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Traceability and comparability 
through crosswalks 
with the NeuroMET Memory Metric
J. Melin 1*, S. J. Cano 2, A. Gillman 2, S. Marquis 3, A. Flöel 4,5, L. Göschel 6,7 & L. R. Pendrill 1

Accurate assessment of memory ability for persons on the continuum of Alzheimer’s disease (AD) is 
vital for early diagnosis, monitoring of disease progression and evaluation of new therapies. However, 
currently available neuropsychological tests suffer from a lack of standardization and metrological 
quality assurance. Improved metrics of memory can be created by carefully combining selected items 
from legacy short-term memory tests, whilst at the same time retaining validity, and reducing patient 
burden. In psychometrics, this is known as “crosswalks” to link items empirically. The aim of this 
paper is to link items from different types of memory tests. Memory test data were collected from the 
European EMPIR NeuroMET and the SmartAge studies recruited at Charité Hospital (Healthy controls 
n = 92; Subjective cognitive decline n = 160; Mild cognitive impairment n = 50; and AD n = 58; age range 
55–87). A bank of items (n = 57) was developed based on legacy short-term memory items (i.e., Corsi 
Block Test, Digit Span Test, Rey’s Auditory Verbal Learning Test, Word Learning Lists from the CERAD 
test battery and Mini Mental State Examination; MMSE). The NeuroMET Memory Metric (NMM) is 
a composite metric that comprises 57 dichotomous items (right/wrong). We previously reported on 
a preliminary item bank to assess memory based on immediate recall, and have now demonstrated 
direct comparability of measurements generated from the different legacy tests. We created 
crosswalks between the NMM and the legacy tests and between the NMM and the full MMSE using 
Rasch analysis (RUMM2030) and produced two conversion tables.  Measurement uncertainties for 
estimates of person memory ability with the NMM across the full span were smaller than all individual 
legacy tests, which demonstrates the added value of the NMM. Comparisons with one (MMSE) of the 
legacy tests showed however higher measurement uncertainties of the NMM for people with a very 
low memory ability (raw score ≤ 19). The conversion tables developed through crosswalks in this paper 
provide clinicians and researchers with a practical tool to: (i) compensate for ordinality in raw scores, 
(ii) ensure traceability to make reliable and valid comparisons when measuring person ability, and (iii) 
enable comparability between test results from different legacy tests.
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NMM	� NeuroMET memory metric
PCA	� Principal component analysis
PSI	� Person separation index
RAVLT	� Rey’s auditory verbal learning test
SCD	� Subjective cognitive decline
WLL	� Word learning list

Alzheimer’s Disease (AD) is best conceptualized as an inherently complex continuum of cognitive impairments1. 
The transition from the preclinical stage of AD, including the length of time and whether or not an individual 
will become symptomatic, remains unclear1. In addition, detecting and potentially treating individuals who 
may eventually develop AD is both operationally and conceptually challenging2. While biomarkers such as Aβ 
(measured by positron emission tomography (PET) imaging or CSF assays) have been transformative for the 
detection of pre-clinical AD, their invasiveness, high cost and lack of availability further 3 increases the need for 
a global and cost-effective solution.

Cognitive decline is the cardinal sign of disease progression for AD patients. Neuropsychological tests are 
currently used to measure cognition and have been used to: estimate risk of disease development; predict disease 
progression; and monitor therapeutic interventions1,4. However, individuals who report subjective cognitive 
decline (SCD) may still perform within the normal range on currently available neuropsychological tests5, despite 
a growing body of research which shows that these individuals may represent the first symptomatic stage of the 
AD continuum6,7. In addition, measurement of cognition is currently limited by a lack of standardization and 
metrological quality assurance, as well as a multitude of measures that lack a common frame of reference8. This 
compromises the comparison of data sets and our ability to detect meaningful changes in individual patients 
along the AD continuum. Therefore, there is a growing need for better, reliable measurement, especially at the 
early stages of cognitive decline.

Traditional psychometric methods (i.e., based on classical test theory) do not account for the ordinal nature 
of data generated by human responses, and lack the ability to separate person ability and item difficulty9–12. Not 
accounting for these two aspects when analysing cognitive data has a direct impact on clinicians’ and researchers’ 
abilities to make inferences about current statues, diagnoses, management, and treatment throughout the health-
care system. In contrast, the Rasch model is a ‘specifically metrological approach to human-based measurement’ 
(p.28, 13), which can compensate for the ordinality of data and provide separate estimates of person and item 
attributes. In turn, this allows for standardization and measurement quality assurance for cognitive measures 
in the same manner as already adopted and implemented approaches for regular SI quantities and units, thus 
providing clinicians and researchers with better possibilities to make reliable and valid decisions in healthcare.

Metrological traceability is defined as ‘the property of a measurement result related to a reference through a 
documented unbroken chain of calibrations’14. Traceability is necessary for any kind of reliable and valid com-
parison, such as when comparing the individual’s cognitive ability against a reference value, how their cognitive 
ability changes (or does not change) over time, or how their cognitive ability is affected by treatment. The Rasch 
model is a particularly important metrological logistic regression since it enables the separation of person and 
item attributes15 from response scores, where the items can be considered as metrological references16. In the 
same way that meters can be converted to inches via crosswalks (e.g., a conversion table), cognition measured 
with different tests can be placed in the same frame of reference and metrologically compared.

Episodic memory, the ability to recall information about events of our lives17, is one of the first areas of 
cognition that is impacted in individuals with AD, and is also highly predictive of AD pathology18. Studies in 
healthy individuals who eventually progressed to an AD diagnosis have shown that decline in episodic memory 
is a core component of preclinical AD19. Previously, we developed the NeuroMET Memory Metric (NMM) to 
estimate episodic memory loss, following a metrological approach based on the Rasch model20. The NMM was 
generated from a bank of items carefully selected from legacy short-term memory tests, linking language- and 
cultural-free items (blocks, digits) to more complex word recalling items21. Our technical report on the develop-
ment of the NMM shows it is well suited for a cohort clinically spanning the AD continuum. In addition, the 
NMM reduces measurement uncertainties for memory ability compared with individual legacy test without 
jeopardizing validity21.

Creating a formal empirical link (known as a crosswalk) from existing legacy neuropsychological test data 
to the NMM, is an important and practical contribution to traceability. Thus, different memory test data can 
be linked to a common metric of the measurand by means of co-calibration of item parameters. This approach 
helps connect existing research findings based on existing memory tests to one another and in relation to the 
new NMM. The aim of this paper is to provide crosswalks between the legacy short-term memory tests Corsi 
Block Test (CBT), Digit Span Test (DST), Rey’s Auditory Verbal Learning Test (RAVLT), Word Learning List 
from the CERAD test battery (WLL CERAD) and Mini Mental State Examination (MMSE) from which items 
have been chosen to make up the NMM. The resulting crosswalk conversion tables can overcome several of the 
shortcomings in current practice by providing clinicians and researchers with a practical tool to: (i) compensate 
for ordinality in raw scores; (ii) ensure traceability to make reliable and valid comparisons when measuring 
person ability; and (iii) enable comparability between test results from different legacy tests.

Methods
Subjects and data collection.  The NeuroMET cohort included individuals with subjective cognitive 
decline (SCD, n = 38), mild cognitive impairment (MCI, n = 28), dementia due to suspected AD (n = 27), and 
healthy controls (HC, n = 35) recruited from Charité Hospital between 2016 and 2022. Inclusion criteria were 
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55–90 years of age, normal vision with or without aid and ability to consent, further details of the cohort are 
described elsewhere20. In addition, SCD (n = 88) participants from the SmartAge study22 were also added to the 
sample for analysis.

Participants of the SCD group have expressed self-experienced persistent decline in cognitive functioning 
during at least 6 months and associated worries, while achieving normal cognitive results considering their age23. 
The clinical dementia rating (CDR) global score was 0.5 for MCI and ≥ 1 for AD24. MCI and AD patients showed 
objective memory impairment of around -1.5 SD (for MCI) or -2.5 SD (for AD) below age- and education-
adjusted norm values in relevant cognitive tests.

Each assessment was carried out over two days. Most of the legacy tests included in the NMM were performed 
on the first day of each assessment (CBT, DST, WLL CERAD and MMSE), while one test was completed on the 
second day (RAVLT). The same study assistant was responsible for conducting most of the neuropsychological 
assessments.

The NeuroMET project was approved by the Ethics Committee of the Charité – Universitätsmedizin Berlin, 
Germany, and was conducted in accordance with the declaration of Helsinki.

The NeuroMET Memory Metric.  The NMM comprises 57 carefully selected memory items from legacy 
tests21. The process of combining the 57 memory items is reported in detail elsewhere21. In short, the focus was 
on improving targeting, maximizing reliability and minimizing measurement uncertainties by: i) selecting sets 
of items covering the full range of abilities, and ii) by selecting items giving most information for people with 
higher abilities. The set of items also had to have associated construct specification Eqs.11,25, which provide an 
comprehensive empirical understanding of how the collection of items works together; what is being measured; 
and how validity is ensured. Short-term memory items from the CBT forward sequence (n = 14), DST forward 
sequence (n = 12), the RAVLT first trial A-list (n = 15), and the WLL CERAD first trial (n = 10) were included. 
Additionally, the memory items (immediate recall n = 3 and delayed recall n = 3) from MMSE were included in 
order to enable conversion from the NMM to the MMSE (this did not affect the targeting or reliability noticeably 
but was done for purely practical reasons as MMSE is the most widely used cognitive test).

Data analysis.  Person responses to any of the memory items in the NMM are given a classification number, 
either 1 for pass or 0 for fail. These classification numbers do not have a numerical meaning, but instead serve to 
indicate ordered categories. Responses are related both to an individual’s ability and the difficulty of the items, 
thus, through measurand restitution, separate values for task difficulty and person ability can be obtained.

The dichotomous Rasch model using RUMM203026 was applied to the individual legacy tests and the NMM. 
The extent to which the observed data fit the predictions of the Rasch model help evaluate how well the estab-
lished metric adheres to fundamental principles of metrology. The Rasch model was chosen as it is a particular 
metrological logistic regression suitable to human-based measurements13 to properly transform ordinal data 
into stable linear measures separately for memory task difficulty and person memory ability. The Rasch model 
is the only item response theory model to have an additive latent model, and therefore parameter separation 
(compared with two parameters logistic (2PL) or three parameters logistic (3PL) item response theory models). 
In turn, conditional inference results in sample-free item estimates, providing invariant measurement and specific 
objectivity to ensure traceability.

In the development of the NMM, our analyses have been focused on targeting, conventional tests of model 
validity in terms of goodness of fit, differential item functioning, local dependency, dimensionality, and reliability:

–	 Targeting: By inspecting the spread of person locations (i.e., range of memory abilities in the cohort) and 
item locations (i.e., range of the items), targeting was assessed. There is no specific criterion27, but the better 
coverage, the better targeting and the closer the mean person location is to the mean item location indicates 
whether the person sample is off centered from the items.

–	 Item fit: By examining the extent to which observed data accord with the expected values that are defined by 
the measurement model, item fit was assessed with fit residuals and chi-square statistics. These measure the 
extent to which items were endorsed consistently based on their location on the continuum. Fit residual rec-
ommended bounds are between -2.5 and 2.5, and chi-square statistics were evaluated through their p-values, 
adjusted with Bonferroni correction for multiple testing28.

–	 Differential item functioning (DIF): The invariance and the extent to which items are stable across different 
subgroups – here diagnosis and gender – were assessed by examining the estimated person ability differences 
between class intervals within the subgroups using analysis of variance (ANOVA)29. A significant p-value for 
differences between subgroups indicates DIF.

–	 Local dependency (LD): To assess the extent of LD among items, residual correlations were evaluated against 
a relative cut off. They were classified as LD if the item residual correlations were greater than 0.20 above the 
average correlations30.

–	 Dimensionality: Smith’s method was applied31, where the positive and negative patterns in a principal com-
ponent analysis (PCA) of item fit residuals define two subsets of items. This is followed by estimates of 
person memory abilities for each subset which are then compared using an independent t test. To support 
unidimensionality, the percentage of tests outside the range − 1.96 to 1.96 should not exceed 5%.

–	 Reliability: The person separation index (PSI) describes the proportion of true variance in the total variance 
of person measures32 and was used to assess the reliability and inform on the capacity of the items to dif-
ferentiate between subgroups in the population.
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Figure 1 shows the process from raw data, via the Rasch analysis, to crosswalk tables with score-to measure 
conversions. In line with the Salzberger et al.8 methodology, crosswalks were enabled via item anchors from the 
NMM into separate analyses of the legacy memory tests. Score-to-measure conversions were retrieved for the 
NMM of 57 items and the individual legacy memory tests. Using the anchored task difficulty measures from the 
NMM, each location on the logit scale were matched with the closest location on the NMM measure. Six MMSE 
items included in the NMM were anchored, and the remaining MMSE items were scaled around them to enable 
a crosswalk between the NMM and the full MMSE.

Since Rasch analysis is a form of logistic regression, person abilities were derived on the logit (log-odds) scale, 
which has an infinite theoretical range, and an observed range of -4.74 to 3.63. To provide a more accessible 
interpretation33, the person abilities were transformed into an intuitive metric of 0 to 100 using a linear transfor-
mation, thereby preserving the interval nature of the Rasch-derived values34. As item locations were constrained 
to sum to 0, the transformation mapped 0 on the logit scale to 50 on the 0–100 scale, thereby preserving the 
‘middle point’ of the scale. This method was chosen because of the relatability of a 0–100 scale in preference to 
other linear transforms of logit locations (such as methods using the least measurable difference (LMD), the 
standard error of measurement (SEM) and the least significant difference (LSD)33,35). Scores derived with LMD, 
SEM and LSD methods have a starting value of 0 but varying largest values. While it is convenient to have a 
starting value of 0, the interpretability of a number like 12 out of 17, for example, is much lower than a 12 out of 
100. Any score on a 0–100 scale is comparable to a percentage and therefore highly accessible and user-friendly. 
It has been argued33 that a 0–100 scale may provide an inflated sense of precision, however, we counter this by 
providing measurement uncertainties.

Ethics approval and consent to participate.  The study was approved by the ethics committee of the 
Charité University Hospital, Berlin, Germany (EA1/197/16 and EA2/121/19). All participants gave written, 
informed consent.

Results
Subjects.  For the final dataset for this study, a total of 360 visits were completed, comprising of assess-
ments from HC (n = 87), individuals with SCD (n = 167), individuals with MCI (n = 52), and individuals with 
AD (n = 54). The assessments were almost equally distributed between men (n = 182) and women (n = 178), and 
the age range was 55–87 years. Table 1 provides details about characteristics and memory abilities for the total 
sample of individual assessments and separated by the diagnostic groups. There were no missing data for CBT 
and only two assessments (individuals with AD) with missing data for DST. For RAVLT, 41 assessments were 
missing because other versions of the tests were conducted. The SCD participants from the SmartAge study22 did 
not undergo WLL CERAD and MMSE, resulting in missing data for these tests in 88 assessments.

Psychometric findings.  Table 2 shows a summary of overall measurement properties for the NMM and 
the legacy tests. A complementing illustration on the item locations (i.e., task difficulty values) can be found in 
Fig. 2, which outlines how CBT and DST have a wide range of items but several gaps, whereas the word lists 

Figure 1.   Flow-chart of raw data processing via the Rasch analysis and calibration into conversions tables and 
crosswalks for score-to-measures. * The full MMSE is not included in the NMM, thus, 57 is a sum of all items 
from other legacy tests (CBT n = 14, DST = 12, RAVLT n = 15 and WLL CERAD n = 10) and the six memory 
items from MMSE.
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(RAVLT and WLL CERAD) are more compact. This implies that the CBT and DST items can be used to meas-
ure person abilities for people with lower to higher abilities, but a low precision is evident due to the gaps. On 
the contrary, RAVLT and WLL CERAD have better precision but only if they are used for the persons located 
around 0.00 logits. If RAVLT or WLL CERAD are used to measure person albitites for people with lower or 
higher abilities, the precision decreases.

In the NMM, four items showed item fit residuals outside the desired range of ± 2.5. Three of them originated 
from the “recency region” in the word lists (RAVLT item 14, 15 and WLL CERAD item 10). However, only one 
item showed a significant x2, and removing the items did not significantly affect the model fit. In separate papers 
we report further on the issue of the so-called serial position effect that occurs in the word learning list tests for 
the items in the beginning (primacy) and the end (recency) of the lists25,36,37.

Crosswalks.  By using the item task difficulty estimates as metrological references, conversions in the same 
frame of reference with estimated measurement uncertainties was enabled. Specifically, in the conversion table 
(Table 3) one can ‘walk’ from raw scores (i.e., counts of correct answers, ‘pass’/classification number 1) from 
the legacy tests, individually, and from the composite NMM to a linear measure. Figure 3 shows the correlation 

Table 1.   Person characteristics and mean (SD) person ability measures (in logits) for the total sample of 
individual assessments and separated by the diagnostic groups.

Total HC SCD MCI AD

n = 360 n = 87 n = 167 n = 52 n = 54

Age, mean (SD) 70 (7) 71 (8) 68 (6) 71 (6) 74 (6)

Women, n (%) 178 (49%) 47 (54%) 88 (53%) 16 (31%) 27 (50%)

Education 15 (3) 15 (3) 16 (3) 14 (2) 15 (3)

APOEe4 carrier 137 (38%) 23 (26%) 50 (30%) 32 (62%) 32 (59%)

NMM, mean (SD) 0.53 (1.05) 0.84 (0.95) 0.75 (0.85) 0.23 (0.84) -0.33 (1.31)

CBT, mean (SD) − 0,50 (1.92) − 0.35 (1.69) 0.07 (1.65) − 0.97 (1.85) − 1,90 (2.23)

DST, mean (SD) 0,16 (2.38) 0,69 (1.94) 0.59 (2.34) − 0,46 (1.84) − 1.41 (2.82)

RAVLT, mean (SD) − 0.40 (1.04) 0.29 (1.01) − 0.26 (0.75) − 0.86 (0.53) − 1.71 (0.93)

WLL CERAD, mean (SD) − 0.18 (1.15) 0.24 (0.91) 0.21 (1.06) − 0.55 (0.96) − 1.08 (1.17)

MMSE full, mean (SD) 3.18 (1.53) 3.99 (0.74) 3.88 (1.51) 3.29 (0.89) 1.45 (1.37)

Table 2.   Summary of measurement properties for the NMM and the legacy tests. The properties reported 
are based on individual analyses for the legacy tests (i.e., not when anchored to the NMM). * CBT, DST and 
MMSE 6 items had one or two items that could not be estimated in the individual analyses due to extreme 
items. ** Person location in logits ranges include extremes. Extremes were present for DST, RAVLT A-list, 
WLL CERAD, MMSE 6 items and MMSE full. *** Numbers in brackets are measurement uncertainties with 
coverage factor of 2.

NMM CBT DST
RAVLT
A-list WLL CERAD

MMSE
6 items MMSE full

Number of items 57 13 * 10 * 15 10 5 * 30

Number of test persons 360 359 346 319 247 127 208

Person location range**, *** − 4.74 (1.28) to
3.63 (1.05)

− 7.30 (2.86) to
6.84 (2.52) − 6.29 (3.42) to 6.84 (3.62) − 3.50 (2.63) to 3.47 (2.61) − 3.04 (2.70) to

3.14 (2.82)
− 4.66 (2.42) to
3.99 (3.22)

− 4.62 (2.56)
to
4.80 (6.62)

Item location range ***
− 6.83 (1.42)
to
6.82 (2.00)

− 6.01 (0.82) to
7.14 (1.82)

− 5.12 (0.72) to
5.44 (0.70)

− 1.65 (0.28) to
1.34 (0.30)

− 1.45 (0.32) to
1.76 (0.36)

− 3.92 (1.68) to
3.18 (0.44)

− 2.34 (1.24)
to
3.04 (0.36)

Number of item fit residu-
als ± 2.5 4 0 0 2 2 0 3

Number of items with signifi-
cant chi squares 2 0 0 0 0 0 1

Number of items with signifi-
cant DIF due to diagnosis 3 0 0 5 0 0 3

Number of items with signifi-
cant DIF due to gender 0 0 0 0 0 0 0

Percentage of item fit residual 
correlations above the relative 
cut off

1.3% 1.3% 0% 2.9% 6.7% 10% 2.6%

Percentage of tests out-
side ± 1.96 19.5% 5.8% 6.7% 7.2% 2.3% 0.4% 3.4%

Person reliability (with / 
without extremes) 0.85 / 0.85 0.69 / 0.69 0.77 / 0.73 0.63 / 0.54 0.53 / 0.40 0.25 / 0.02 0.65 / 0.69
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between the raw scores and the NMM measure for person ability, clearly indicating the ordinality in raw scores. 
This emphasizes the significance of using a linear measure to not underestimate persons’ abilities at the upper 
end of the scale or overestimate persons’ abilities at the lower end of the scale.

As seen in the conversion table, measurement uncertainties for person abilities are larger for all individual 
legacy tests compared with the NMM. This is also illustrated in Fig. 4, which also shows how measurement preci-
sion varies between the legacy tests (as described above). The NMM shows the lowest measurement uncertainties 
across the full span. This is a result of how the NMM has been developed to ‘fill the gaps to reach a well-targeted 
scale’21.

To provide guidance on how to read the conversion table, for instance, a person with three correct recalls 
on the words in RAVLT is expected to have six correct recalls in CBT. Both scores are equivalent to a measure 
of person ability of—0.54 ± 0.77 logits in the NMM frame of reference. Furthermore, Table 4 also provides a 
conversion table between the full MMSE and NMM.

Figure  5 confirms previously known issues with the MMSE when used in a healthy or early-stage 
population38–40, and the added value NMM provides. Specifically, above about -2 logits the NMM has less meas-
urement uncertainties and better precision in measuring the person’s ability compared to the MMSE. As can 
be seen from the conversion table, this implies that when a patient passes on more than 20 items, regardless of 
which items, on MMSE, the NMM provides a more precise measure of the person’s ability.

Discussion
In this paper we have described crosswalks between the different legacy tests included in the recently developed 
NMM21. The conversion tables presented (Tables 3–4) have been developed to provide clinicians and researchers 
with a practical tool to achieve three key goals:

First, as in any Rasch-transformed data set, we can compensate for ordinality in raw scores. Despite decades 
of knowledge that typical human responses ‘have no numerical meaning and only serve to …indicate… ordered 
categories’ (41 p. 2), the ordinality in raw scores are still seldomly compensated for42–45. Tables 2 and 3 in this 
paper now allow researchers and clinicians to easily convert raw scores into linear measurements.

Second, we can ensure traceability to enable reliable and valid comparisons when measuring person ability. 
The conversion Tables 2 and 3   are built on the principles of specific objectivity and measurement invariance, 
which ensure metrological traceability and enable comparison of person memory ability within the same invari-
ant frame of reference. These properties are grounded in the Rasch model, as its structure enables separate estima-
tion of item and person parameters. Item parameters can be estimated independently (up to sample size) of the 
person sample using conditional inference. Item locations (within uncertainty limits) are therefore ‘invariant’, 
meaning that their values are not dependent on the ability of the person sample that was used for the estimation. 
The item locations can therefore be considered stable (again, within uncertainty limits). Consequently, with the 
conversion tables, which provide links from individual legacy tests to this common frame-of-reference, there 
is no need for re-running Rasch analyses. Rather the conversion tables will enable clinicians or researchers to 
interpret results that are geographically and temporally independent, and can be undertaken in different locations 
or times to be universally applied46. This is a vital development allowing clinicians and researchers to reliably 
measure, track over time, and compare memory ability for the future of understanding, preventing and treating 
patients on the AD continuum.

Third, we can enable comparability between test results from different legacy tests. The NMM was developed21 
based on legacy test items. Legacy memory tests will continue to be used in clinical practice and research due 
to their relatively easy applicability, and to the long-term experience researchers have with these tests. With our 
crosswalk conversion tables, clinicians or researchers do not need a new testing procedure to increase the quality 
of their measurements. Again, by using the conversion tables (Tables 3–4), raw scores from CBT, DST, RAVLT, 
WLL CERAD and MMSE can be converted into the same frame of reference and in turn allow for comparisons 
independent of which test items are used.

Figure 2.   Each dot corresponds to each item’s task difficulty location (δ, x-axis) for the including items from 
the legacytests. Easiest items are located to the left and the most difficult to the right. Measurement uncertainties 
with coverage factor of 2.
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NMM CBT DST RAVLT A-list WLL CERAD

Score Measure 2SE 0–100 2SE 0–100 Score Measure 2SE Score Measure 2SE Score Measure 2SE Score Measure 2SE

0 − 8.49 2.86 0.00 16.83

1 − 7.47 2.01 6.01 11.83 0 − 7.48 3.52 0 − 7.90 3.36

2 − 6.72 1.67 10.46 9.84 1 − 6.58 2.63

3 − 6.12 1.51 13.95 8.86 1 − 5.90 2.56

4 − 5.61 1.40 16.96 8.27

5 − 5.16 1.34 19.64 7.86

6 − 4.73 1.29 22.12 7.58 2 − 4.64 2.13 2 − 4.99 2.54

7 − 4.34 1.25 24.46 7.38

8 − 3.96 1.23 26.71 7.22

9 − 3.59 1.20 28.89 7.07 3 − 3.68 2.02 3 − 3.49 2.24

10 − 3.23 1.17 31.00 6.88

11 − 2.89 1.13 33.00 6.66

12 − 2.57 1.09 34.87 6.40 4 − 2.68 2.05 0 − 2.59 2.73

13 − 2.28 1.04 36.57 6.12 4 − 2.37 2.08 0 − 2.41 2.78

14 − 2.02 0.99 38.11 5.85

15 − 1.78 0.95 39.51 5.60

16 − 1.56 0.91 40.79 5.37 5 − 1.56 2.04 1 − 1.63 1.87

17 − 1.36 0.88 41.97 5.18 5 − 1.35 1.98 1 − 1.43 1.93

18 − 1.18 0.85 43.06 5.00

19 − 1.01 0.82 44.08 4.86 2 − 0.98 1.52

20 − 0.84 0.80 45.04 4.73

21 − 0.69 0.78 45.96 4.62 2 − 0.75 1.59

22 − 0.54 0.77 46.83 4.53 6 − 0.55 1.95 3 − 0.50 1.35

23 − 0.39 0.76 47.68 4.45 6 − 0.42 1.92

24 − 0.26 0.74 48.49 4.38 3 − 0.23 1.44

25 − 0.12 0.73 49.28 4.32 4 − 0.10 1.25

26 0.01 0.73 50.06 4.27

27 0.14 0.72 50.82 4.23

28 0.27 0.71 51.56 4.20 5 0.25 1.19 4 0.22 1.38

29 0.39 0.71 52.30 4.18 7 0.35 1.90

30 0.51 0.71 53.03 4.17 7 0.48 1.87 6 0.57 1.15

31 0.64 0.71 53.75 4.16 5 0.65 1.36

32 0.76 0.71 54.48 4.16

33 0.88 0.71 55.20 4.16 7 0.88 1.13

34 1.01 0.71 55.93 4.17

35 1.13 0.71 56.66 4.19 8 1.19 1.13 6 1.09 1.39

36 1.26 0.72 57.40 4.22 8 1.21 1.90

37 1.38 0.72 58.15 4.26 8 1.32 1.85

38 1.51 0.73 58.92 4.30 9 1.50 1.14 7 1.56 1.47

39 1.65 0.74 59.70 4.35

40 1.78 0.75 60.51 4.41 10 1.82 1.18

41 1.92 0.76 61.34 4.49

42 2.07 0.78 62.19 4.58 9 2.11 1.98 8 2.11 1.63

43 2.22 0.79 63.09 4.68 9 2.16 1.87 11 2.16 1.23

44 2.38 0.82 64.03 4.80

45 2.55 0.84 65.03 4.94 12 2.54 1.33

46 2.73 0.87 66.09 5.11

47 2.93 0.90 67.23 5.31 10 3.01 1.97 13 3.00 1.50 9 2.83 1.97

48 3.14 0.94 68.47 5.55 10 3.20 2.08

49 3.37 0.99 69.83 5.84

50 3.63 1.05 71.36 6.18 14 3.63 1.84

51 3.92 1.12 73.09 6.61 11 4.00 2.27 10 3.85 2.84

52 4.26 1.21 75.09 7.13 11 4.31 2.07

53 4.66 1.33 77.44 7.80 15 4.56 2.69

54 5.15 1.48 80.32 8.72 12 5.31 2.12 12 5.19 3.12

Continued
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Previous research has encouraged the construction of fit-for-purpose and rigorous measurements of cognitive 
ability9,10. Yet, in general, there has been little advancement in methodologies around human-based measure-
ments over the past 60 years47. Specifically, there has been a call for a reappraisal of metrology to provide quality 
assurance and comparability via metrological traceability48. The development of the NMM has been a direct 
response to that22, but at the same time ‘the approach does not propose a new method of assessing cognition, but 
rather a more psychometrically sound interpretation’ (49, p. 59). In addition to traceability, measurement uncer-
tainty is a key metrological aspect. However, assessing or reporting measurement uncertainty has little tradition 
in human-based measurements. Within the Rasch model, the standard error of measurement (i.e., the reciprocal 
proportion to the square root of the amount of information) is an estimate of the random error and is typically 
used to reflect measurement uncertainties, while considerations of what extent systematic errors contribute to 
measurement uncertainty have not, as yet, been made8,50,51. Thus, the Rasch model provides opportunities to 
better align measurement uncertainty in psychometric studies with that used in physical metrology8. Thus, in 
addition to the NMM being a practical day-to-day tool, this methodological work is a direct response to better 
standardization and measurement quality assurance for cognitive measurements in this new area of metrology.

Furthermore, previous studies of both the ADAS-cog52 and the MMSE53 have shown that cognitive ability 
of those with an early cognitive decline are underestimated due to poor targeting. This may lead to problems in 
detecting clinical change, particularly for the preclinical phase of the AD continuum. Elsewhere, we have shown 
how the selected items from legacy short-term memory tests shorten overall testing time while maintaining 
coherence in item design, without jeopardizing validity for the NMM21. Specifically, as is also illustrated here in 
Fig. 4, the NMM shows the lowest measurement uncertainties across the full span of memory abilities compared 
to the legacy tests. This will allow for using one scale across the AD continuum to better understand cognitive 
decline and disease progression.

Nowadays, item-banks are proposed to reduce patient burden by shortening assessments by utilising com-
puterised adaptive testing (CAT) (c.f. 54–56). CAT is a method of delivering test items that is tailored to an 
individual, whereby the order and difficulty of items that appear are directly related to the individuals’ previous 
responses. The algorithm takes into account both person ability and item difficulty, with each individual only 
answering the number of questions necessary to make a precise estimate of their ability with a pre-specified 
level of precision57. The next step in the NeuroMET project is to make the NMM even more user friendly, by 
developing an app where clinicians and researchers will be able to select either an item set or the full NMM, so 
that patient responses are transformed via a scoring algorithm into the memory ability measurement value. Using 
the NMM item-bank and the NMM app, the same individual can be measured over a period of years with a tool 
that is adaptive and sensitive to their cognitive decline over time. Likewise, practice effects that dilute accuracy 
in measures of person abilities can be diminished due to tailoring fewer items to the person’s ability.

Limitations.  There are some methodological considerations to bear in mind when interpreting the find-
ings of this study. Firstly, as of now, the NMM has only been tested in a German population, which means that 
a proper assessment of metrological references has not been done and we cannot claim item-stability cross-

NMM CBT DST RAVLT A-list WLL CERAD

Score Measure 2SE 0–100 2SE 0–100 Score Measure 2SE Score Measure 2SE Score Measure 2SE Score Measure 2SE

55 5.78 1.72 84.01 10.10

56 6.66 2.13 89.20 12.56 13 6.44 2.41

57 7.83 3.05 100.00 17.98 14 7.75 3.28

Table 3.   Conversion table from NMM (57 items) to each legacy test for both raw scores and measures (in 
logits) and converted into a 0–100 scale. 2SE corresponds to measurement uncertainties with a coverage factor 
of 2.
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Figure 3.   Observed S-curve correlating observed responses (raw score on the y-axis = 57) with the Rasch-
estimated person ability for the NMM (x-axis). Measurement uncertainties with coverage factor k = 2.
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Figure 4.   Measurement uncertainties, 2SE, on the y-axis and person ability measures (θ) on the x-axis 
compared for measures based on the NMM (lowest blue dots) and each of the legacy tests.

Table 4.   Conversion table from MMSE to NMM (57 items) for both raw scores and measures (in logits) and 
converted into the 0–100 scale for NMM in Table 3. 2SE corresponds to measurement uncertainties with a 
coverage factor of 2.

MMSE NMM

Score Measure 2SE Score Measure 2SE 0–100 2SE 0–100

0 − 7.06 2.56 2 − 6.72 1.67 10.46 9.84

1 − 6.21 1.79 3 − 6.12 1.51 13.95 8.86

2 − 5.62 1.43 4 − 5.61 1.40 16.96 8.27

3 − 5.19 1.25 5 − 5.16 1.34 19.64 7.86

4 − 4.85 1.14 6 − 4.73 1.29 22.12 7.58

5 − 4.56 1.06

6 − 4.30 1.01 7 − 4.34 1.25 24.46 7.38

7 − 4.07 0.97 8 − 3.96 1.23 26.71 7.22

8 − 3.84 0.94

9 − 3.64 0.92 9 − 3.59 1.20 28.89 7.07

10 − 3.43 0.90

11 − 3.24 0.89 10 − 3.23 1.17 31.00 6.88

12 − 3.05 0.88

13 − 2.86 0.87 11 − 2.89 1.13 33.00 6.66

14 − 2.68 0.87

15 − 2.49 0.87 12 − 2.57 1.09 34.87 6.40

16 − 2.30 0.88 13 − 2.28 1.04 36.57 6.12

17 − 2.11 0.88 14 − 2.02 0.99 38.11 5.85

18 − 1.92 0.89

19 − 1.72 0.91 15 − 1.78 0.95 39.51 5.60

20 − 1.51 0.92 16 − 1.56 0.91 40.79 5.37

21 − 1.30 0.94 17 − 1.36 0.88 41.97 5.18

22 − 1.07 0.97 19 − 1.01 0.82 44.08 4.86

23 − 0.84 1.00 20 − 0.84 0.80 45.04 4.73

24 − 0.58 1.04 22 − 0.54 0.77 46.83 4.53

25 − 0.30 1.10 24 − 0.26 0.74 48.49 4.38

26 0.01 1.17 26 0.01 0.73 50.06 4.27

27 0.36 1.28 28 0.27 0.71 51.56 4.20

28 0.81 1.46 32 0.76 0.71 54.48 4.16

29 1.42 1.81 37 1.38 0.72 58.15 4.26

30 2.27 2.59 43 2.22 0.79 63.09 4.68
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countries for the NMM at this stage. Legacy tests with blocks and number sequences are, however, free from cul-
tural and language bias and are traditionally used without any psychometric verification in different countries. 
More recently, we have made validation tests on the DST11,58 and RAVLT36 in a Swedish population which have 
confirmed item stability included in those tests, and further cross-country validation studies are being planned.

Secondly, the NMM items were assessed as part of an extensive battery of neuropsychological tests. Thus, the 
items were not assessed consecutively (all but RAVLT were conducted on the first day) and there are only selected 
items from the full legacy tests included, hopefully reducing the effects of exhaustion. This should be investigated 
in forthcoming work, but again, within the frame of the Rasch model, the item locations were estimated using a 
method independent of the distribution of the sample and should therefore be roughly the same within quoted 
uncertainties when estimated from another sample.

Thirdly, the NMM shows overall good measurement properties to measure person memory ability. For 
the total NMM only three items showed significant DIF with regards to sub-groups but for the individual test 
RAVLT as many as five of fifteen items showed DIF with regards to sub-groups. This issue has, however, been 
studied in detail in one of our previous papers25. We concluded that this may be due to dimensionality issues but 
refrained from separating groups of items into subtests (for RAVLT for primacy and recency items) in an attempt 
to improve the unidimensionality as the measurement uncertainties become too large with only a handful of 
dichotomous items. The overall smallness of DIF meant that we have not yet looked in detail at any Differential 
Test Functioning effects. Furthermore, we decided to keep all RAVLT items – despite two of them showing DIF 
(one from WLL CERAD) – due to negligible effects on the overall estimate of person memory ability and to offer 
the possibility for clinicians not used to Rasch to still relate to the composite NMM.

Finally, at present there are few other studies providing these kinds of crosswalks8,59,60. This implies limited 
recommendations, guidelines, or best practices to follow. However, this work was guided by well-known metro-
logical underpinnings and well-established techniques for item-person separation, item anchoring and conver-
sions. Therefore, we believe that the conversion tables for NMM and the legacy tests are valid.

Conclusions
As a response to the call for accurate and sensitive assessment of memory abilities for persons across the AD 
continuum, the NMM has recently been developed based on a Rasch model together with construct specification 
equations. The aim of doing this was to overcome the challenges of bringing several items of distinct difficulties 
on a common scale in order to establish a metrologically validated memory metric.

The results of the present crosswalk study, i.e., the conversion tables for the NMM and legacy tests, now 
provide clinicians and researchers with a practical tool to: i) compensate for ordinality in raw scores; ii) ensure 
traceability to make reliable and valid comparisons when measuring person ability; and iii) enable comparability 
between test results from different legacy tests. By using the conversion tables presented here, better standardiza-
tion and measurement quality assurance for cognitive measurements – as are already established for the regular 
SI quantities and units – can be enabled. We believe that the shortcomings of the use of raw scores are a major 
issue and the work presented here should be considered as a starting point to improve measurement quality 
assurance. However, further evaluations are warranted in cross-country studies, because the conversion tables are 
as yet only based on German data. Nevertheless, the NMM is in itself a unique metrologically validated memory 
metric that can be useful for early diagnosis, monitoring of disease progression and response to therapies.

Data availability
https://​zenodo.​org/​record/​70709​58#.​Yx8Cf​3ZBxPY.
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Figure 5.   Measurement uncertainties, 2SE, on the y-axis and person ability measures (θ) on the x-axis 
compared for measures based on the NMM (lowest blue dots) and one (MMSE) of the legacy tests. Larger values 
of θ correspond to higher person ability.
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