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Flood sensitivity assessment 
of super cities
Zijun Wang 1,2, Xiangyu Chen 1,2, Zhanshuo Qi 1,2 & Chenfeng Cui 1,2*

In the context of global urbanization, more and more people are attracted to these cities with 
superior geographical conditions and strategic positions, resulting in the emergence of world super 
cities. However, with the increasing of urban development, the underlying surface of the city has 
changed, the soil originally covered with vegetation has been substituted by hardened pavement 
such as asphalt and cement roads. Therefore, the infiltration capacity of urban rainwater is greatly 
limited, and waterlogging is becoming more and more serious. In addition, the suburbs of the main 
urban areas of super cities are usually villages and mountains, and frequent flash floods seriously 
threaten the life and property safety of people in there. Flood sensitivity assessment is an effective 
method to predict and mitigate flood disasters. Accordingly, this study aimed at identifying the areas 
vulnerable to flood by using Geographic Information System (GIS) and Remote Sensing (RS) and apply 
Logistic Regression (LR) model to create a flood sensitivity map of Beijing. 260 flood points in history 
and 12 predictors [elevation, slope, aspect, distance to rivers, Topographic Wetness Index (TWI), 
Stream Power Index (SPI), Sediment Transport Index (STI), curvature, plan curvature, Land Use/Land 
Cover (LULC), soil, and rainfall] were used in this study. Even more noteworthy is that most of the 
previous studies discussed flash flood and waterlogging separately. However, flash flood points and 
waterlogging points were included together in this study. We evaluated the sensitivity of flash flood 
and waterlogging as a whole and obtained different results from previous studies. In addition, most 
of the previous studies focused on a certain river basin or small towns as the study area. Beijing is the 
world’s ninth largest super cities, which was unusual in previous studies and has important reference 
significance for the flood sensitivity analysis of other super cities. The flood inventory data were 
randomly subdivided into training (70%) and test (30%) sets for model construction and testing using 
the Area Under Curve (AUC), respectively. The results turn out that: (1) elevation, slope, rainfall, LULC, 
soil and TWI were highly important among these elements, and were the most influential variables 
in the assessment of flood sensitivity. (2) The AUC of the test dataset revealed a prediction rate of 
81.0%. The AUC was greater than 0.8, indicating that the model assessment accuracy was high. (3) 
The proportion of high risk and extremely high risk areas was 27.44%, including 69.26% of the flood 
events in this study, indicating that the flood distribution in these areas was relatively dense and the 
susceptibility was high. Super cities have a high population density, and once flood disasters occur, 
the losses brought by them are immeasurable. Thus, flood sensitivity map can provide meaningful 
information for policy makers to enact appropriate policies to reduce future damage.

The construction of super cities in the twenty-first century have become a weathervane of urban development 
all over the world. However, it is followed by a higher risk of natural disasters, such as the flood disasters in 
this study. In super cities with greater urban population density and higher ground hardening rate, the imple-
mentation of flood sensitivity analysis is of great  significance1. Urban waterlogging occurs in a short time when 
continuous rainfall or heavy rainfall exceeds the excretion capacity of the city, which will lead to the formation 
of urban waterlogging. It is a natural disaster often suffered by the main urban areas of super  cities2. Flash flood 
often happens in mountainous areas. It is characterized by sudden, concentrated water volume, high velocity, 
strong erosion damage, and sediment or even rocks carried in the water  flow3, which is a common natural disaster 
in the suburbs of super  cities4,5.

Here in the world, many cities are built on plains or basins surrounded by mountains. The center of the 
plain or basin is usually the center of the city. With the construction of urbanization, it continues to radiate 
 outward6–9. Suburbs around the main urban areas are usually built around mountains, clustered at river passes. 
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The main metropolitan area of the city is severely affected by  waterlogging1, while the surrounding suburbs are 
also under constant threat of flash  flood10. In addition, global warming leads to more frequent extreme rainfall 
events and more flooding events, leading to various dangerous phenomena associated with the corresponding 
 problems11. In the first half of 2022 alone, flooding affected 21.805 million people in China, resulting in direct 
financial losses of 64.76 billion yuan. In July 2021, the city cluster centered on Zhengzhou in Henan province 
has been hit by heavy rain, and daily precipitation is as high as 552.5 ml, leaving 398 people dead or  missing12,13; 
Each year during the rainy season, flash floods in southern and western China cause a large number of casualties. 
The “2022 Aug. 13” flash flood in Pengzhou, Sichuan Province caused 7 deaths, and the “2022 Aug. 18” flash 
flood in Datong County, Qinghai Province has caused 16 deaths so far. Therefore, the current research urgently 
needs to carry out simulation research in the regional scale space, so as to reduce or even prevent the negative 
impact of  floods14–16. Flood can be divided into river floods, coastal floods, waterlogging and flash floods and 
other types (hereinafter collectively referred to as floods) depending on their  mechanism17. In the construction 
of super cities, flood control measures should be formulated in advance according to the flood sensitivity map, 
considering the great flood  damage18. Therefore, the assessment of flood sensitivity is expected to receive further 
continuous attention in the future.

Flood sensitivity refers to the possibility of flooding in an area under conditions such as local topography. 
Flood sensitivity maps can be used to predict where flooding is likely to occur. Flood sensitivity assessment is the 
important precondition for the flood prevention and control work. For the past few years, the rapid development 
of GIS has combined GIS-based numerical simulation with statistical methods, resulting in the use of weighted 
indices to draw flood sensitivity maps. Among them, the common methods include Analytic Hierarchy Process 
(AHP)19–22, Frequency Ratio (FR)23,24, Weight Of Evidence (WOE)24,25, Logistic Regression (LR)23, weighting 
factor, etc. However, with the further development of machine learning, some newer methods have emerged 
and been applied to spatial modeling of flood sensitivity, and gratifying results have been obtained. At first, it 
was the application of a single algorithm. For instance, Artificial Neural Network (ANN)26–28, Support Vector 
Machine (SVM)29, Naive  Bayesian30, Random  Forest25, Decision  Tree31 and neuro-fuzzy  methods31, etc. Recently, 
in order to further improve the prediction accuracy of the model, a variety of mixed model methods have been 
 introduced32–34, for example Genetic Algorithm (GA)35, Particle Swarm Optimization (PSO)36, Biogeographic-
based Optimization (BBO), Bat Algorithm (BA)37, Ant Colony Optimization (ACO)38, Firefly Algorithm (FA)39, 
etc. Similarly, ANN has been combined with FA and Levenberg–Marquardt backpropagation algorithms to 
generate flood sensitivity  maps10. According to previous studies, deep learning algorithm models are superior 
to traditional models in multiple fields of  study40–42.

While advanced machine learning algorithms have been used to assess flood sensitivity, the classical LR model 
was still used. The reason is that LR has been proven to be effective for disaster sensitivity mapping. Moreover, 
LR has shown many advantages in data processing and result representation. For example, the independent vari-
ables in LR need not be normally distributed, and the result output of LR can be very effective in detecting the 
accuracy of sample data. Therefore, we believe that LR can meet the performance requirements of this study, such 
as prediction accuracy, ranking of impact factors, and probability estimation. In this paper, the super cities of 
Beijing is taken as an example. Under the background of urbanization, the flood sensitivity assessment is carried 
out based on GIS and LR, the importance of predictive variables is calculated, the model performance is verified 
by ROC curve, and flood sensitivity map is drawn, supplemented by flood observation records. Different from 
previous studies, most of them separate flash flood from waterlogging  separately43–45, but in fact, cities include 
both the central main urban area and the surrounding mountains and suburbs, especially the super cities with 
rapid development in recent years. Therefore, the novelty of the study is that the map of flood sensitivity covers 
flash floods and waterlogging, and the sensitivity assessment of flash flood and waterlogging as a whole is car-
ried out to explore the flood sensitivity under the joint effect of the two factors, because they are both important 
disaster contents of the super cities.

The study area and flood inventory map
The whole work is summarized by defining and drawing the working framework in the process of flood sensitiv-
ity analysis, including flood sensitivity map, flood predictor generation, flood sensitivity model modeling using 
Logistic Regression, model evaluation, etc. (Fig. 1).

The study area. Beijing, the capital of China, is located at 115.7°–117.4° E and 39.4°–41.6° N. The total area 
is 16,410  km2, of which the mountain area is 10,200  km2, accounting for 62% of the total, and the rest is plain. 
Urbanization has made the urban built-up area of Beijing grow from 109 square kilometers in 1949 to 1289.3 
 km2 in 2022, and it is still showing a trend of further expansion. The population of permanent residents of the 
city has reached 21.89 million, becoming China’s second largest city, the ninth in the world’s most populous 
city. The northwest of Beijing is mostly mountainous, and the southeast is mostly plain. Beijing is located in the 
northern part of the North China Plain, adjacent to the Bohai Bay, bounded by the Taihang Mountains to the 
west and Yanshan Mountains to the north and northeast, with an average elevation of 43.5 m. The vegetation 
type is mostly deciduous broad-leaved forest. The rock types in Beijing can be divided into loose sedimentary 
rocks and hard rocks (bedrock). The loose deposits are mainly distributed in the piedmont plain, and hard rocks 
are mainly exposed in the mountainous area, including magmatic rocks, metamorphic rocks and sedimentary 
rocks. The precipitation in Beijing is abundant and the seasonal distribution is not uniform. June, July, August 
concentrated 80% of the annual precipitation, it’s easy to have a small high strength heavy rain in July and 
August. The whole area of Beijing was selected as the research area of this paper. The built-up areas of Beijing 
have the most frequent waterlogging, especially the low-lying areas, sunken overpasses, underground passage-
ways, dilapidated buildings and construction sites. The surrounding suburban villages are close to mountains 
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and water systems, especially in flood season, where flash flood seriously affected the lives and property safety of 
villagers. As a representative of the world’s super cities, the analysis of flood sensitivity of Beijing is also of refer-
ence significance to the flood control planning of other super cities.

Flood inventory map. Flood inventory maps are a critical first step in sensitivity assessment. In this paper, 
we studied the flood events in the history of Beijing from 2012 to 2022 with severe disasters, especially focus-
ing on the rainstorm event in Beijing on July 21, 2012, which caused 79 deaths, collapsed 10,660 houses, 1.602 
million people were affected, and 11.64 billion yuan financial losses was caused. This is the worst rainstorm and 
flood disaster in Beijing and surrounding areas in 61  years46. The flood inventory map is based on information 
posted by various social media, local governments and municipal authorities, with a total of 260 flood disaster 
spots. Non-flood sites should also be considered when generating datasets, as flood sensitivity assessment is 
a binary classification  problem47. For purpose of ensuring the accuracy, 130 non-flood points were generated 
based on ARCGIS 10 randomly. 70% project randomly selected for training area, 30% of the projects selected 
randomly to test area. The flood points in the flood inventory were geolocated in the digital map using ARCGIS 
10.8, and the value was assigned as 1, indicating the presence of flood, no flooding points were set to 0. The 
scope of the main urban area of Beijing was identified from the Google satellite ground, and judged according 
to the text description and picture report of the flood disaster by social media, local government and municipal 
authorities. The areas with frequent waterlogging were basically marked with red lines (Fig. 2).

Methodology
Data sources. Land use remote sensing monitoring data, soil texture spatial distribution data of China, 
precipitation spatial interpolation data, and nighttime light data are all from the free data released on the 
Internet by the Resource and Environmental Science and Data Center, Institute of Geographic Sciences and 
Natural Resources Research, Chinese Academy of Sciences. The geographic elevation data were gained from 
ASTER GDEM database of Geospatial Data Cloud platform with a resolution of 30 m. The other predictors were 
obtained by using "raster calculator" in ARCGIS 10.8 toolbox on the basis of DEM data in the study area. Flood 
inventory were obtained from various social media, local governments and municipal authorities (Table 1).

Selection of flood predictors. Finding predictors for flood model construction is important and com-
plex. Scientific and reasonable selection of parameters is conducive to improving the accuracy of flood sensitivity 
map. Combined with previous literature, in this study, 12 flood predictors were used: DEM, slope, aspect, dis-
tance to rivers, TWI, SPI, STI, curvature, plan curvature, LULC, soil, and  rainfall45,48. The "resampling" toolbox 
in ARCGIS 10.8 was used to transform all the influencing factors into a 30 m spatial resolution raster format 
(Fig. 3).

Figure 1.  The working framework for flood sensitivity analysis.
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Figure 2.  Map of flood and non-flood locations (we plotted the map using arcgis10.7. http:// www. esri. com/ 
sofwa re/ arcgis).

Table 1.  Table of data use.

Data Format Resolution Time Source

Flood points Shape file Point data 2012–2022 Network news and publicity

Land use Raster file 1000 m 2020 https:// www. resdc. cn/ Defau lt. aspx

Soil Raster file 1000 m Background data https:// www. resdc. cn/ Defau lt. aspx

Rainfall Raster file 1000 m 2015 https:// www. resdc. cn/ Defau lt. aspx

DMSP-OLS night light data Raster file 2013 https:// www. resdc. cn/ Defau lt. aspx

DEM Raster file 30 m 2022 ASTER GDEM (http:// www. gsclo ud. cn)

http://www.esri.com/sofware/arcgis
http://www.esri.com/sofware/arcgis
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
http://www.gscloud.cn
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Figure 3.  Predictors: (a) Dem elevation, (b) slope, (c) aspect, (d) distance to rivers, (e) TWI, (f) SPI, (g) STI, 
(h) curvature, (i) plan curvature, (j) LULC, (k) soil, (l) rainfall (we plotted the map using arcgis10.7. http:// www. 
esri. com/ sofwa re/ arcgis).

http://www.esri.com/sofware/arcgis
http://www.esri.com/sofware/arcgis
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DEM elevation. Elevation is a key factor in whether or not a flood  occurs49–51. Physical meaning of using 
elevation is, the water is always under the influence of gravity shift from high to low altitude, so lower altitude 
increases the chances of flooding, and vice  versa52,53.

Slope. The speed at which the flood moves depends on the  slope54. Large slope will cause the decrease of soil 
water holding capacity and infiltration capacity, thus accelerating the velocity of runoff, and vice versa. As a 
result, areas with low and flat terrain will have more opportunities for flooding and greater flood  sensitivity55.

Aspect. Slope aspect influences the direction of flood movement while being able to maintain soil moisture, 
which indirectly affects the likelihood of  flooding56.

Distance to rivers. Distance to rivers is an important factor affecting flood  sensitivity57, on account of distance 
controls flood events and the flow of rivers into  rivers58. In a rainstorm event, when the river level rises, the sur-
rounding area is affected first, and the flood that overflows the embankment flows to different areas according to 
different slope directions. Therefore, the closer the distance to rivers, the more affected it is first, and the greater 
the flood  sensitivity59.

TWI. TWI is an indicator of the impact of topography on runoff flow direction and accumulation, which 
can effectively spatially express the differences in watershed  moisture60,61. TWI is the function of slope and the 
upstream contribution area, it helps to identify potential increase of regional rainfall runoff model, soil water 
content and water areas, according to the area every pixel size of the  water62. This is calculated using Eq. (1):

where SCA is the local upslope catchment that flows through the mesh cells, and Slope is the steepest outward 
slope per mesh cell, measured by drop/distance, the "tan" value of the slope angle.

SPI. SPI is usually used to describe the flow and erosion of a point on the surface. The increase of watershed 
area and slope will lead to the increase of water volume and flow velocity contributed by the upslope area, and the 
corresponding increase of SPI, thus increasing the risk of soil erosion. This is calculated using Eq. (2):

where SCA is the local upslope catchment that flows through the mesh cells, and Slope is the steepest outward 
slope per mesh cell, measured by drop/distance, the "tan" value of the slope angle.

STI. STI is a useful comprehensive topographic variable that characterizes the movement of water and sedi-
ment in a specific location. STI quantifies the location of a point in the landscape, which can increase the fre-
quency of flooding and lead to the damage of the  foundation63. The bed of a channel changes as sediment is 
deposited, reducing the capacity of the channel to hold water and leading to flooding. This is calculated using 
Eq. (3):

where SCA is the local upslope catchment that flows through the mesh cells, and Slope is the steepest outward 
slope per mesh cell, measured by drop/distance, the "tan" value of the slope angle.

Curvature. The magnitude of the curvature can be obtained by returning its radius value. Negative curva-
ture values indicate concavity, positive curvature values indicate convexity, and zero curvature values indicate 
 plane64,65. Curvature can influence the flood of water  balance37,66, areas with negative values are prone to flood-
ing, which is closely related to the convergence of runoff  process67.

Plan curvature. Plane curvature refers to the curvature of the curve at that point on the terrain surface, specific 
to any point, through the point horizontal plane cutting the terrain surface in the horizontal direction. The plane 
curvature describes the bending and change of the surface along the horizontal direction, which is the bending 
degree of the ground contour line at the point. It is the slope analysis again based on the result of slope aspect 
analysis of DEM data in the study area.

LULC. The surface runoff and sediment transport were affected by LULC by controlling surface runoff gen-
eration and infiltration, thus LULC directly affected flood  frequency68. Remote sensing data of land use in 2020 
were used in this study, which was generated by manual visual interpretation based on Landsat TM images of 
the United States. We also divided LULC into six categories: cultivated land, forest land, grassland, water, town, 
and unused land. Since LULC did not change much in the short term, LULC data of 2020 was considered to be 
available.

(1)TWI = ln

(

SCA

Slope

)

(2)SPI = ln(SCA*Slope)

(3)STI =

(

SCA

22.13

)0.6( sin (Slope)

0.0896

)1.3
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Soil. Soil properties directly affect rainfall runoff infiltration, and the higher the permeability, the lower the 
chance of  flooding69. The physical properties of the soil determine its water-holding capacity and also determine 
its ability to receive and drain water during rainfall events, indirectly affecting flood duration. The spatial distri-
bution data of soil properties used in this study are 1:1 million soil type map and soil profile data obtained from 
the second soil census, which are background data.

Rainfall. Rainfall is an important condition leading to the occurrence of  floods70. In this study, a spatially inter-
polated precipitation dataset in 2015 was used, which was located in the range of the time series studied. It was 
generated by collation, calculation and spatial interpolation processing based on daily observations from multi-
ple meteorological stations. Rainfall was interpolated using ANUSPLIN interpolation software from Australia. 
ANUSPLIN is a tool for analyzing and interpolating multivariate data by smoothing spline function, that is, a 
method of approximating surface by function, which can make reasonable statistical analysis and data diagnosis. 
The spatial distribution of data can also be analyzed and it can implement the function of spatial interpolation.

Flood sensitivity modeling. In the probability analysis of predicting floods, Logistic Regression model is 
commonly used to perform a calculus of the probability of a disaster when the dependent variable is  known71. 
In LR, considering that the conditional variable plays a leading role in determining the dependent variable, 
the effect of model fitting in the analysis becomes better as the number of independent conditional variables 
 increases72.

LR has been shown to be effective in disaster sensitivity mapping in previous studies and has demonstrated 
many advantages in data processing and result  representation73–75. For example, the independent variables in LR 
need not be normally distributed; The data type of the condition factor is not restricted; The result output of LR 
can be very effective in detecting the accuracy of the sample  data76. Therefore, it is considered that LR can meet 
our requirements for prediction accuracy, ranking of impact factors and performance of probability  estimation77.

Used for flood sensitivity analysis in this study, LR is designed to describe the dependent variable and inde-
pendent variable of the relationship between the best fitting  model24. The occurrence of flood was used as the 
dependent variable to indicate the presence (value 1) or absence (value 0) of flood, which was used together 
with GIS to predict the likelihood of future  floods78. Therefore, the Eq. (4) can be described as the correlation 
between flood occurrence and its  dependence79:

where, P is the probability of a flood. On the sigmoid curve line, the probabilities vary from 0 to 1, and Z is a 
linear combination. Thus, LR involves fitting Eq. (5) of the form:

where Z is the combined effect of the flood,  Xi (i = 1,2,……,n) are flood impact factors, β0 is the model intercept, 
and βi is the parameter of the LR  model80.

Results and discussions
Pearson correlation coefficient. In natural science, Pearson correlation coefficient is widely used to 
measure value between 1 to 1 between the two variables. This is calculated using Eq. (6):

where R represents the Pearson correlation coefficient between variables x and y, n is the number of variables x 
and y. Pearson correlation coefficient values corresponding to a specific level see Table 281.

In the flood sensitivity analysis, we generated a correlation matrix (Table 3) by Pearson correlation test to 
measure the correlation between independent variables (flood predictors). We expect the independent variables 
to be perfectly correlated with themselves, which means that the correlations between the variables are poor. 

(4)P =
1

1+ e−z
=
ez

1
+ ez

(5)Z = β0 + β0xz + β1x2 + · · · + βnxn

(6)R =

∑n
i=1 (Xi−

−

X )(Xi−
−

X )
√

∑n
i=1 (Xi−

−

X )
2
√

∑n
i=1 (Yi−

−

Y )
2

Table 2.  The Pearson correlation coefficient value (R) and corresponding correlation levels.

R Correlation levels

|R|= 0 Absence of correlation

0 <|R|< 0.2 Very weak correlation

0.2 <|R|< 0.4 Weak correlation

0.4 <|R|< 0.6 Medium correlation

0.6 <|R|< 0.8 Strong correlation

0.8 <|R|< 1 Very strong correlation

|R|= 1 Complete correlation
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The results of the test show that DEM and slope, LULC; Plan curvature and slope; slope and SPI; SPI and STI 
have moderate linear correlations, which may lead to the linear relationship between the other factors was weak.

Multicollinearity test. Multicollinearity means that there is a linear correlation between the independent 
variables of the regression  model82. If there are multiple collinearity, when calculating the independent variables 
the partial regression coefficient of β, matrix is irreversible, has led to the infinite solution or no solution of β83. 
The multicollinearity test is performed to rule out this hidden risk. In a test, if found in an LR model, two or 
more independent variables highly correlated, which means that a variable can be from other variables linear 
prediction. It is worth mentioning that even if multicollinearity occurs, it does not reduce the reliability and pre-
dictive the powerful features of the model; it only affects the estimates associated with a single predictor variable.

There are many ways to test for multicollinearity, such as tolerance (TOL), variance inflation factor (VIF, 
reciprocal of TOL), pairwise scatter plots and eigenvalues in correlation  matrices84. In the study, we use TOL and 
VIF to detect the multicollinearity (Table 4). VIF tests for multicollinearity by comparing the correlation of other 
explanatory variables with a given explanatory variable. VIF consists of a index, said the index calculation due 
to the multicollinearity and estimate the variance of the regression coefficient of how much more. The variance 
inflation factor can be calculated using Eqs. (7) and (8):

(7)VIF =
1

1− Ri
2

(8)TOL =
1

VIF

Table 3.  Pearson’s correlation matrix. **Correlation is significant at the 0.01 level (2-tailed). *Correlation is 
significant at the 0.05 level (2-tailed).

DEM elevation Distance to rivers Plan curvature Slope Aspect Curvature Rainfall SPI STI LULC SOIL TWI

DEM elevation 1

Distance to rivers 0.150** 1

Plan curvature − 0.351** 0.009 1

Slope 0.633** 0.109* − 0.600** 1

Aspect 0.012 0.055 0.030 0.054 1

Curvature 0.020 0.028 − 0.333** 0.397** 0.055 1

Rainfall 0.009 0.142** 0.106* − 0.119* 0.055 0.043 1

SPI 0.471** 0.001 − 0.343** 0.540** 0.076 0.155** 0.063 1

STI 0.216** − 0.136** 0.023 0.112* 0.051 0.081 0.004 0.576** 1

LULC − 0.554** 0.032 0.264** − 0.475** 0.021 0.028 0.102* − 0.339** −0. 153** 1

Soil −0. 377** 0.026 0.238** − 0.360** 0.025 0.093 0.071 − 0.253** 0.090 0.362** 1

TWI − 0.332** − 0.168** 0.319** − 0.569** 0.047 − 0.254** 0.071 0.048 0.302** 0.275** 0.279** 1

Table 4.  Multicollinearity analysis of predictors.

Unstandardized 
coefficients Standardized coefficients

t Sig.

Collinearity 
statistics

B Std. error Beta Tolerance VIF

(Constant) 7.259 1.284 5.655 0.000

DEM elevation 0.000 0.000 0.318 4.821 0.000 0.433 2.308

Distance to rivers 7.116 e−05 0.000 0.034 0.748 0.455 0.889 1.125

Plan curvature 1.683 e−05 0.001 0.001 0.015 0.988 0.616 1.624

Slope 0.010 0.003 0.254 2.915 0.004 0.248 4.036

Aspect 0.000 0.000 0.044 1.000 0.318 0.963 1.038

Curvature 0.036 0.029 0.062 1.216 0.225 0.720 1.390

Rainfall 0.001 0.000 0.246 5.486 0.000 0.940 1.064

SPI 0.015 0.013 0.074 1.108 0.268 0.419 2.387

STI 0.004 0.007 0.032 0.544 0.587 0.534 1.874

LULC 0.009 0.002 0.304 5.537 0.000 0.626 1.599

Soil 0.001 0.000 0.137 2.804 0.005 0.786 1.273

TWI 0.002 0.010 0.015 0.251 0.802 0.511 1.956
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Among them, the R is the negative correlation coefficient between the independent variables and the other 
independent variables in the regression analysis.

The possibility of collinearity among independent variables increases with the increase of VIF. Based on pre-
vious experience, when the VIF exceeds 10, it indicates that the regression model has severe multicollinearity. 
When the TOL is greater than 0.1, the range of VIF less than 10 is acceptable, shows that there exists no problem 
of collinearity among the independent variables. If the VIF is greater than 10, then the general linear model is 
not applicable and is usually remedied by dropping variables with large VIF or combining related variables into 
a single variable. Table 4 shows that the TOL values of all independent variables in this study were greater than 
0.1 and the VIF values were less than 10, which means that the VIF values of all independent variables did not 
have the problem of multicollinearity. Therefore, all of these variables were included in the LR and tested, as each 
variable could have an impact on flooding.

Logistic regression estimation. For LR, training model to estimate the Beta coefficient of the all the 
independent variables, and use it as the weight of each evaluation index. The results of LR analysis are shown 
in Table 5. “Wald” represents the Wald chi-square value, which can be used to test the significance level of each 
variable. “Sig.” reflects the significance probability. In the study, the Sig values of DEM (P = 4.084E−05), Slope 
(P = 0.008), Rainfall (P = 1.056E−05), LULC (P = 8.222E−07) and Soil (P = 0.006) were less than 0.05, which indi-
cated that these five predictors were statistically significant in the  LR85. A positive value of Beta indicates that the 
variable is proportional to the probability of flooding, and vice  versa86.

On the strength of the regression of all factors in Table 5, and according to Eq. (5), after removing the insig-
nificant factors, the LR Equation is represented by Eq. (9):

And then, substitute the z-value calculated above into Eq. (10) to calculate P:

That is, the occurrence of flood is mainly explained by DEM, Slope, Rainfall, LULC and Soil.

Interaction analysis. The true effect of one factor (the single effect) changes as the level of another factor 
changes. An interaction occurs when two or more exposure factors are present at the same time and the effect 
is not equal to the combined effect of their individual effects. The analysis of the interaction between the factors 
will help us to further understand the mechanism of their action on flood and their additive effect.

Interactions can be divided into additive interactions and multiplicative interactions There are two events, A 
and B, covering four categories: A−, A+, B− and B+.

In the additive interaction, If the relationship between A and B satisfies Eq. (11)

It indicates that there is no additive interaction between the two factors, where R is absolute risk (the same 
as below). If the relationship between A and B satisfies Eq. (12)

It indicates that there is a positive additive interaction between the two factors and vice versa.

(9)
Z = (−0.003× DEM Elevation)+

(

0.058× Slope
)

+ (−0.007× Rainfall)

+ (0.048× LULC)+ (0.006× Soil)+ 37.831

(10)

P =
1

1+ e−z
=

1

1+ e[(−0.003×DEM Elevation)+(0.058×Slope)+(−0.007×Rainfall)+(0.048×LULC)+(0.006×Soil)+37.831]

(11)RA+B+ − RA−B− = (RA+B− − RA−B−)+ (RA−B+ − RA−B−)

(12)RA+B+ − RA−B− > (RA+B− − RA−B−)+ (RA−B+ − RA−B−)

Table 5.  Parameter of model.

Beta S.E. Wald df Sig. Exp(B)

DEM elevation − 0.003 0.001 16.832 1 4.084e−05 0.997

Distance to rivers − 0.001 0.001 0.981 1 0.322 0.999

Plan curvature − 0.001 0.007 0.010 1 0.919 0.999

Slope 0.058 0.022 7.025 1 0.008 1.060

Aspect 0.001 0.001 1.278 1 0.258 1.001

Curvature − 0.209 0.184 1.278 1 0.258 0.812

Rainfall − 0.007 0.002 19.407 1 1.056e−05 0.993

SPI 0.103 0.085 1.476 1 0.224 1.108

STI 0.022 0.044 0.242 1 0.623 1.022

LULC 0.048 0.010 24.305 1 8.222e−07 1.049

Soil 0.006 0.002 7.653 1 0.006 1.006

TWI 0.015 0.062 0.060 1 0.806 1.015

(Constant) 37.831 8.929 17.952 1 2.265e−05 2.691 e+16
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In the multiplication interaction, If the relationship between A and B satisfies Eq. (13)

It shows that there is no multiplicative interaction between the two factors. If the relationship between A 
and B satisfies Eq. (14)

It indicates that the two factors have positive multiplication and interaction, and vice versa.
The index (RERI) evaluating the relative excess risk due to interaction is calculated with the Eq. (15) :

The attributable proportion due to interaction (AP) is calculated using Eq. (16):

the synergy index S calculated using Eq. (17)

When there is no additive interaction between the two factors, the confidence interval of RERI and AP 
should contain 0, and the confidence interval of S should contain 1. In the LR used in this study, the condition 
satisfies Eq. (18)

The separate effect of A is expressed by Eq. (19) and (20):

The separate effect of B is expressed by Eqs. (21) and (22):

The combined effect of A and B is expressed by Eqs. (23) and (24):

The evaluation multiplication interaction is calculated using Eqs. (25) and (26):

The evaluation additive interaction is calculated using Eqs. (27), (28) and (29):

(13)RA+B+/RA−B− = (RA+B−/RA−B−)× (RA−B+/RA−B−)

(14)RA+B+/RA−B− > (RA+B−/RA−B−)× (RA−B+/RA−B−)

(15)
RERI = (RA+B+/RA−B− − RA−B−/RA−B−)− (RA+B−/RA−B− − RA−B−/RA−B−)

− (RA−B+/RA−B− − RA−B−/RA−B−) = (RRA+B+ − 1)− (RRA+B− − 1)

− (RRA−B+ − 1) = RRA+B+ − RRA+B− − RRA−B+ + 1

(16)AP =
RERI

RRA+B+

(17)S =
RRA+B+ − 1

(RRA+B− − 1)+ (RRA−B+ − 1)

(18)logit
(

p
)

= ln

(

p

1− p

)

= ln(odds) = β0 + β1A+ β2B+ β3AB

(19)ln(oddsA+B−)− ln(oddsA−B−) = ln

(

oddsA+B−

oddsA−B−

)

= ln(ORA+B−) = β0 + β1 − β0 = β1

(20)ORA+B− = exp(β1)

(21)ln(oddsA−B+)− ln(oddsA−B−) = ln

(

oddsA−B+

oddsA−B−

)

= ln(ORA−B+) = β0 + β2 − β0 = β2

(22)ORA−B+ = exp(β2)

(23)

ln(oddsA+B+)−ln(oddsA−B−) = ln

(

oddsA+B+

oddsA−B−

)

= ln(ORA+B+) = β0+β1+β2+β3−β0 = β1+β2+β3

(24)ORA+B+ = exp(β1 + β2 + β3)

(25)RRA+B+/(RRA+B− × RRA−B+) = exp(β1 + β2 + β3)/(exp(β1)× exp(β2)) = exp(β3)

(26)

{

exp(β1 + β2 + β3) = exp(β1)× exp(β2),β3 = 0, No multiplication interaction
exp(β1 + β2 + β3) > exp(β1)× exp(β2),β3 > 0, Positive multiplication interaction
exp(β1 + β2 + β3) < exp(β1)× exp(β2),β3 < 0, Negative multiplication interaction

(27)RERI = RRA+B+ − RRA+B− − RRA−B+ + 1 = exp(β1 + β2 + β3)− exp(β1)− exp(β2)+ 1

(28)AP =
RERI

RRA+B+
=

exp(β1 + β2 + β3)− exp(β1)− exp(β2)+ 1

exp(β1 + β2 + β3)
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When at least one of the two factors is a protective factor, the low-risk category is generally used as a reference 
(or the high-risk category is used as exposure).

In the construction of LR model, five factors are selected according to their significance, namely, DEM, Slope, 
Rainfall, LULC and Soil. In order to further explore the interaction between these factors, the above factors 
are analyzed by additive interaction and multiplication interaction (Table 6). Since only two categories can be 
used in the analysis of additive interaction, DEM, Slope and Rainfall are divided into two categories of high and 
low rainfall according to median and average, in order to further strengthen the influence of urbanization and 
human disturbance on flood sensitivity, The LULC is combined into urban building land (recorded as 1 in the 
calculation) and non-urban land (recorded as 2), and the soil type is integrated into non-human soil (recorded 
as 1) and man-made soil (recorded as 2).

The results show that for product interaction, the individual effects of DEM, Slope and Rainfall are 0.475, 
0.809 and 0.512 respectively. Slope has a greater influence on flood sensitivity, followed by Rainfall and DEM. 
When man-made soil and non-man-made soil are considered comprehensively, the possibility of flood is much 
higher than that of urban land and non-urban land. For the interaction of various factors, the multiplicative 
interaction between DEM and Slope promotes the occurrence of flood, while the interaction between DEM and 
Rainfall, Slope and Rainfall, Soil and LULC is negative. For additive interactions, RERI, AP and S are calculated, 
and the results show that there is no additive interaction.

Validation of the susceptibility assessment results. During the flood sensitivity analysis to deter-
mine the future can be affected by the flood region is very important. In the study, LR were used to map flood 
sensitivity in a GIS environment (Fig. 4a)87. In order to verify the performance of the method, receiver operating 
characteristic (ROC) was used. The ROC model was developed based on graphs of true positive rates (sensitiv-
ity) versus false positive rates (1-specificity) with different cutoff points. The ROC curve was plotted by present-
ing the 1-specificity on the X-axis relative to the sensitivity on the Y-axis24,88. Where, sensitivity represents the 
total of pixels accurately divided into flood pixels, and 1-specificity represents several non-flood pixels. The AUC 
is measured by the area enclosed by the ROC curve (or broken line) and the horizontal axis, which was used as 
the evaluation criterion of the  model89. The AUC can be calculated by Eq. (30):

where, P and N represent the number of floods and non-floods, respectively. TP (true positive) and TN (true 
negative) indicate the number of pixels correctly classified. We consider AUC varying between 0.5 and 0.6 is a 
bad model. A range between 0.6 and 0.7 also indicates poor model performance, a range between 0.7 and 0.8 
indicates medium model performance, and a value greater than 0.8 indicates very good model  performance90. 
In this study, P = 260, T = 130, after learning and training of the model, the TP = 76, TN = 236, that is, 236 of the 
260 actual flood points were predicted correctly, 24 were predicted incorrectly, and the prediction accuracy 
rate reached 90.8%. Of the 130 non-flood points, 76 were predicted correctly, and 54 were predicted incorrectly 
(Table 7). The comprehensive prediction accuracy of the model is 81%, which is represented by the lower surface 
surrounded by the product blue polyline in the ROC curve (Fig. 5). Based on this, we believe that the model has 
good prediction ability, but the prediction of non-flood points is still insufficient. The model overestimates the 
possibility of flood occurrence, which will lead to the government making unnecessary financial investment in 
flood control measures, but overestimating flood sensitivity has a higher guarantee for people’s safety.

Relationship between floods and susceptible areas. We classified flood sensitivity maps into five cat-
egories based on the natural breaks: very low (0–0.13), low (0.13–0.30), medium (0.30–0.48), high (0.48–0.65) 
and very high (0.65–1). Accounting for 29.49%, 27.70%, 15.36%, 14.38% and 13.06% of the study area, respec-
tively. The very low, low and medium sensitive areas accounted for 72.56% of the total area, including 30.74% 

(29)S =
RRA+B+ − 1

(RRA+B− − 1)− (RRA−B+ − 1)
=

exp(β1 + β2 + β3)− 1

[exp(β1)− 1] + [exp(β2)− 1]

(30)AUC =

∑

TP+
∑

PN

P+N

Table 6.  Analysis of interaction results.

Individual effect Common effect Additive interaction Multiplicative interaction

DEM 0.475

Slope 0.809

Rainfall 0.512

Soil 26.27

LULC 0.234

DEM*slope 0.537 Positive multiplicative interaction

DEM*rainfall 0.234 Negative multiplicative interaction

Slpoe*rainfall 0.264 Negative multiplicative interaction

Soil*LULC 0.01 Negative multiplicative interaction
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Figure 4.  (a) Flood sensitivity map; (b) urbanization degree map (according to night light dataset) (we plotted 
the map using arcgis10.7. http:// www. esri. com/ sofwa re/ arcgis).

Table 7.  Parameter of model.

Predicted flood

0 1 Percentage correction (%)

Actual flood
0 76 54 58.5

1 24 236 90.8

Total percentage 81.0

Figure 5.  AUC value of the models for calibration and ROC curve.

http://www.esri.com/sofware/arcgis
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of the flood disaster points in the area of this study, and 27.44% of the areas were high and extremely high to 
flood disaster, including 70.43% of the flood disaster points (Table 8), indicating that the flood in these areas 
was densely distributed and highly sensitive. The model has a good degree of fitting and is consistent with the 
actual situation.

The flood sensitivity map showed that the flood risk was highest in build-up areas of the study area. In addi-
tion, the northeast, north and southwest of Beijing are also at high risk of flooding. The lowest risk in the west. 
Through the comparison and analysis with the above 12 flood impact factors (Fig. 3), although there is relatively 
abundant precipitation in the west, but the region is mostly mountainous, with high altitude, which is not prone 
to flood disasters, and the aspect of the region is mainly northwest. Even if a flash flood does occur, it will travel 
northwest, away from the main urban area. Elevation and aspect are inversely correlated with the contribution 
of rainfall to the sensitivity, which may inhibit the positive effect of precipitation on the sensitivity to flood.

Discussion
Accurate estimates of flood sensitivity are key to keeping people safe and developing effective mitigation meas-
ures. However, many factors control the development of flooding, it can never be fully predicted. Therefore, we 
suggest that flood sensitivity assessment should be carried out for each city, and preparations should be made in 
advance in flood prone areas to deal with possible future  emergencies91. Similarly, select the appropriate evalu-
ation indexes, the perfect forecasting model, improve the accuracy of the susceptibility evaluation result is very 
important. Through the literature, a growing number of single machine learning algorithms, integrated hybrid 
algorithm used for flood sensitivity modeling, this study still use the traditional LR and combined with the GIS 
and RS, and obtained better performance verification, simple and efficient, which can help managers make deci-
sions on flood control and megacity development. Table 9 shows the flood impact factors and variable categories. 
Among the 12 factors in total, five factors with significance less than 0.05 were selected as the model parameters 
by Pearson correlation coefficient test, multicollinearity test and other steps: DEM, Slope, Rainfall, LULC and 
Soil. This is not the same as the previous research results, because we integrate flash floods and waterlogging into 
a whole for research. Both them are natural disasters faced by super cities, so the flood inventory drawn in this 
study covers both. The result of analysis is the flood sensitivity of super cities under the combined effects of flash 
flood and waterlogging. The flood sensitivity map and Table 9 can clearly reflect the occurrence of floods in dif-
ferent values/categories of each factor, and the flood hazard density can be used to assess the flood susceptibility.

For the five factors with significance less than 0.05: (1) the flood disaster density at the lower elevation 
(4–180 m) is high, which is mainly concentrated in the build-up area and low-lying valley. In a rainstorm event, 
the water flow at the upper level quickly gathers and rushes to the lower level, and a large number of flowing 
water from the upstream leads to the rapid rise of the water level and velocity at the downstream, which is the 
generation of flash flood. In addition, cement and asphalt with poor permeability serve as the underlying sur-
face, which makes the water infiltration speed slow, and the upstream water and rainfall accumulate in the low-
lying areas, which is the occurrence of waterlogging. (2) More floods occur when the slope is gentle (0°–6.22°, 
6.22°–15.11°), which is mainly because waterlogging occurs in flat areas with depressions. When the slope is 
steep, floods occur in each value range, and the flood disaster density is basically the same. (3) Rainfall is basically 
proportional to flood disaster density, but less floods occur in areas with the most rainfall (583.86–594.54 ml, 
594.54–628.42 ml). This may be because we are not comprehensive enough in drawing the flood inventory map 
or under the comprehensive influence of other factors. These areas are less prone to flooding even with high 
rainfall, or are surrounded by multiple mountain ranges that impede atmospheric circulation. (4) For LULC, 
the most prominent is that there are more flood disasters in the main urban area, and the flood disaster density 
is 30.64, followed by woodland, grassland and water area, and the flood disaster density is 7.05, 6.99 and 6.83, 
respectively. (5) The influence of soil on flood also reflected that the flood disaster density was high in the built-
up area, and the underlying surface was mainly cement and asphalt, followed by paddy soil. Paddy soil is one 
of the most important tillage soils in China. The above findings also remind us that we should always pay great 
attention to the main urban areas. Discussion on the interaction of various factors, For the same DEM, a larger 

Table 8.  Relationship between number of floods and level of susceptible areas.

Susceptibility 
level Number of floods Flood ratio (%)

Partition area 
 (km2)

Partition ratio 
(%)

Flood disaster 
density (1000 
 km2)

Flood suscepti-
bility

Very low 19 7.39 4839.38 29.49 3.93

Low 21 8.17 4546.03 27.70 4.62

Moderate 39 15.18 2521.27 15.36 15.47

High 72 28.02 2359.45 14.38 30.52

Very high 109 42.41 2143.87 13.06 50.84

Urbanization

Very low 49 18.85 6589.49 40.16 7.44

Low 28 10.77 3104.88 18.92 9.02

Moderate 15 5.77 1978.16 12.05 7.58

High 3 1.15 1422.36 8.67 2.11

Very high 165 63.46 3315.11 20.20 49.77
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Slope reduces the likelihood of flooding, and for the same Slope, a higher DEM reduces the likelihood of flood-
ing. This is because waterlogging occurs more in the study area, the urban terrain is flat, the elevation is low, the 
slope is small, and the drainage capacity is poor, which is easy to waterlog disaster. For the same DEM or Slope, 
more abundant rainfall reduces the possibility of flood, which is different from our previous cognition. However, 
according to the analysis in Fig. 3l, the precipitation distribution in the study area has obvious spatial limits, and 
the areas with heavy rainfall are all distributed in mountainous areas. This may be due to the heat island effect 
caused by supercities and the extensive vegetation in mountainous areas, which increases local water vapor 
content and thus local rainfall. Therefore, less precipitation brings more flooding disasters in low-lying urban 
areas than in mountainous areas. In the range of non-human soil, the flood disaster of non-urban land is low, 
the flood disaster of urban land is high, and vice versa.

According to the common sense, the density and use of lighting facilities can reflect the prosperity of the area. 
Therefore, light intensity and light density reflected by night light data can reflect the degree of urbanization 

Table 9.  Flood conditioning factors and variable classes. a State the final parameter in the LR model.

Factor Classification Number of floods Flood ratio (%)
Partition area 
 (km2)

Partition ratio 
(%)

Flood disaster 
density (1000 
 km2)

DEMa (m)

4–180 118 64.48 7358.43 44.84 16.04

180–438 32 17.49 2601.04 15.85 12.30

438–714 24 13.11 3461.97 21.10 6.93

714–1068 8 4.37 2321.99 14.15 3.45

1068–2298 1 0.55 666.57 4.06 1.50

Slopea (degree)

0–6.22 91 49.73 7059.37 43.02 12.89

6.22–15.11 46 25.14 3074.03 18.73 14.96

12.11–24.59 20 10.93 2787.24 16.98 7.18

24.69–34.96 17 9.29 2390.47 14.57 7.11

34.96–75.56 9 4.92 1098.89 6.70 8.19

LULCa

Cultivated land 10 5.46 3625.63 22.09 2.76

Forest land 53 28.96 7516.65 45.81 7.05

Grassland 9 4.92 1287.47 7.85 6.99

Water area 3 1.64 439.54 2.68 6.83

Town 108 59.02 3524.72 21.48 30.64

Unused 0 0.00 15.98 0.10 0.00

Soila

Brown soil 3 1.64 1400.73 8.54 2.14

Cinnamon 96 52.46 9701.69 59.12 9.90

Newly accumu-
lated soil 0 0.00 14.00 0.09 0.00

Aeolian soil 0 0.00 14.97 0.09 0.00

Rocky soil 0 0.00 63.39 0.39 0.00

Coarse bone soil 6 3.28 1026.68 6.26 5.84

Black soil 0 0.00 49.87 0.30 0.00

Moutain meadow 
soil 0 0.00 12.08 0.07 0.00

Tidal soil 42 22.95 3739.37 22.79 11.23

Paddy soil 3 1.64 53.28 0.32 56.30

Town 31 16.94 184.72 1.13 167.82

Water 2 1.09 149.24 0.91 13.40

Rainfalla (ml)

534.52–563.61 16 8.74 1481.51 9.03 10.80

563.61–574.65 51 27.87 4438.95 27.05 11.49

574.65–583.86 114 62.30 7645.86 46.59 14.91

583.86–594.54 2 1.09 2058.94 12.55 0.97

594.54–628.42 0 0.00 784.73 4.78 0.00

Distance to rivers 
(M)

0–5187.96 36 19.67 4667.34 28.44 7.71

5187.96–10,894.73 53 28.96 4533.97 27.63 11.69

10,894.73–
17,120.29 46 25.14 3778.35 23.02 12.17

17,120.29–
24,729.31 48 26.23 2421.99 14.76 19.82

24,729.31–
44,097.72 0 0.00 1008.35 6.14 0.00
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and the distribution of population density. By using the natural discontinuous point method, we divided the 
obtained and processed night light data into five categories, and counted the flood disaster densities of different 
degrees of urbanization in Fig. 4b and Table 6. By comparing the images and statistical tables, we can find that 
the flood disaster density in the very high area is the highest in both the urbanization degree and the flood sen-
sitivity degree, and far exceeds other levels. In the Logistic regional estimation, we found a relatively abnormal 
result. The previous research showed that "the closer to the river, the greater the flood sensitivity". In this study, 
although "distance to rivers" is not a significant influencing factor, it is negatively related to flood sensitivity, 
which seems to be contrary to common sense. We believe that the reason for this result may be that there are 
more waterlogging disasters within the time series studied. There are fewer rivers in the main urban area, and 
they are usually subject to the flood control treatment of heightening dikes, so it is not easy to flood due to the 
rise of river water level. Therefore, the results of this study appear.

The more urbanized the region, the greater the risk of flood. The development of super cities shows a trend 
of radiating and expanding from the city center to the outside, and finally realizing the overall urbanization. The 
flood sensitivity of each region also increases. Therefore, we should always pay attention to the regions where 
floods may occur in the future.

Compared with other machine learning algorithms, LR model has the following disadvantages: (1) When the 
feature space is large, the performance of logistic regression is not very good. (2) Can not handle a large number 
of multi-class features or variables well. (3) For nonlinear features, transformation is required. (4) Compared 
with the more complex model, the training effect is poor. Even so, due to the fast training speed of LR model 
and the good interpretability of model, users do not have to worry about whether the features of data are related 
as in naive Bayes. Compared with decision tree and SVM, it can also get a better probability interpretation, and 
can easily use new data to update the model and a series of advantages. In addition, from the perspective of 
practicability, this study chooses this model for prediction analysis, and the results also show that it has satisfac-
tory prediction ability.

In my opinion, there are still the following deficiencies in our study which deserve further improvement: (1) 
We used free low-resolution datasets in the acquisition of LULC, Soil and Rainfall predictors. Although they 
were resampled, they still had an impact on the accuracy of prediction results. In the following study, higher 
precision datasets can be used. (2) Due to insufficient data acquisition, the 260 flood points used in this study 
could not cover all the floods in the 10-year time series in a large study area, which may have an impact on the 
significance of the predictors. (3) Future studies should be conducted with higher precision in areas with high 
susceptibility to provide more convincing opinions to policy makers.

Conclusion
Identification of flood-prone areas is indispensable for watershed and land administration, especially for the 
protection of people’s property and life safety. After identifying flood-prone areas, both managers and people 
living in high-risk areas should be vigilant during the rainy season and pay attention to possible flood  disasters92. 
In the study, RS were used to identify areas susceptible to flooding in GIS environment by LR model, and a flood 
sensitivity map of Beijing was created. The 260 flood points used in this study included 130 flash flood points 
and 160 waterlogging points, and flash flood and waterlogging were taken as a whole for sensitivity assessment. 
Flood points are randomly subdivided into two parts, one for training points (70%) and one for model building 
and testing (30%)92,93. Pearson test, multicollinearity test and other steps were then performed to ensure that the 
factors plugged into the model were valid. Finally, AUC was used to evaluate the performance of the model. We 
use the LR model of one big advantage of this method is easy to understand, don’t need any specific software or 
complicated programs. The main conclusions of our research summarized below:

1. DEM, Slope, Rainfall, LULC and Soil were significant at 95% confidence interval, which greatly influenced 
the occurrence of flood. Under the separate action of each factor, Slope has a greater influence on flood sen-
sitivity, followed by Rainfall and DEM. There is no additive interaction among the above forecasting factors 
that have significant influence on flood; the multiplicative interaction between DEM and Slope promotes 
the occurrence of flood, while there is negative interaction between DEM and Rainfall,Slope and Rainfall, 
Soil and LULC.

2. The AUC value is greater than 0.8, and the model is considered to have good predictability. The reliability of 
LR model is proved again through this research.

3. The proportion of high risk and extremely high risk areas was 27.44%, including 70.43% of the flood events, 
which were mainly distributed in urban areas with a high degree of urbanization, indicating that flood haz-
ards are densely distributed in these areas and are highly sensitive.

4. No matter in terms of urbanization degree or flood sensitivity degree, the flood disaster density in the very 
high region is the highest, which is 49.77 and 50.84 respectively, and far exceeds other grades. This also 
indicates that super cities will face higher and higher flood risks in the process of radiating outward from 
the main urban area as the center, and disaster prevention and control should be done well in the urban 
construction.

There will be more and more super cities around the world. The conclusion of this study wants to show that 
in the process of super cities reconstruction and construction, we should keep a high alert to potential flood 
disasters, pay attention to disaster prevention and control, and strengthen the deployment of drainage, waterlog-
ging and flood fighting, so as to escort urban development and people’s safety.
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Data availability
The data that support the findings of this study are openly available in [Resource and Environmental Science 
and Data Center] at [https:// www. resdc. cn/ Defau lt. aspx].
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