus on complement dysregulation, we performed PCA using 
the concentration of 22 complement proteins measured in plasma. Results suggested that progression groups 
differed significantly in complement profiles as measured by scores across PC1 (p = 0.0045) (Supplementary 
Fig. S9). We selected PC1 scores as the PC of interest, as only they correlated significantly with annualized  FEV1 
decline (p < 0.001) (Supplementary Fig. S10a). To explore whether the observed patterns were specific to the 
greater decliners rather than COPD more generally, we extended our analysis to include the reference group of 
TEPPS (n = 38). Interestingly, the baseline profiles of TEPPS were similar to that of lesser decliners. In contrast, 

Figure 1.  Individual blood and BAL proteins cannot discriminate between annualized greater versus lesser 
rates of  FEV1 decline in COPD. (a)  Comparison of annualized post-bronchodilator  FEV1 decline from V1 to 
V5. Decline was calculated as (V5  FEV1 – V1  FEV1)/ time, where time is the duration in years between V1 and 
V5 for each participant. (b) Volcano plot of blood and BAL proteins. Light and dark blue protein markers have 
a p-value < 0.05 and < 0.01, respectively, after a two-sampled two-tailed t-test.  All depicted p-values are before 
correction for multiple comparisons. No proteins remained significant after applying the Benjamini-Hochberg 
false discovery rate (FDR) correction for multiple comparisons (α = 0.05).
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Figure 2.  A 52-feature Elastic Net (EN) signature identified individuals at-risk for  FEV1 decline ≥70 mL/
year with high accuracy. (a) PLSDA scores plot highlighting strong differentiation between greater decliners 
(magenta) and lesser decliners (yellow), separating the two groups with 98.4% cross-validation (CV) 
and calibration accuracy. (b) Loadings on latent variable 1 (LV1) (with negatively loaded proteins being 
comparatively increased in greater decliners and positively loaded proteins being comparatively reduced) 
captured 11.9% of the total variance in the data. (c) ROC curve of 52-feature signature suggests greater decliners 
classification with 100% sensitivity and 96.8% specificity in the cross-validated model. (d) LV1 scores were 
associated with annualized  FEV1 decline (mL/yr). P-values and fit line shown for linear models adjusted for 
age, race, height, sex, baseline  FEV1% predicted, smoking status, pack-years, and inhaled corticosteroids (ICS) 
use within three months of baseline visit. (e,f) Comparison of (e) 6-fold CV accuracies, (f) sensitivities, and 
specificities between the 52-feature EN signature, a collection of the six top proteins identified in Fig. 1, and 
literature-based models. All reported values are from cross-validated PLSDA models, unless otherwise noted. 
One-way ANOVA with Dunnett’s post hoc test; **p<0.01, ****p < 0.0001.
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complement profiles from greater decliners differed from those of lesser decliners and TEPPS, both as visualized 
using PCA (Fig. 4a) and via direct comparison of PC1 scores (Fig. 4b). The variance in complement profiles, 
as captured by PC1, correlated with  FEV1 decline (p = 0.004) (Supplementary Fig. S10b), a relationship that 
remained significant after adjustment for age, race, height, sex,  FEV1% predicted, smoking status, pack-years, 
and ICS use (p = 0.012) (Supplementary Fig. S10c). In univariate comparisons, among the 22 complement pro-
teins, only C1r, iC3b, C3d, Properdin, and C4 reached statistical significance (Supplementary Fig. S11). Perform-
ing permutation tests with participant scores across the first two principal components labeled by key clinical 
variables, we show no significant influence of baseline ICS use (p = 0.36) or current smoking status (p = 0. 70) 
on observed complement profiles (Supplementary Fig. S12). Collectively, these findings reinforce the Metascape 
results, suggesting that early patterns of complement dysregulation are specific to a more rapidly progressing 
phenotype.

Alternative minimal signatures highlight a small number of proteins that maintain high pre‑
dictive power. Although the large number of proteins in the differentiating signature proved advantageous 
in exploring functional enrichments associated with accelerated  FEV1 decline, it is too large to be used as a pre-
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Figure 3.  Clustering of COPD subjects by the EN-identified signature highlights distinct regulation of 
immune-associated processes. (a) Hierarchical clustering of the 52-feature signature highlights distinct 
clustering of greater decliners (magenta) and lesser decliners (yellow). Only 5 out of the 45 subjects were 
misclassified (Sensitivity: 85.7%, Specificity: 90.3%). BAL proteins denoted by blue text. (b) Significantly 
enriched ontology clusters by Metascape analysis. (c, d) Pathways encompassed in the (c) complement system 
cluster and in the (d) positive regulation of cytokine production cluster are listed in the table. Hatched squares 
indicate protein involvement in a particular pathway, colorations of magenta or yellow represent a relative 
elevation of the protein concentration in greater decliners or lesser decliners, respectively.
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diction tool. Therefore, we next explored whether smaller sub-models (“minimal signatures”) maintained pre-
dictive value. Using insights from our step forward PLSDA pipeline, we visually analyzed the trade-off between 
model size and performance. Two minimal signatures, with 6 and 11 features, respectively, had CV accuracies 
similar to our optimized model (CV accuracy: 6-feature, 81.6%; 11-feature, 88.4%; 52-feature, 98.4%) (Supple-
mentary Fig. S13a). The 6-feature model consisted of BAL Eotaxin and blood iC3b, Leptin, Cadherin-2, HBEGF, 
and TDGF1. The 11-feature model comprised those six, plus blood-derived FCGR2B, IFN-γ, CA10, Apolipo-
protein L1, and LYVE1. ROC curves created for the 11- and 6-feature models resulted in areas under the curve 
(AUC) of roughly 0.982 and 0.947 for the calibration models and 0.935 and 0.878 for the cross-validated models, 
respectively (Fig. 5a; Supplementary Fig. S14). Intriguingly, each minimal signature included at least one protein 
from both plasma and BAL.

We tested proteins from both blood and alveolar compartments to maximize the chances of understanding 
underlying biology in COPD, specifically the link between distal airways and systemic events. However, due to 
the invasiveness of bronchoscopy, biomarkers obtained solely from the blood would be preferable. Accordingly, 
we evaluated a minimal blood signature by applying our step forward EN/PLSDA algorithm exclusively to the 
1297 blood proteins measured in the same COPD participants (n = 45). Analysis identified 5- and 10-feature sig-
natures that maintained strong cross-validated performance (CV accuracy: 5-feature, 81.6%; 10-feature, 86.8%) 
(Supplementary Fig. S13b). The 5-feature model included blood-derived iC3b, Cadherin-2, Leptin, HBEGF, and 
TDGF1; the 10-feature model comprised those five, plus CA10, IFN-γ, FCGR2B, LYVE1, and Apolipoprotein L1. 
Both minimal blood signatures displayed a slight drop in performance compared to their multi-compartment 
counterparts of nearest sizes (10- and 5-feature signatures, AUC 0.947, 0.901 for calibration models and 0.912, 
0.862 for CV models, respectively). However, comparisons using both AUCs and sixfold cross-validation found 
no significant difference in the performance of any of the minimal signatures and the optimal 52-feature model 
(Fig. 5a; Supplementary Fig. S15).

Finally, we subjected the minimal signatures to cross-validated analyses relative to multivariate signatures 
identified through our univariate analysis or published literature. Comparisons using sixfold CV accuracy indi-
cated that overall performance was largely sustained. The 6- and 11-feature multi-compartment signatures and 
the 10-feature blood signature significantly outperformed literature-based models and trended towards out-
performing a signature based on the top 6 univariate proteins (Fig. 5b-c). The 5-feature blood signature did 
not reach statistical significance in any comparison, though its performance over literature-based models was 
substantially improved. All four signatures showed a > 20% increase in sensitivity, with lesser though considerably 
improved specificity versus other models (Fig. 5d-e). Collectively, these findings imply that small, proteomic 
signatures can differentiate individuals with tobacco smoking-associated COPD at risk for rapid lung function 
decline with high accuracy.

Discussion
This study used two complementary datasets from COPD participants in the SPIROMICS bronchoscopy sub-
study to generate insights into early, aberrant signaling mechanisms associated with accelerated lung function 
decline. Using a systems analysis, we identified a multivariate signature of early blood and BAL proteins that 

Figure 4.  Complement profiles in COPD lesser decliners behave more similarly to TEPPS than COPD greater 
decliners. (a) Scores plot from PCA completed using all complement proteins measured in plasma (C1q, C1qBP, 
C1r, C2, C3d, C3b, C3, C3a, iC3b, C3a des Arg, C4, C4b, C5, C5a, C5-6, C6, C7, C8, C9, Factor B, Factor D, 
Properdin) of greater decliners (circles), lesser decliners (squares), and a reference group of tobacco-exposed 
people with preserved spirometry (TEPPS) (diamonds). First two principal components (PCs) capture 33.9% 
of the variance in the dataset. (b) Comparison of scores on PC1 (one-way ANOVA with Tukey’s post-hoc test; 
**p<0.01, ***p<0.001).
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predicted individuals at-risk for  FEV1 declines ≥ 70 mL/year (“greater decliners”) with > 98% accuracy. Investi-
gation of this signature disclosed that differences in longitudinal  FEV1 decline are associated with variability in 
host immune and defense responses, with greater decliners uniquely exhibiting early dysregulated patterns of 
complement protein expression. Finally, refinement of the signature identified a minimal model with 10 blood 
proteins that, if validated, may serve as a clinically feasible prognostic tool. This work complements previous 
predictions of COPD  progression8–14 by starting from a data-driven approach, rather than prior knowledge, to 
obtain unbiased insights into cross-compartment proteins and pathways driving accelerated airflow obstruction.
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Figure 5.  Select subgroup of signature proteins retain high predictive value for accelerated  FEV1 decline. (a) 
Table denote AUCs for both ROC curves generated from calibration and cross-validation PLSDA models. AUCs 
of all calibration models were compared to that of the optimal (52-feature model) using the Hanley and McNeil 
 method58. (b) Comparisons of 6-fold CV accuracies of multi-compartment and (c) blood-only biomarker 
models to a collection of the 6 top proteins identified in Fig. 1, and literature models, as determined by ANOVA 
with Bonferroni’s post hoc test (*p<0.05, **p < 0.01, ***p<0.001).  (d) Sensitivity and (e) specificity of signatures. 
All reported values are from cross-validated PLSDA models, unless otherwise noted. (†: multi-compartment 
model, #: blood-only model). CV: cross-validated; AUC: area under curve.
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To our knowledge, this is the first longitudinal study of COPD progression to use integrated proteomic 
datasets derived from blood and BAL samples. Our tandem EN and PLSDA approach identified concise prot-
eomic signatures from thousands of proteins measured across multiple tissue compartments. This framework 
accurately differentiated individuals with COPD who sustained declines in lung function ≥ 70 mL/year based 
on proteins measured early after participant enrollment. We specifically sought to explore integrated lung and 
systemic compartment models because COPD has coupled local and peripheral  manifestations29. Although 
several proteins were measured in lung and blood tissue compartments, classifying signatures did not select any 
matched BAL/blood proteins, which may be partly due to differences in measurement platforms. Moreover, the 
fact that only one BAL protein was identified in the 52-feature signature is likely in part a consequence of the 
marked difference in numbers of analytes in blood and BAL (1297 vs. 25). Currently, the SOMAmer technology 
used in our plasma analyses has not been validated for use in BAL samples. However, the importance of multi-
compartment representation is exemplified by the over 15% improvement in calibration model sensitivity on 
adding BAL Eotaxin to the 5-feature blood signature.

Our multi-compartment 52-protein signature was enriched for inflammation and immune responses pro-
cesses, consistent with the central role of immune dysregulation in COPD  pathogenesis30–32. Chief among these 
processes was the complement system. By providing evidence that complement alterations precede acceler-
ated  FEV1 decline, we extend previous associations between the levels of blood-derived complement proteins 
 (C333,34,  C435,  C4b36,  C5a37,  C938, Factor  B36) and COPD status (case vs. control), cross-sectional analyses of 
 FEV1%  predicted39,40, and emphysema  severity41. How such aberrations might contribute to airflow limitation 
is unknown. In a murine model, C3 cleavage contributed to smoking-induced emphysema via an influx of con-
ventional dendritic  cells42, a cell type that can initiate both innate and adaptive immune responses. Our findings 
regarding involvement of complement proteins are specific to blood. Although our chosen assay system could 
not analyze complement components in BAL, complement dysregulation might extend into the lung, as sug-
gested by altered levels of C5a in the sputum in  COPD37,43 and airway C3 deposits in lungs in smoking-associated 
 emphysema42. Airway epithelial cells have also been shown to secrete and store C3, suggesting the presence of a 
localized C3 supply that may aid host  defense44. The observed global patterns of complement dysregulation were 
robustly associated with  FEV1 decline, but SomaLogic aptamers cannot reliably distinguish between complement 
cleavage products and their parent proteins. Hence, we cannot explore the relationship between global comple-
ment levels and pathway activation. However, our observation of complement dysregulation before  FEV1 decline 
provides compelling temporal evidence that the complement pathway contributes to accelerated progression.

Focusing on eventual clinical feasibility, we identified an alternative parsimonious 10-protein signature 
derived using only peripheral blood; its potential prognostic value, if validated, is suggested by its superior per-
formance to reported multivariate biomarkers of  FEV1  decline8,15. To our knowledge, except for  leptin15, these 
proteins have not been associated with accelerated loss of lung function. Consistent with previous  studies8–11, 
the proteins in this signature are primarily related to immune and inflammation responses (leptin, iC3b, IFN-γ, 
FCGR2B, APOL1). However, we also observed notable contributions from endothelial-mesenchymal transition 
(EMT) proteins (Cadherin-2 and HBEGF). EMT is active in both large and small airways of COPD and relates to 
airflow  obstruction45–47. Cadherin-2 is increased in epithelial cells from COPD subjects as compared to healthy 
 controls48. Similarly, serum and sputum HBEGF levels have been positively associated with COPD severity 
measures, including  FEV1%  predicited49 and CAT  score50. The final proteins involved in the signature (TDGF1, 
LYVE1, CA10) have not previously been associated with COPD. However, in lung cancer, which is thought to 
share overlapping etiologic features, TDGF1 (increased in greater decliners) predicts poor progression-free 
 survival51, while LYVE1 (increased in lesser decliners) is associated with reduced metastasis and  mortality52. 
Even in this parsimonious signature, we observed diverse biological enrichment. These findings emphasize the 
value of multivariate signatures in evaluating heterogeneous conditions such as COPD, where abnormalities in 
several pathways or pathway constituents likely drive a singular clinical outcome.

Our study has limitations. Chief among these is the lack of a validation cohort as, to our knowledge, none 
currently exists with both BAL protein measurements and longitudinal follow-up. Missing data also limited 
our sample size. BAL was not collected successfully on all participants, chiefly due to airway collapse during 
the procedures, and not all participants completed V5. Hence, we have relatively small numbers of participants, 
disproportionately non-Hispanic whites. To mitigate the influence of individual participants, we applied an 
iterative bootstrapping framework during model generation. Still, the generalizability of our findings remains 
unclear, given the issues of limited heterogeneity based on sample size and demographics. We recognize that 
we cannot definitively conclude whether the identified signatures precede lung function decline, as decline may 
have been ongoing prior to baseline sample acquisition. However, the modestly higher baseline  FEV1 observed 
in greater decliners support this possibility. Additionally, the cross-sectional nature of our proteomic data limits 
any insight into the temporal stability of our identified signatures. Because there is no universally agreed-upon 
definition of rapid progression, we used a percentile cut-off in  FEV1 decline, as used by  others15,53; resulting 
in a cut-off (≥ 70 mL/year) similar to previous reports. However, other threshold-based definitions (i.e.,  FEV1 
decline > 100 mL/year) have been  proposed28. Few participants (n = 6) experienced declines > 100 mL/year in our 
data, providing insufficient power to investigate this definition accurately. However, in an exploratory PCA, we 
show that our 52-feature multi-compartment is enriched significantly in participants with declines > 100 mL/
year, suggesting our signature extends to this more stringent characterization. Moreover, while we acknowledge 
that a fixed cut-off definition may favor an overrepresentation of males as greater decliners due to physiologic 
differences in lung function measurements between sexes, we are underpowered to explore sex-stratified analy-
ses. Still, alternative estimations of  FEV1 decline using  FEV1% predicted, which accounts for age, sex, and body 
composition, in lieu of absolute  FEV1 volumes, produced similar results, suggesting a minimal impact of sex 
on group affiliation in this study. Lastly, a longitudinal decline in  FEV1 is only one parameter that can evaluate 
progression and is less sensitive to capturing changes in small airway loss than other clinical measures, like 
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parametric response mapping. However, it is worth noting that elements of our signature may reflect potential 
markers of small airway damage, as our signature exhibits enrichment of several processes that contribute to 
small airway damage, such as the response to wounding and ECM  organization54. Nonetheless, future studies 
are needed to explore the relevance of the identified signature in assessing other outcomes.

In summary, data-driven modeling approaches identified early cross-tissue compartment proteomic signa-
tures and provided insight into potential mechanisms associated with accelerated disease progression in COPD. 
This work highlights the ability of quantitative, systems-focused analytical techniques to accomplish both these 
goals. Data-driven modeling approaches could be applied to integrate spatiotemporal data in clinical samples 
from other diseases with a progressive or heterogeneous population.

Methods
Human participants. SPIROMICS (ClinicalTrials.gov Identifier: NCT01969344) is an ongoing multicenter, 
prospective observational study designed to identify new COPD subgroups and intermediate biomarkers of dis-
ease  progression26. Briefly, we enrolled participants aged 40–80 years at entry with a history of cigarette smok-
ing (≥ 20 pack-years), either with COPD by the fixed ratio definition (post-bronchodilator  FEV1/FVC < 0.7), or 
without COPD; as controls, we recruited healthy individuals without smoking history. SPIROMICS participants 
(n = 2,974) underwent a baseline examination (V1) followed by yearly visits for up to three years and a final 
follow-up visit (V5) approximately 5–8 years after V1. The first participant entered on November 10, 2010, and 
we censored all data on July 31, 2021. The study was conducted according to the principles of the Declaration of 
Helsinki. The human study protocol was approved by the institutional review board of all participating centers 
and methods were carried out in accordance with the relevant guidelines and regulations (Columbia University, 
New York, NY, United States; Johns Hopkins University, Baltimore, MD, United States; National Jewish Health, 
Denver, CO, United States; Temple University, Philadelphia, PA, United States; University of Alabama at Bir-
mingham, Birmingham, AL, United States; University of California Los Angeles, Los Angeles, CA, United States; 
University of California San Francisco, San Fransico, CA, United States; University of Illinois at Chicago, Chi-
cago, IL, United States; University of Iowa, Iowa City, IA, United States; University of Michigan, Ann Arbor, MI, 
United States; University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; University of Utah, 
Salt Lake City, UT, United States; Wake Forest University, Winston Salem, NC, United States). All participants 
were aware of the study’s intent and provided written informed consent before any procedures.

Some SPIROMICS subjects (n = 215) from all groups except those with severe (GOLD 4) COPD participated 
in a bronchoscopic sub-study24,25, which included BAL of the right middle lobe and lingula. Participants (n = 149) 
with a history of smoking who had available blood and BAL samples were considered for inclusion in the initial 
Elastic Net analysis (Supplementary Fig. S1). This analysis was restricted to participants (n = 85) of that sub-study 
who had a history of smoking, available spirometry that did not improve at V5, and full biospecimens, which 
were plasma samples at V1 and BAL cytokine analysis; their baseline characteristics are shown in Table 1. They 
comprised two study groups: COPD cases (n = 45) and a reference group (n = 40) of TEPPS who had no airflow 
obstruction at both V1 and V5 (Supplementary Table S1). The demographics of our study participants (n = 85) 
did not differ significantly from the entire SPIROMICS bronchoscopy cohort (Supplementary Table S2).

Based on the magnitude of annual change in  FEV1, we dichotomized the COPD cases into greater decliners 
(< 30th percentile; n = 14) versus lesser decliners (≥ 30th percentile; n = 31).  FEV1 decline was calculated using 
the two-point slope equation: [V5 FEV1—V1 FEV1]/time, where time is the duration, in years, from V1 to V5 for 
each subject. Time calculations assumed a fixed-length year equal to 365.2425 days.

Sample preparation & datasets. Blood dataset: Fresh plasma samples collected at V1 were frozen in 
either an EDTA collection tube or a P100 tube with  K2EDTA55,56. SOMAmer© (slow off-rate modified aptamer) 
 technology57 (SomaLogic, Boulder, CO) was used to measure 1305 proteins from participants in the SPIRO-
MICS bronchoscopy sub-study.

BAL dataset: We measured the concentration of 48 proteins including cytokines, chemokines, and growth 
factors (HCYTA-60 K-PX48, Milliplex, EMD Millipore Corporation) in BAL aliquots from a subset of partici-
pants in the SPIROMICS bronchoscopy sub-study (n = 184) using Luminex FlexMAP 3D (Luminex Corporation, 
Austin, TX) technology. Any results above the upper limit of detection were set to the maximum detectable 
concentration of that analyte. We set samples below the lower limit of detection to be half the lowest minimum 
detectable concentration across the standard curves of all analytes. We removed the 23 proteins in which ≥ 50% 
of measurements were below the lower limit of detection across all samples, yielding 25 analyzable BAL pro-
teins. Before analysis, we normalized all BAL protein concentrations to the total BAL protein concentration of 
the respective sample, as quantified by a Pierce BCA Protein Assay Kit (Pierce Protein Biology, Rockford, IL).

Multi-compartment dataset: We removed eight proteins that were associated with sex in standard two-tailed, 
two-sample t-test after correction for multiple comparisons using Benjamini-Hochberg. The final dataset con-
sisted of 1322 proteins (1297 blood and 25 BAL). All analytes were log-transformed for normality before analysis.

Derivation of data‑driven progression signature(s). Relative fold-changes in the expression levels 
of individual proteins from the blood and BAL were calculated by dividing the average concentration of each 
protein in COPD greater decliners by the average concentration in lesser decliners.

Based on proteomic measurements from the COPD participants, we generated optimal progression signatures 
using EN in tandem with PLSDA for feature selection in the: (a) combined blood and BAL and (b) blood-only 
datasets. First, the data were randomly sampled without replacement to generate 2000 subsets. To correct for 
effects of class size imbalances during regularization, we completed resampling at the size of the smallest class. We 
then performed EN regularization on each of the 2000 subsets. Once regularization was complete, the proteins 
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were subsequently reordered based on their selection frequency throughout the EN iterations and fed in a step-
forward manner into the PLSDA algorithm (starting with the protein with the highest selection frequency).

Model performance was evaluated at each step using k-fold cross-validation (k = 6). The model with the 
lowest resultant cross-validated error was selected as the optimal classification signature. Alternative minimal 
signatures were identified as signatures with < 15 features with cross-validated accuracies > 80%. ROC curves 
were generated based on the classification ability of each PLSDA model. All models were orthogonalized to 
improve interpretability.

Comparison of progression signature performance parameters. Random variants: To explore the 
meaningfulness of the optimized signature, we compared its cross-validated performance to that of 2000 ran-
dom variants. Variant signatures were generated by randomly selecting 52 features from the original dataset. The 
sixfold cross-validated accuracy was calculated for each random signature. Performance across all variants was 
compared to the identified signature using a two-tailed, two-sample t-test.

Cross-validated accuracies: For quantitative comparisons of cross-validation accuracy across multiple models 
of interest, we split the data into six groups, iteratively excluded random subsets of 6–7 samples during model 
calibration, and later used them to test model predictions. The percentage of excluded samples correctly classi-
fied in each of the six iterations was used to statistically compare alternative models to the 52-protein signature. 
We determined statistical significance using a standard one-way ANOVA.

ROC curves: To explore the diagnostic ability of binary classifiers, ROC curves were generated from PLSDA 
models and resultant AUCs were statistically compared using the method outlined by Hanley and McNeil to 
account for correlation between curves generated from the same  cohort58. Standard errors were calculated using 
the Wilcoxon statistic. All reported sensitivities and specificities are generated based on PLSDA model perfor-
mance, except for the leptin/adiponectin signature, which had metrics stated in the original  text15.

Signature enrichment in alternative definitions of progression: PCA was applied to the 52 proteins identified in 
the optimal multi-compartment signature (Fig. 2). Participants (n = 45) were labeled using the alternative progres-
sion definitions proposed by Anderson et al.28: rapid decliners (> 100 mL/year), decliners (20 – 100 mL/year), 
stable/improvers (< 20 mL/year). All data were mean-centered and variance-scaled prior to analysis. One-way 
ANOVA with Holm-Šídák’s post hoc test compared participant scores on the first principal component across 
the groups. Significance was defined as a p-value < 0.05 for all analyses.

Bioinformatic analysis. Clustering: Hierarchical clustering of the 52-feature signature based on blood and 
BAL proteins was generated with supervised average linkage clustering using Spearman’s correlation coefficient 
as the distance metric. Samples were colored by progression status.

Metascape analysis:  Metascape59 [https:// metas cape. org] was used to identify biological processes that were 
significant and differentially enriched between greater decliners and lesser decliners based on the identified 
52-feature signature. PLSDA loadings on LV1 were used to dichotomize proteins between cohorts, such that 
proteins with positive or negative loadings were increased in lesser decliners or greater decliners, respectively.

Complement profiles: PCA was applied to a subset of 22 complement proteins (C1q, C1qBP, C1r, C2, C3d, C3b, 
C3, C3a, iC3b, C3a des Arg, C4, C4b, C5, C5a, C5-6, C6, C7, C8, C9, Factor B, Factor D, Properdin) measured in 
the original plasma SOMAscan dataset (outlined above) from greater decliners (n = 14), lesser decliners (n = 31), 
and a TEPPS reference group (n = 40). Participants were identified as outliers and removed from model if they 
had a Hotelling’s Reduced  T2 statistic value > 2, determined via PCA (n = 2). All data were mean-centered and 
variance scaled prior to analysis. One-way ANOVA with Tukey’s post hoc test compared participant scores across 
the first principal component. Significance was defined as p < 0.05.

Software summary. Volcano plots and hierarchical clustering were completed using MATLAB (v2017b, 
MathWorks, Natick, MA). Elastic net was implemented using Glmnet package in  MATLAB60. We generated 
PCA and PLSDA models and ROC curves using the PLS toolbox available in MATLAB (v8.2.1, Eigenvector, 
Mason, WA). All statistics were performed using Prism version 9 (GraphPad Software, San Diego, CA).

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request and with permission from the SPIROMICS study group.
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