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Access to germasiloxanes 
and alkynylgermanes mediated 
by earth‑abundant species
Hanna Stachowiak‑Dłużyńska 1, Krzysztof Kuciński 1*, Konstancja Broniarz 1, 
Ewelina Szafoni 1, Marcin Gruszczyński 1, Dariusz Lewandowski 1, Giuseppe Consiglio 
2 & Grzegorz Hreczycho 1*

The reactions between silanols or terminal acetylenes with alkynylgermanes have been accomplished 
using potassium bis(trimethylsilyl)amide as the catalyst. This strategy has provided an entry point 
into various organogermanes including germasiloxanes and alkynylgermanes. Remarkably, not only 
KHMDS but also simple bases such as KOH can serve as efficient catalysts in this process.

Organogermanium compounds are much less studied than their silicon counterparts, but very recently, an impe-
tus to design new synthetic routes to various organogermanes was witnessed and significant contributions were 
 reported1–11. That is not merely a scientific curiosity but primarily, the unique features of germanium compounds 
are the leading cause of this trend. Moreover, due to their high stability and low toxicity, they can be considered 
very useful reagents in the synthesis of complex organic  molecules4,12. The germanium analogues of siloxanes with 
Ge–O–Si fragments attract considerable attention owing to their high refractive index, low dielectric constant, 
and biocompatible  properties13–15. This may lead to completely new materials with different properties than 
their silicon  analogs16. There are known several available reaction manifolds to forge Ge–O–Si moieties (Fig. 1). 
They can be readily accessed via well-developed stoichiometric methods. Here, the germasiloxanes are formed 
by the condensation of chlorogermanes (or aminogermanes) with silanols or metal  silanolates17,18. Moreover, 
there is also a known reaction between germoxanes and silyl  azides19. Because of the inconvenient nature of these 
processes (e.g., high moisture sensitivity of substrates, generation of corrosive or explosive byproducts, etc.), 
researchers have tried to develop catalytic alternatives. These methods can be generally divided into approaches 
involving  siloxymethylamines20 (or germyl  intermediates14), as well as the reaction of various organosilicons 
with different germylation agents via  dehydrogenative21,  dealkylative21, and  dealkenative22–27 coupling reactions. 
Despite several advantages, other features of these processes, especially the need for an expensive catalyst (e.g., 
 [Ru3(CO)12], Sc(OTf)3, B(C6F5)3, etc.) dramatically reduce their potential. On the other hand, unlike alkynyl-
silanes, alkynylgermanes have just begun to meet the criteria of useful reagents in organic synthesis. Here, the 
synthetic arsenal for the formation of sp C–Ge bonds mainly relies on the stoichiometric reaction between 
moisture-sensitive halogermanes with metal acetylides or the use of expensive transition metal complexes (Ru—
vinylgermanes/alkynylgermanes28–30, Ir—chlorogermanes/iodo-germanes31,32). Very recently, an outstanding 
B(C6F5)3-catalyzed cross-dehydrogenative germylation of terminal alkynes with triethylgermanium hydride 
was reported by the Schoenebeck  group33. Considering the drawbacks of previously established methods (e.g., 
expensive catalysts, the limited availability of hydrogermanes, etc.), it would be fascinating and yet challenging 
to develop a novel catalytic approach in a more green and sustainable manner. Finally, terminal alkynes can be 
C–germylated by using 1-trimethylsilyl-2-trimethylgermylacetylene molecule under basic  conditions34. To the 
best of our knowledge, there is only one example of such an atypical synthetic strategy. Notably, this strategy is 
not without its own disadvantages, including the use of fluoride reagents and expensive crown ethers. Moreover, 
the authors have reported only two products, with low selectivity and yields (less than 50%).

Sustainable and eco-friendly synthetic approaches proceeded by the main-group species have gained recent 
significant  attention35–44. Thus, we sought the method leading to versatile germanium compounds that blends 
the high selectivity of TM-mediated approaches with the practicality of a base-promoted protocol. Based on 
our recent success in activating silylacetylenes under sustainable  catalysis45–49, we reasoned that an appropriate 
catalytic manifold could provide an efficient platform to generate diversified libraries of organogermanes. In this 
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communication, we report on the catalytic O– and sp C–germylation by using potassium bis(trimethylsilylamide) 
as the catalyst (Fig. 1d).

Results and discussion
Our optimization studies (for details, see Table S1 in SI) revealed that utilizing triethyl(ethynyl)germane (2a) as 
the germylating agent, and KHMDS as the catalyst led to the corresponding germasiloxane 3a. Using a mixture 
of acetonitrile and tetrahydrofuran as the medium (v/v 10:1), this main-group catalytic combination afforded 
the desired product in 92% yield. Particularly noteworthy is a very good conversion of silanols in the presence of 
potassium hydroxide (for details, see Table S2 in SI). However, we decided to continue our work with potassium 
bis(trimethylsilylamide), due to better conversions and yields of final products. The catalyst-free attempt was also 
carried out and proved the essential role of the main-group catalysis and confirmed no leaching of the alkali spe-
cies from the glassware, which could act as potential co-catalysts50,51. The reaction can be also performed under 
an air atmosphere but gave inferior results. Figure 2 demonstrates a product scope for alkynylgermanes coupling 
with silanols using KHMDS in MeCN/THF mixture. The desired germasiloxanes (3a-3n) were obtained in each 
case with a very good isolated yield (85–99%). Conversely, in the presence of bulky isopropyl substituents at the 
germanium atom, the lower conversion and isolated yield were observed (3o, 51%).

We were particularly delighted that dialkynylgermanes could be converted to germasiloxanes (3p-3r). In the 
case of dibutyldiethynylgermane, the reaction can selectively proceed to both mono- and disubstituted products 
(3q and 3r). This should be treated as another advantage of this germylation method over previously known 
approaches due to the possibility of further modifications of the untouched ethynyl group (3q). Encouraged by 
these results, we then investigated the use of alcohols instead of silanols. We were pleased to find that 1-(4-chlo-
rophenyl)ethan-1-ol and isopropanol were successfully germylated under standard conditions (Fig. 2), leading 
to products 3s and 3t in moderate yields (50–63%). Unfortunately, our attempts to perform analogous S– and 
N–germylation failed. Benzenethiol and aniline were not reactive even under forcing conditions.

Intrigued by the high efficiency and chemoselectivity of the transformation, we next pursued the development 
of further applications of our catalytic system. Encouragingly, this strategy enabled the germylation of terminal 
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alkynes. We started to explore the substrate scope with respect to alkynylgermanes, particularly to their self-
metathesis reaction (Fig. 3).

Thus, except for bulky triisopropyl(ethynyl)germane (4c; 53%), the reaction smoothly proceeded with remain-
ing alkynylgermanes in good to excellent yields (72–95%). Guided by our previous  studies45,48,49, we explored 
the versatility of our dealkynative coupling of 4a (or 4d) employing a representative set of terminal alkynes 
(Fig. 4). Although the conversion of phenylacetylene (5a) was also seen with triethyl(ethynyl)germane (2a), 
we later found that isolated yields were significantly lower than for 4a (Fig. 4; footnotes a, b, and c). Notably, 
the excess of 4a can be recovered via distillation. However, all actions should be performed exclusively under 
an argon atmosphere. Otherwise, significant amounts of digermoxane byproduct are formed, thus impeding 
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Figure 2.  Substrate scope for O-germylation of various silanols.
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the isolation process (as well as recovery of 4a). With suitable reaction conditions established (Fig. 4; general 
conditions), we turned toward the examination of the substrate scope. Coupling reactions of phenylacetylenes 
substituted with an electron-donating group 5b and electron-withdrawing group 5c provided the corresponding 
alkynylgermanes 6b and 6c in good yields (61–82%), and the parent phenylacetylene 5a reacted equally well 
(70%). Next, commercial ene-yne derivative 5d also participated effectively in this reaction (6d, 73% yield), 
while preserving the ene-functionality untouched. Encouraged by these results, we then investigated the use 
of N-containing acetylenes 5f-5h, which are biorelevant scaffolds. Our strategy enabled the germylation of one 
pharmaceutical—pargyline (5f), known as an inhibitor of monoamine-oxidase-B (68%). Importantly, the amine 
moiety in 5g remained during the reaction, confirming again the high chemoselectivity of our approach. Next, 
we sought to obtain germylated diyne, which can be subsequently used in polymer chemistry. Using our catalytic 
system, product 6i was afforded (85% yield). Next, unsymmetrical silyl(germyl)- and bis(germyl)acetylenes were 
obtained in moderate yields (6j and 6k, 54–61%). It should be noted, that in these particular cases, the products 
were selectively obtained only for bulky substituted silane (6j) or germane (6k). Otherwise, we observed the 
mixture of symmetrical and unsymmetrical bis-substituted acetylenes. Finally, we also tested our methodology 
on bis(dimethylphenylgermyl)acetylene (4d), providing the desired products 6l and 6m in very good yields 
(78–85%). All these examples highlight both the electronic generality of this method and its tolerance for typi-
cally existing organic motifs, showcasing the unique robustness and versatility of our strategy.

Based on our experimental results (for details, see SI) and our previous developments in the case of analogues 
alkynylsilanes, a plausible catalytic cycle is presented for the O–germylation (Fig. 5; the mechanism for sp C–ger-
mylation is shown in Fig. 6). Please note (for details please see SI), that both silanol and triethylethynylgermane 
can undergo the deprotonation. However, we still suggest that “the silanol activation pathway” is dominant for 
the O–germylation considering the expected higher acidity of silanols compared to alkynylgermanes. In the 
case of sp C–germylation, 1H NMR analysis confirmed a deprotonation step (no signal for the acetylenic proton, 
for details please see SI). Subsequently, it is suggested that formed acetylide reacts with bis(triorganogermyl)
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Figure 4.  Substrate scope for C–germylation of terminal alkynes.
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acetylene to generate pentacoordinated germanium intermediates. This is followed by the addition of another 
alkyne molecule with simultaneous liberation of the desired product and triorganogermylacetylene. Notably, 
the latter can also serve as a germylating agent or undergo a self-metathesis reaction, which finally leads to the 
evolution of gaseous acetylene in both scenarios. In general, all the previous protocols for the base-catalyzed 
reactions of analogous silylacetylenes were assuming the intermediacy of hypervalent species. In our specific 
case, it is also the most probable pathway. Thus, a plausible catalytic cycle is presented in Fig. 6.

Conclusions
In summary, we have reported on a very efficient protocol for catalytic O–H and sp C–H germylation of silanols 
and terminal alkynes in the presence of main-group species. Here, a commercially available KHMDS enabled 
a dealkynative coupling with ample scope. Considering the combination of desirable features (e.g., operational 
simplicity, high chemoselectivity, benign reaction conditions, low cost of the reagents, and their commercial 
availability, etc.), we believe this reaction system offers new perspectives for the synthesis of valuable organ-
ogermanium compounds in a sustainable and green manner. Furthermore, we anticipate that the general design 
principle utilizing alkynyl-substituted metalloids will lead to new reactions that are difficult to achieve with 
traditional transformations. Thus, further studies on the scope and synthetic application of this methodology 
are currently underway in our laboratory.

Methods
General Information: Air- and moisture-sensitive reactions were carried out under an argon atmosphere 
using standard Schlenk techniques or a glove box. Solvents used for all experiments were purchased from 
Honeyweel or Sigma Aldrich (Merck), dried over calcium hydride  (CaH2), and purified by distillation. Tet-
rahydrofurane was additionally dried over sodium with benzophenone system. All alkali metal compounds 
(lithium bis(trimethylsilyl)amide, sodium bis(trimethylsilyl)amide, potassium bis(trimethylsilyl)amide, lithium 
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tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, lithium hydroxide, sodium hydroxide, and potas-
sium hydroxide) were purchased in the solid state from Sigma Aldrich (Merck) or StanLab. Additionally, potas-
sium bis(trimethylsilyl)amide was also purchased as a solution in THF from Sigma Aldrich (Merck). Com-
mercially available silanols (e.g., tert-butyldimethylsilanol, tert-butyldiphenylsilanol, tris(tert-butoxy)silanol, 
triethylsilanol, triisopropylsilanol, triphenylsilanol, etc.) were purchased from Sigma Aldrich (Merck) or AmBeed 
and used as received. Non-commercially available silanols were prepared by hydrolysis of corresponding chlorosi-
lanes (e.g., chlorotriisobutylsilane, chlorotributylsilane, etc.). Terminal alkynes (e.g., phenylacetylene, 4-ethyny-
lanisole, 4-ethynyl-α,α,α-trifluorotoluene, 1-ethynylcyclohexene, N-methyl-N-propargylbenzylamine, etc.) were 
purchased from Sigma-Aldrich (Merck) and used as received. Alkynylgermanes (e.g., triethyl(ethynyl)germane, 
tributyl(ethynyl)germane, ethynyldimethyl(phenyl)germane, ethynyltriisopropylgermane, etc.) were synthesized 
from corresponding chlorogermanes by well-known procedure using ethynylmagnesium bromide solution in 
THF (Grignard reagent). The progress of reactions (conversion of alkynylgermane, silanol, alcohol, or alkyne) 
was monitored by GC chromatography using Bruker Scion 460-GC and Agilent 5977B GC/MSD with Agilent 
8860 GC System. The structures of products were determined by NMR spectroscopy and MS spectrometry. The 
1H NMR (400 or 600 MHz), 13C NMR (101 or 151 MHz) and 29Si NMR (79 or 119 MHz) spectra were recorded 
on Bruker Avance III HD NanoBay spectrometer, using chloroform-d1  (CDCl3) or benzene-d6  (C6D6) as the 
solvents. Deuterated solvents were purchased from respectively Deutero GmbH  (CDCl3 99.6 atom% D) and 
Sigma Aldrich (Merck)  (C6D6 99.8 atom% D) and used as received.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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