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A low cost neuromorphic 
learning engine based on a high 
performance supervised SNN 
learning algorithm
Ali Siddique *, Mang I. Vai  & Sio Hang Pun 

Spiking neural networks (SNNs) are more energy- and resource-efficient than artificial neural networks 
(ANNs). However, supervised SNN learning is a challenging task due to non-differentiability of spikes 
and computation of complex terms. Moreover, the design of SNN learning engines is not an easy task 
due to limited hardware resources and tight energy constraints. In this article, a novel hardware-
efficient SNN back-propagation scheme that offers fast convergence is proposed. The learning scheme 
does not require any complex operation such as error normalization and weight-threshold balancing, 
and can achieve an accuracy of around 97.5% on MNIST dataset using only 158,800 synapses. The 
multiplier-less inference engine trained using the proposed hard sigmoid SNN training (HaSiST) 
scheme can operate at a frequency of 135 MHz and consumes only 1.03 slice registers per synapse, 
2.8 slice look-up tables, and can infer about 0.03×10

9 features in a second, equivalent to 9.44 giga 
synaptic operations per second (GSOPS). The article also presents a high-speed, cost-efficient SNN 
training engine that consumes only 2.63 slice registers per synapse, 37.84 slice look-up tables per 
synapse, and can operate at a maximum computational frequency of around 50 MHz on a Virtex 6 
FPGA.

Artificial neural networks (ANNs) have successfully been used to solve various modern world problems such 
as facial recognition, health monitoring, and speech  recognition1,2. However, ANNs are extremely complex and 
consume a large amount of system energy. This is the motivation behind the development of chips and systems 
based on spiking neural networks (SNNs), the third-generation neural networks capable of performing com-
plex tasks while consuming a very small amount of energy and  area2–5. SNNs mimic biological neural networks 
that are asynchronous in nature and do not perform any operation unless an event occurs. This event-driven 
behavior makes SNNs suitable for low-energy  operation6,7. Moreover, since carefully-designed SNNs do not 
require complex synaptic operations, they can help reduce cost/area of a system. Here, cost is defined as the 
amount of resources occupied on a field programmable gate arrays (FPGAs) or application-specific integrated 
circuits (ASICs).

Though SNN inference is way more energy- and cost-efficient than ANN inference, SNN learning is extremely 
slow and costly. Von-Neumann architectures are, therefore, unsuitable for SNN  training3. Since graphic pro-
cessing units (GPUs), general-purpose computers (GPCs) and other such serial processors are unsuitable for 
SNN acceleration, many researchers have developed high-throughput and energy-efficient SNN processors. One 
such example is TrueNorth that consumes only 65 mW for processing extremely complex tasks such as facial 
 recognition3.  Loihi8 and  SpiNNaker5 are two other examples of neuromorphic processors.

Despite the cost- and energy- efficiency of SNNs, SNN training remains a challenging task due to non-
differentiability of  spikes9. Though many SNN training algorithms have been proposed in the literature, most of 
them are devised only for Von-Neumann systems and are not suitable for dedicated hardware such as FPGAs and 
ASICs. This is because most of these algorithms involve complex calculations that are quite hard to perform on 
dedicated architectures. Moreover, these algorithms are generally unsupervised and are based on spike timing, 
because of which they yield poor accuracy and cannot work for ultra-large networks. Typical examples are spike 
timing dependent plasticity (STDP), spatio-temporal backpropagation (STBP), SpikeProp and  Tempotron9–12. 
Therefore, there is an urgent need to devise highly-accurate, hardware-friendly supervised learning algorithms 
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for SNNs. These algorithms must be suitable for on-chip learning. Not only the algorithms, but the development 
of efficient hardware SNN engines capable of online learning is the need of the hour.

Main contributions. This paper presents a novel backpropagation-based training algorithm for SNNs, 
and a low-cost, high-throughput, hardware-based SNN engine (which uses the proposed algorithm) capable of 
online learning. The proposed design has been described in Verilog language at the register-transfer level (RTL). 
The main contributions of this work are as follows: 

1. Development of a novel hard-sigmoid-based SNN training (HaSiST) algorithm based on backpropagation. 
The algorithm is suitable for hardware implementations since it does not require any complex mathematical 
operations. The algorithm can be implemented on a chip using a few multipliers and adders. 

(a) HaSiST requires a much smaller time to train SNNs than ReLU-based SNN backpropagation. This is 
because both hard sigmoid and SNN activation function are sigmoidal in nature and are inter-con-
vertible. The hard sigmoid can easily be converted into a threshold function, by simply maneuvering 
its steepness. The SNNs trained using rectified linear unit (ReLU), on the other hand, requires a much 
longer time to accumulate voltage and to match the original ANN in performance. Since the proposed 
learning scheme ‘HaSiST’ does not require a long training time, the overall energy consumption of 
the system is significantly reduced.

(b) HaSiST does not require weight-threshold balancing, which is a necessary component of typical 
ReLU-based SNN backpropagation  algorithms13,14. It does not require error normalization, regu-
larization and/or threshold normalization. Since HaSiST does not require such costly operations, it 
is easy to use for SNN training and is quite suitable for hardware implementations.

(c) Hard Sigmoid can be used even at the output layer without losing accuracy and is quite cheap. ReLU-
Softmax schemes such  as14 use Softmax at the output layer, which is quite costly. ReLU cannot be 
used at the output layer since ReLU completely cancels out the negative input region and causes the 
accuracy to degrade. The proposed scheme HaSiST gives good accuracy while being cost-efficient.

2. An asynchronous and event-driven SNN inference engine trained using HaSiST. The engine can process 
0.03× 109 features per second while being extremely cheap.

3. A low-cost online learning engine that uses HaSiST for SNN training. The system processes hidden layers 
serially in order to reduce cost. However, in order to achieve reasonable throughput, the system processes 
output neurons in parallel. Moreover, the train-while-constrain approach stops overflow/underflow of the 
intermediate data during the training process, and hence the system cost does not cross a suitable limit.

4. The proposed online learning engine can train both ANNs and SNNs. This is because it uses Hard Sigmoid 
(HaSi), which is an ANN activation function. The system can perform both ANN and SNN inference, 
depending on the user’s choice. For SNN inference, all the system has to do is to convert hard sigmoid (HaSi) 
into a hard threshold.

Related work and problem definition
Since the proposed scheme HaSiST deals with both algorithm and architecture, we divide our study into these 
two major parts. We first review various modern SNN training algorithms along-with their merits and demerits. 
Then, we discuss various neuromorphic hardware designs based on SNNs.

SNN training algorithms. In recent years, many SNN training algorithms have been proposed in the 
literature. Most prominent training paradigms from the algorithm side are: spike timing dependent plasticity 
(STDP), direct training, temporal backpropagation, and ANN-to-SNN conversion.

STDP-based schemes. The most traditional method of SNN training is ‘spike timing dependent plasticity 
(STDP)’ in which the learning takes place on the basis of spike timing between two connected  neurons10,15. 
The method is unsupervised in nature, and hence yields low accuracy on typical real-world applications such 
as digit classification. For such applications, SNN backpropagation yields far higher accuracy than STDP even 
with a very small network size. Even to achieve a reasonable level of accuracy on moderately large datasets such 
as MNIST, the STDP requires tens of millions of synapses. Typical example  is16 in which the STDP-trained 
SNN achieves only 95% accuracy on MNIST dataset inspite of employing more than 5 millions synapses. Other 
examples  include17–20. Not only that, STDP is a complex algorithm that requires a long time to train SNNs and 
contains a lot of costly operations. STDP requires a lot of exponential terms and multiplications which make it 
harder to implement.

The training time of an SNN is dominated by the network size, number of time steps, parameter initialization, 
number of epochs (1 epoch contains multiple time steps), and the training algorithm. As mentioned earlier, the 
network size in STDP has to be kept extremely large in order to achieve a reasonable accuracy, as  in16. On the 
other hand, the work  in21 requires only 268,800 synapses and easily achieves about 98.7% accuracy since it is 
based on SNN backpropagation. The STDP is also used in reinforcement learning (RL), where it suffers from 
similar problems. As demonstrated  in22  and23, even for extremely simple networks, the learning accuracy is in 
the range of 80% to 90%. The accuracy will definitely degrade for larger networks.

Moreover, the number of time steps required to train an STDP network are generally around 100. For 
 example24, requires 700 time steps and achieves only 92.63% accuracy on MNIST with more than 700,000 



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6280  | https://doi.org/10.1038/s41598-023-32120-7

www.nature.com/scientificreports/

synapses.  Similarly25, requires 100 time steps to train an SNN having 130 synapses. The work  in16 is a similar 
example. SNN backpropagation, on the other hand, requires fewer time steps and yields higher accuracy. The 
work  in21 is a typical example; the system can reach 99.4% accuracy in just 8 time steps.

Recently, though some researchers have developed hardware-efficient STDP systems, none of them is able to 
compete with hardware SNNs trained using backpropagation (BP). Some of the examples are given  in19,20,25,26. 
 In26, the authors present a hardware SNN processor that achieves only 93% accuracy on MNIST inspite of using 
301,056 synapses. The algorithm relies on input truncation and linear STDP that can be implemented easily on 
hardware. The works  in19,20 achieve less than 94% accuracy on MNIST inspite of employing 647,000 synapses.

Some researchers have also proposed using backpropagation (BP) in conjunction with STDP. In this way, 
local learning can be combined with supervision to achieve higher accuracy. For  example27, the authors apply 
BP in every time step. The scheme achieves 97.20% accuracy on MNIST using 468,000 synapses in 1200 epochs, 
each having tens of time steps. A similar example is given  in28, where convolutional layers generate feature maps, 
resulting in thousands of spiking neurons in the first layer. The system may also use a second convolutional 
layer to improve accuracy. The second layer is followed by an SNN having 1500 neurons in the first layer and 
10 neurons in the second one. All these neurons are equipped with BP and STDP to achieve high accuracy. The 
network  in28 achieves 98.6% accuracy after training for 100s of iterations and multiple time steps. The works 
 in29  and30 use 100s of feature maps in the first layer followed by a hidden layer having hundreds of neurons. 
The scheme is unsupervised in nature, and uses a lot of exponential and multiplication elements. The scheme 
also uses a winner-takes-all (WTA) in the feature discovery layer (last).  In29, after 20 time steps and 10 training 
iterations, the scheme successfully achieves around 98.36% accuracy.

To summarize, the poor hardware efficiency inherent in STDP can be attributed to the following: STDP 
requires way more synapses than BP to achieve a reasonable accuracy; STDP requires more time to train SNNs; 
STDP requires complex computations. This is why hardware systems based on STDP can neither yield high 
accuracy, nor are power- or area- efficient.

Backpropagation-based direct training schemes. Direct training relies on the use of step function in the forward 
pass and generally uses surrogate gradient in the backward pass. This is because the exact gradient of the step 
function is the ‘dirac delta’ function that cannot be used for backpropagation. Typical examples  are4,9,21.

Though direct training methods that include temporal information for training SNNs (such as  STBP9, Spike 
Train-Level  BP31, and Temporal Spike Sequence Learning (TSSL)32) achieve high accuracy, their training cost is 
high because the method is similar to the one used in recurrent neural networks (RNNs) and cannot extend to 
complex network infrastructures like VGG-16 and ResNet-2033 if high hardware efficiency is required.

A typical example is that  of34, where the researchers use a 38-layer ResNet. The scheme uses batch normaliza-
tion through time (BNTT), instead of simple batchnorm to improve performance. With 20 time steps and tens of 
epochs, the system achieves only 92.8% accuracy on CIFAR-10 dataset. The scheme is so complex that it is not 
appropriate even for hardware-based inference engines, let alone online learning engines.

Similarly, the authors  in35 admit that direct training schemes are generally not at par with convolutional 
networks. In order to mitigate the performance degradation, the authors  in35 propose a direct training scheme 
that uses an extremely complex gradient function. Since the gradient function uses a large number of multiplica-
tions and one division, it is unsuitable for hardware implementations. The accuracy achieved with 8 time steps 
is 70.2% on CIFAR-10 DVS dataset.

There are several reasons to believe that direct training might not be hardware efficient. One epoch in SNNs 
is composed of multiple time steps and direct training generally requires an SNN to be unrolled in both space 
and time, such as  in9. To the best of our knowledge, the only exception to this rule is demonstrated  in21, where 
the time steps are independent but the network is trained using direct training with high accuracy.

Another disadvantage of direct training is that the systems using this method can be used to train SNNs only, 
unlike ANN-to-SNN conversion methods. This is because the inference part in all these systems allows spikes 
only. The online learning systems that use ANN-to-SNN conversion, on the other hand, contain computational 
engines for both the ANN functions and spikes. Moreover, direct training is not suitable for (online) on-chip 
learning, since the method is extremely complex and requires an enormously large number of multipliers, divid-
ers, storage and exponential elements. The SNN training methods proposed  in9,11 suffer from similar problems. 
Therefore, online systems that rely on ANN-to-SNN conversion can be used to train both ANNs and SNNs. 
Based on all these facts, one may conclude that direct training schemes should be studied carefully before their 
implementation on hardware.

Supervised, temporal learning. Supervised temporal learning schemes generally rely on the use of firing times 
of output neurons to perform classification. Tempotron is a famous algorithm that uses the time-to-first-spike to 
classify input  samples12. The algorithm is supervised and hence, more accurate than STDP. However, Tempotron 
is suitable only for binary classification and cannot be used for multi-class classification. An important hardware 
system that uses Tempotron for online learning is given  in36.

In37, the authors present a supervised temporal BP method for SNN training. The algorithm uses alpha 
post-synaptic potential (PSP) function to backpropagate (adjust weights) in such a way that the firing times get 
adjusted properly. Then, at the output side, the neuron that spikes first corresponds to the classified output. For 
BP, the algorithm uses Lambert function that is quite complex. In fact, the whole scheme uses a lot of exponen-
tials, dividers, multipliers, etc. that make the algorithm hardware-inefficient and unsuitable for on-chip learning. 
Moreover, the scheme requires hundreds of time-steps to train. For inference-only systems, the algorithm works 
fine since it gives an accuracy of around 97.96% for about 269,960 synapses.
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The authors  in38 present a supervised method of SNN training, which they refer to as SpiFoG. The SpiFoG 
uses evolutionary optimization to train synapses by introducing random synaptic delays. The scheme uses hybrid 
crossover method for faster convergence.

In39, the authors present a supervised, temporal BP method. The researchers highlight a unique problem 
facing SNN training based on alpha PSP function. According to the authors  in39, alpha PSP function results in 
a lot of dead neurons due to its leaky nature. Not only that, since the peak of alpha function is constant, it can 
cause gradients to explode in the proposed learning scheme. In order to resolve exploding and vanishing gra-
dient issues, the authors proposed a new PSP function ReL-PSP that uses ReLU function for spiking neurons. 
Since ReLU does not leak, it directly solves the dead neuron problem to a great extent. The number of time steps 
they set for training is around 100. The network they use for performance evaluation (on MNIST) has 317,600 
synapses and yields around 98.1% accuracy. The learning scheme does not require complex threshold balancing 
or regularization of any kind. They train their network off the chip and then perform inference on a popular 
pre-designed neuromorphic platform YOSO to prove that their scheme is energy efficient. In spite of all these 
claims, the algorithm is not suitable for on-chip SNN training since it requires extremely complex dividers and 
other computational elements.

ANN-to-SNN conversion schemes. In ANN-to-SNN conversion schemes, a network is first trained in the ANN 
domain and the trained network is then converted into an SNN. Though the conversion process results in a 
slight loss, this approach is extremely beneficial because ANN training schemes are very mature and yield high 
accuracy. Moreover, this approach is suitable for ultra-large networks since it is not as complex as direct training. 
Important examples from this domain  include13,14,40,41.

In14, the training scheme is based on ANN-to-SNN conversion. The researchers use ReLU at all the hidden 
layers of a network, and Softmax at the output layer. The rationale behind this approach is that ReLU resembles 
the input-frequency (IF) curve of a leaky integrate and fire (LIF) neuron. This approach has several drawbacks. 
First, there is no direct way to convert either ReLU or Softmax into a hard threshold (SNN activation). Secondly, 
it requires a large time period to get a reasonable accuracy. In order to convert Softmax function in a spiking 
activation, the firing rate is chosen as the metric; there is no direct/proper way of conversion. Moreover, conver-
sion of ReLU to a spiking neuron requires weight-threshold balancing13,14,40, which can be quite hectic.

Another example is that of the Nengo  platform42 that relies on the work presented  in43. The scheme pre-
sented  in43 uses soft leaky integrate-and-fire (LIF) neurons to enhance differentiability for backpropagation. The 
researchers add Gaussian noise to the neuronal firing rate to further enhance differentiability. Moreover, post-
synaptic filters are added to the neurons to remove high frequency variation produced by spikes. The Gaussian 
noise is removed from the neurons after training. The basic problem  with43 is that the algorithm is extremely 
complex and the accuracy depends on the amount of Gaussian noise and smoothness of LIF neurons. The scheme 
is, therefore, unsuitable for hardware implementations. Even with a large number of convolutional filters and 30 
time steps, the network achieves only 98.74% accuracy on the MNIST dataset.

Therefore, such ANN-to-SNN conversion methods achieve high accuracy but are tricky to apply. An advan-
tage of developing on-chip solutions based on ANN-to-SNN conversion methods is that the resulting system is 
not only able to train SNNs, but is also able to use both ANNs and SNNs for classification. This is because the 
inference part of the system contains both artificial and spiking parts.

In44, the authors present a BP scheme based on ANN-SNN conversion. The motivation is that traditional 
ANN-SNN conversion schemes that use ReLU focus only on the conversion of positive voltage region to spikes, 
since ReLU completely cancels out the negative region. However, this process is lossy because negative regions, 
sometimes, contain valuable information. The authors solve this problem by using two thresholds for a spiking 
neuron, one for the positive region and one for the negative region.

• The scheme takes a long time (hundreds of time steps) to train SNNs
• Whether this scheme can yield a reasonable accuracy using a small number of synapses is doubtful. The 

reason is that the network employed for performance evaluation has about 2.4 million synapses and is able 
to achieve 98.7% accuracy on MNIST dataset.

• The scheme is not suitable for hardware systems capable of training SNNs since it is extremely complex. The 
scheme requires thousands of multipliers, and hundreds of dividers and exponent computers.

SNN-based neuromorphic architectures. Most of the work related to SNNs is for Von Neumann sys-
tems only. Only a few researchers have focused on building dedicated hardware systems using SNNs. The most 
recent example is Akida, developed by BrainChip that contains 1.2 million  neurons45. Akida is a neural chip that 
has the capability to process and analyze images, sound, and data patterns. Akida, like many other neuromorphic 
processors, works in an event-driven manner.

Inference-only engines (offline learning). Most of the SNN processors are built for offline classification. They do 
not have the ability to train SNNs. Typical examples  are3,19,20,25,46.

In25, the authors train their network using STDP on a computer and then use the obtained parameters on an 
FPGA. The problem they solve is related to the binary classification of 5 × 5 samples. The system achieves about 
89% accuracy.  In46, the hardware inference system is based on sigmoidal neurons and predicts whether the 
incoming sample corresponds to epilepsy or not.

TrueNorth is a chip that was developed in  20143. The computational cores operate at a high frequency but 
generate their own clock ticks that are entirely dependent on events, and are not awake all the time. This asyn-
chronous behavior is what makes TrueNorth power-efficient. TrueNorth can operate using only 65 mW of power.
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Darwin20 is another SNN inference system that has only 8 neurons on the chip and keeps reusing those 8 
neurons to implement more complex multilayer perceptron (MLP) structures. The system uses STDP for train-
ing and uses the address-event representation (AER) protocol that offers a great deal of scalability. Minitaur is a 
similar example that implements a 784-500-500-10 network on an  FPGA19. The network is trained on an external 
computer using STDP.  In41, the batch normalization (BN) process is integrated into the thresholding process in 
order to avoid repeated BN calculations. Then, the trained ANN is converted into an SNN.

Online learning engines. A big problem associated with most neuromorphic processors is that they can be used 
only for inference and cannot train SNNs. SNN training is extremely difficult and is not possible to be carried 
out efficiently on Von Neumann processors (VNPs) due to two main causes: serial execution model followed by 
 VNPs3; longer training periods required by SNNs since training depends a lot on the parameter  initialization9 . 
Therefore, the development of dedicated processors capable of online (on-chip) learning is an emerging research 
area.

Various online learning processors have been presented in the literature. Some of the many examples are 
Adaptive Clock-/Event-Driven Computing System (ACECS)17,18,36,47–49. ACECS is a system that is able to switch 
itself from clock mode to event-driven mode in a dynamic fashion; this feature helps save energy. However, a 
major problem surrounding all these online learning processors is that they are all based on STDP algorithm, 
which yields poor classification accuracy. Moreover, STDP is not efficient when it comes to hardware implementa-
tions since it requires an enormously large number of synapses and computation of complex terms.

Though the work  in36 implements Tempotron as the learning algorithm on an FPGA, the work suffers from 
similar problems: Tempotron requires a large number of exponential terms and other such complex elements, 
and does not yield high accuracy in case of multiclass classification problems. In fact, Tempotron is designed 
only for solving simple binary classification problems.

Problem definition. Most of the systems based on SNNs support inference only. Only a few SNN systems sup-
port online learning. Not only that, since most of the online learning systems use unsupervised learning algo-
rithms such as STDP, they yield poor accuracy and have a high implementation cost. Therefore, the goal is to 
design an online SNN learning system that is cheap and yields high accuracy.

Keeping all these issues in view, we first present a novel, Hard-Sigmoid-based SNN training (HaSiST) algo-
rithm. HaSiST is a high-performance SNN backpropagation algorithm that is quite efficient for hardware imple-
mentations since the activation function requires only shifters and adders. Not only that, it reduces the use of 
multipliers even in the backward pass to a minimal. We then present a low-cost, high-throughput SNN training 
engine that uses HaSiST for learning. Since hard sigmoid, just like ReLU, is an ANN activation function, the 
HaSiST engine can be used for training ANNs as well.

HaSiST: proposed SNN learning scheme
In this section, we first explain how we perform input/output (I/O) coding, and then present the proposed 
learning scheme.

Input coding. In the proposed method, the training is carried out using full resolution inputs to avoid any 
loss of data. Spikes are generated only in the deployment (SNN) phase. In the deployment phase, the input values 
are compared against a predefined threshold in every timestep. If the intensity is greater than this predefined 
threshold, a spike is generated else nothing happens. This method is deterministic in nature since the threshold 
is fixed for a particular timestep. We avoid the use of Poisson method to generate spikes since it involves a lot of 
‘jitter’ and results in a variability in the firing  rate14. It is pertinent to mention that every timestep corresponds to 
a different threshold. The threshold remains constant only for one particular timestep. This method results in a 
much clearer spike map and give much better performance. Not only that, the method is quite hardware friendly 
since it requires only an array of small comparators and does not depend on random number generation.

Output coding. At the output side, one-hot coding is used, which means that every neuron in the layer 
belongs to a discrete class. For surrogate network training and inference, we use neuronal membrane potential. 
For the deployment network (SNN), on the other hand, we use spike rate to perform classification (inference) of 
input samples. The output neuron that spikes the most corresponds to the predicted class.

Learning scheme. The proposed learning scheme is based on the conversion of a surrogate network to the 
deployment network (SNN). In this approach, a surrogate network using a suitable ANN activation function 
is first trained using backpropagation and the finalized/trained network is then converted into an SNN. The 
approach, therefore, deals with two networks: the surrogate network and the deployment network.

Surrogate network (HaSi). The purpose of surrogate network is to train a network that is finally going to be 
converted into an SNN. The neuron model used in the proposed scheme is given in Eq. (1).

All neurons in the surrogate network use hard sigmoid as the activation function. It has the same topology as the 
final deployment network that is going to be an SNN. Full-resolution inputs are applied to the surrogate network 
to prevent any loss of information. The generalized form of HaSi function is given in Eq. (2).

(1)Vj[t] = �Vj[t − 1] +
∑

i

(Wi · Xi)
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Here, k is the steepness factor that controls the level of steepness of the HaSi; l1(= Vth − k−1) and l2(= Vth + k−1) 
are the cutoff and saturation points of the HaSi curve. The threshold Vth of the hard sigmoid (at least in the pro-
posed work) is its ‘point of inflection’. It is the point at which the activated value is exactly equal to 0.5. This point 
is crucial for deciding threshold of a spiking neuron, as mentioned in Section "Deployment Network (SNN)". 
The impact of steepness factor k on HaSi shape for zero threshold ( Vth = 0 ) is given in Fig. 1.

Deployment network (SNN). The surrogate network trained using HaSi neurons is finally converted into an 
SNN. This is done by converting Vth of a HaSi neuron to a hard threshold. If the input voltage value falls to the 
right side of Vth , the neuron generates a one, else it generates a zero. This is described mathematically in Eq. (3).

Analytical and mathematical proofs. HaSiST makes the training process quite simple because the spik-
ing activation function and HaSi are inter-convertible. This is discussed in the following parts.

• Forward pass If the steepness factor k is equal to ∞ , the A(Vj[t]) in Eq. (2) becomes equal to the step function. 
This is shown mathematically in Eq. (3). 

• Backward Pass In order to perform backpropagation, the activation function must have a finite derivative. 
Since hard sigmoid is differentiable and has a finite derivative, it can be used for backpropagation. Moreover, 
unlike ReLU, it can be easily used even at the output layer of a network since it does not cancel out the nega-
tive input region completely. The derivative of HaSi is given in Eq. (4). 

 Moreover, if k is equal to ∞ , the HaSi derivative becomes equal to the dirac delta function, just like the step 
function. This is evident from Eq. (5). 

 In Eq. (4), the parameter γ (gradient controller) is an optional parameter that can be maneuvered to over-
come gradient vanishing/explosion. Similarly, l1 and l2 can be changed manually in some cases to overcome 
gradient vanishing/explosion.

• Sigmoidal behavior Both HaSi and the step function are sigmoidal in nature. This is because A(−∞) = 0 and 
A(∞) = 1.

(2)A(Vj[t]) =







0 Vj[t] < l1
k(Vj[t]−Vth)+1

2 l1 ≤ Vj[t] ≤ l2
1 Vj[t] > l2

(3)A(Vj[t]) =

{

1 Vj[t] ≥ V+
th

0 Vj[t] ≤ V−
th

(4)A
′

(Vj[t]) =







γ k
2 ; l1 ≤ Vj[t] ≤ l2

0 otherwise

(5)A
′

(Vj[t]) =

{

∞ Vj[t] = V+
th

0 Vj[t]! = V+
th

Figure 1.  Impact of Steepness Factor k on the Shape of Hard Sigmoid.
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Mathematical setup. We mathematically establish the dependence of loss functions (L) on synaptic 
strengths in Eq. (6) through Eq. (8). The mean squared error (MSE) function has been used for SNN back-
propagation. In the following equations, A2 is the obtained output value at Layer 2, and y is the label voltage. The 
derivative of HaSi function is given in Eq. (4) for reference.

Although all these equations are perfectly valid, temporal dynamics are generally ignored in backpropagation-
based SNN  training50. This is because the notion of ‘time’ does not have a significant impact on the SNN train-
ing process.  In9, for example, the inclusion of time in the SNN training process increases the accuracy by only 
0.41%. Moreover, the inclusion of time unnecessarily makes the training process complex and significantly 
increases hardware cost. To ignore temporal dynamics during the training process (for the surrogate network), 
we make � equal to zero. For the SNN inference, it is up to the user to decide the value of � , since it can some-
times improve the performance a little bit. The reason is that the LIF neuron acts as a low-pass filter and blocks 
high frequency noise in the  system51,52. The presence of leak, therefore, improves system performance in case it 
encounters high-frequency noise. The dependence of loss function (L) on W1 and W2 , therefore, is given in Eqs. 
(9) and (10) respectively.

The system performance can slightly be improved if network regularization, dropout, and optimization (such as 
 Adam53) are performed. However, all such methods will result in an unnecessary (disproportionate) increase in 
cost and power consumption since they are costly to implement on hardware. Moreover, they do not offer any 
significant increase in network accuracy. Therefore, we do not adopt any such technique/method because the 
whole learning process is performed on hardware.

Proposed neuromorphic computer
The proposed hardware system operates on 64-input data samples and can classify an input sample into one of 
ten classes. The system consists of a timer, a counter, a scheduler, an inference engine, and a training engine. The 
training engine is executed only when network training is required, else a sample is classified using pre-stored 
weights and incoming external inputs.

The proposed hardware-based neural network has one input layer, one hidden layer and one output layer. 
The hidden layer has 20 neurons that are processed sequentially. Only one hidden neuron is activated in a given 
clock cycle in order to reduce hardware cost. The top level diagram of the complete system is shown in Fig. 2a.

Proposed spike scheduler and router. Most scalable SNN processors use the following elements to 
transmit and route packets from a source neuron to a destination neuron: source neuron address, target neuron 
address, and  timestamp17. However, there are some serious flaws in this approach. First, it is not necessarily suit-
able for low-cost systems because all the neuron addresses require a large number of bits and complex computa-
tional elements, as a result of which the cost of transmission and routing becomes very high. Moreover, it is not 
suitable for surrogate-network used for SNN training. This is because the (surrogate) training network is never 
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driven by events since training is carried out using continuous activation function such as ReLU (hard sigmoid, 
in the proposed scheme). Therefore, neuron addresses are not required to process anything.

The alternative approach, as adopted in the proposed system, is universal broadcasting. In this scheme, all the 
source actuators transmit their output values to all the connected destination neurons. This approach simply obvi-
ates the need for large spike/activation packets that require source neuron address, destination neuron address, 
and timestamp. This approach is similar to the one presented  in17 and works well for moderately large networks.

Timer and counter. The timer is realized using a log2(T) digital counter. The timer is incremented by 1 
once all the neurons have completed their respective processes, i.e., the timer is incremented at the end of 21 
computational clock cycles. This is because Layer 1 neurons complete their computations in 20 cycles and one 
cycle is consumed by Layer 2. The timer keeps counting up until it reaches the maximum time period ‘T’, after 
which it is reset.

Figure 2.  Internal Structure of the Proposed System. (a) Top Level Diagram of the Proposed System. (b) 
Internal Structure of the Layer 1 Neural Computing Engine.
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Reconfigurable inference engine (RIE). The inference engine is responsible for classifying the input 
sample into one of the ten classes. It does so by using two things: weights (stored in the on-chip memory), and 
inputs (coming from external memory).

During the forward pass, the network can operate in one of two modes: HaSi Mode or SNN mode. In the 
HaSi mode, hard sigmoid is used for inference, whereas hard threshold (SNN activation function) is used in the 
SNN mode. It is pertinent to mention that training can be performed only in the HaSi mode.

Multiplier–accumulator (MAC) unit. For HaSi inference, full-resolution inputs are multiplied by the corre-
sponding weights. In the SNN mode, 1-bit spikes are used as selection bits to the multiplexer. If the selection/
spike bit sn is 0 which implies that no event has taken place, no weights are fetched from the memory and a 0 is 
passed to the subsequent stages. If the spike bit is 1, which implies an event, the corresponding weight is fetched 
from the memory and is passed to the subsequent stages. This is the job of neural processing elements (NPEs), 
shown in Fig. 2b .

The obtained values are then summed up using a pipelined adder tree and the final value is then passed 
through either the hard sigmoid function or the SNN activation function, depending on the mode selected by 
the user. The activated values are then sent to the second-layer RIE to perform similar operations in Layer 2. 
Layer 2, unlike Layer 1, is fully parallelized and all operations in Layer 2 are performed in a single clock cycle.

Actuators. Actuators are responsible for activating a neuron. There are two types of actuators available in the 
proposed engine: HaSi actuators and SNN actuators.

SNN actuator operation is quite simple to understand: if the incoming voltage is greater than a threshold, 
a spike is generated, else there is no spike. In fact, if the threshold is zero, only the most significant bit of the 
incoming voltage bus has to be compared in order to determine whether the voltage is greater than zero. The 
reconfigurable engine is shown in Fig. 3.

HaSi actuators, on the other hand, are slightly more complex. The actuator is constructed using a priority 
routing network, which is quite effective in implementing complex control instructions. Here, if the voltage is 

Figure 3.  Reconfigurable Inference Engine.
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greater than 2, the actuator saturates the value to 1. If the voltage is too small, i.e., less than 2, the actuator simply 
transfers a zero to the subsequent circuitry. If the incoming value lies between these two extremes, the incom-
ing voltage is first added to a value (2 in our case) and then divided by a value (4 in this case). In the proposed 
system, this division by 4 is realized using a 2-bit right shifter.

Predictor. The predictor is the last component of the system that sits at the output layer. The sole purpose of 
predictor is to compare the output (activated) values with each other and make a decision.

In the HaSi mode, temporal information can simply be rejected, as mentioned earlier. Therefore, there is no 
role of timer as such in the HaSi mode. In the HaSi mode, the output neuron with the maximum level of voltage 
is chosen as the predicted/classified output.

In the SNN mode, however, temporal information is of utmost importance to make a decision. Therefore, 
the timer does play its role in the SNN mode. Once the input time period is over, the predictor makes a decision 
on the basis of number of spikes. In the SNN mode, the output neuron with the maximum number of spikes is 
chosen as the predicted output. This is what it means by ‘rate coding’, because the rate of firing/spiking is being 
used to make predictions.

Training/learning engine. The learning engine employs backpropagation on surrogate network to learn 
network parameters. The learning takes place according to Eq. (9) and Eq. (10). The structure of the learning 
engine used for training Layer 1 (L1) is shown in Fig. 4. The letters F and X in Fig. 4 denote the feature vector and 
input vector, respectively. The learning rate is realized using a 1-bit right shifter since it is equal to 1/2. It can be 
clearly seen in the figure that the learning can take place without any costly exponentials and/or dividers. Using 
only a few multipliers and adders, the engine can train the network.

Train-while-constrain (TWC) approach. The approach we follow is train-while-constrain, which simply means 
that we train the network while we constrain the intermediate computational results to an acceptable level dur-
ing the training process. The purpose of overflow/underflow detector is to keep the number of bits to a control-
lable level so that the computational units operate properly, and the hardware cost does not cross a certain limit. 
In the proposed hardware engine, 8-bit weights and 7-bit actuators are used.

Results
In this section, we first detail the test conditions under which the performance evaluation was carried out and 
then present the obtained results. To compare systems in a fair manner, the proposed system is compared against 
various modern systems in terms of both cost and throughput.

Figure 4.  Internal Structure of the Layer 1 Learning Engine (Backward Pass).
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Benchmarks and test conditions. The software tool used for performance evaluation is Python. Two 
popular datasets have been used for algorithmic evaluations: MNIST54 and 8×8 Digits55. The test conditions and 
hyperparameter values used for all such evaluations are mentioned in Table 1. The hyper-parameter values have 
been empirically obtained using ‘grid search’.

The hardware system is described and verified using Verilog language at the register-transfer level (RTL) for 
the target system Virtex 6. To show the hardware efficiency of the proposed system, the 8×8 Digits has been used. 
This dataset has 64 input features and 10 outputs. The system contains 20 hidden neurons.

Network accuracy comparisons. The accuracy yielded by HaSiST on the two datasets, namely MNIST 
and 8 × 8, is 97.5% and 99% respectively, ignoring the impact of truncation. A comparison of HaSiST with various 
modern schemes in terms of inference time, accuracy and the required number of synapses is given in Table 2.

Evaluation of the proposed SNN inference engine. In order to properly evaluate performance and 
efficiency of the proposed learning scheme and hardware architecture, the inference engine has been synthe-
sized separately as well. The results are tabulated in Table 3. In order to do this, the network is first trained using 
HaSiST on a personal computer. The obtained weights are converted into 10-bit fixed-point format and are then 
stored in the FPGA memory. The structure and timing diagram of the inference part has already been described 
in Section "Proposed Neuromorphic Computer".

The computational frequency of the proposed spiking engine is around 135.073 MHz. A sample of the dataset 
under consideration contains 64 features. It takes 21 cycles to infer a timestep, and 15 timesteps constitute an 
SNN sample in the forward pass. It can be concluded, therefore, that the proposed SNN inference engine can 
infer about 0.03×109 features in a second. The metric ‘features per second (FeaPS)’ is used for throughput (TP) 

Table 1.  Hyper-parameter values obtained from network tuning.

Parameter

Value

8× 8 Digits MNIST

Learning Rate ( η) 1
8
 - 1

2
1

Topology 64-20-10 784-200-10

Batch Size ( ξ) 1 100

Momentum ( β) 0 0.9

Epochs 64–400 18

(l1, l2) (Hid. Layer) −2 , 2 −2 , 2

(l1, l2) (Out. Layer) ≤ −2 , ≥2 −20 , 20

γhid. 1–2 1

γout. 1–2 1–2

Surr. Leak Factor ( �) 0 0

Depl. Leak Factor ( �) 2−6 0

Input Encoding Thresholding Thresholding

#TimeSteps (T) 15 10

Input Thresholds 0–14 10, 30, ..., 160, 190, ..., 240

Neural Encoding Rate-based Rate-based

HaSi Thresh. ( Vth) 0 0

Steepness (k) 0.5 0.5

Table 2.  Accuracy Comparisons - MNIST.

Acc. (%) Algorithm Synapses #TimeSteps
13 98.68% STDP 2,392,800 6–10
21 98.70 STE-BP 1,861,632 16
9 98.89 STBP 635,200 30
41 98 STBNN 1,794,000 (1-b) 50
56 90 Sup. STDP 13,300 –
37 97.96% TBP 269,960 100 s
39 98.1 TBP 317,600 100
44 98.7 BP >2.4 Million 100 s

Proposed ≈97.5 HaSiST 158,800 10
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comparisons since different datasets have different input features. Some datasets have less than 10 features, while 
others have more than 700. The use of FeaPS results in a relatively fair comparison.

Details of the systems used for comparison. It is to be noted that due to the differences in platforms, datasets and 
other characteristics, an absolutely fair comparison is impossible to be made between various hardware systems.

The work  in25 uses a small (toy) dataset with 25 binary input pixels and one neuron for binary (X and O) clas-
sification; two samples are used for training. The work  in46 predicts epilepsy; it uses a small number of features 
and 3 output classes. No dataset is used  in57; the authors just demonstrate the efficiency of hardware radial basis 
function. The works  in58,59 use MNIST for testing purposes.

Evaluation of the proposed SNN learning engine. Table 4 compares HaSiST learning engine with 
other contemporary engines implementing online learning. The complete learning engine includes both the 
forward and the backward pass. The learning engine has a maximum frequency of 50 MHz and it takes 21 cycles 
to complete a training iteration, the engine can perform 2.38 million training iterations in a second.

It can be seen from Table 4 that HaSiST clearly surpasses other contemporary engines in terms of both 
throughput and cost. At the same time, it can yield a high level of classification accuracy. This can be attributed to 
the proposed backpropagation-based learning mechanism that yields high accuracy and requires fewer synapses 
than timing-based and/or unsupervised algorithms. The systems  in23,47,48,60 are all trained using STDP that does 
not yield high accuracy and requires millions of synapses. The backpropagation-based learning, on the other 
hand, uses only a fraction of synapses and can yield excellent accuracy.

Details of the Systems used for Comparison. The work  in47 uses a small (toy) dataset with 25 binary input pixels 
and 10 neurons for digits classification; the number of training samples is around 10. The work  in36 uses a small 
dataset with 4 input features; the purpose is to classify an input pixel into Red, Green, or Blue. The work  in46 pre-
dicts epilepsy; it uses a small number of features and 3 output classes. No dataset is used  in48  and61. The system 
 in48 uses STDP for bimodal distribution. The purpose  of61 is just to demonstrate the efficiency of the hardware 
learning engine. The work  in49 uses toy datasets with less than 10 input features and around 3 output classes. The 
works  in60 uses MNIST for testing purposes. The system  in23 uses a context-dependent task for testing; the num-
ber of input features are quite small. Two datasets are used for evaluation  in62: UWB antenna set whose topology 
is 6-30-2, and an 8-15-8 dataset. The system uses Quasi Newton Optimzation.

Table 3.  Cost and throughput comparisons: inference engines.

System Acc. Algorithm
Max. throughput 
(Features per sec.) Neuron Regs./Synapse LuTs/Synapse Max. Freq. Platform

25 89% STDP 4.73×109 e-LIF 7.87 87.22 189 MHz Virtex 6
58 98.32% Backpr. 0.0023×109 e-LIF 0.014 0.005 250 MHz Arria-10
59 97.06% Backpr. 0.00013×109 e-LIF 0.004 0.0029 200 MHz Zynq ZC706
46 95.14% Backpr. 0.25×109 Sigmoid 1.1875 135.11 50 MHz Altera D2-115
57 – – 39.376 Radial 197.25 298.25 9.844 MHz Spartan 3

Average 94.88% – ~1 ×  109 – 41.26 104.12 139.77 MHz -

Proposed >98% HaSiST 0.03×109 LIF 1.03 2.8 135.1 MHz Virtex 6

Table 4.  Cost comparisons: online learning engines.

System Acc. Algorithm Neuron Regs./Synapse LuTs/Synapse Max. Freq. Platform
61 – – Sigmoid – 1569 50 MHz Cyclone IV
60 87.7% STDP LIF 0.08 0.114 120 MHz Virtex 6
62 ≈98% Quasi-Newton – 1777 1240 250 MHz N-FPGA SUME

23 90% STDP LIF 41.7 284 143 MHz Kintex-7 
XC7kt160t

36 96% Tempotron LIF 38.1 96.26 178 MHz Virtex 7
48 - STDP Izhik. 354.4 518.8 84 MHz Spartan 3
49 88.3% Backprop. Sigmoid 80.55 155.5 Variable Virtex 5
47 94% STDP Izhik. 33 19 N.A. Cyclone V

Average 92.3% - – 332.12 485.33 137.5 MHz –

HaSiST (org.) 99%  (98%) Backprop. HaSi  (Spiking) - – – -

HaSiST (TWC) ≈98% (95.622%) Backprop. HaSi  (Spiking) 2.63 37.84 50 MHz Virtex 6
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Conclusion
This work presents a hardware-aware SNN backpropagation scheme HaSiST that does not require weight-
threshold balancing, error normalization, etc. The learning scheme offers fast convergence and easily achieves 
an accuracy of around 97.5% on MNIST dataset using only 158,800 synapses.

The training engine can operate at a maximum clock frequency of 50 MHz and consumes only 2.63 slice 
registers and 37.84 look-up tables per synapse. Moreover, the inference engine trained using HaSiST, if run 
independently, requires only 1.03 slice registers and 2.8 look-up tables per synapse. The inference engine can 
process about 0.03×109 features per second (FPS), equivalent to about 9.44 giga synaptic operations per second 
(GSOPS). Here, one synaptic operation is equal to one multiply-accumulate (MAC) operation. If the system is 
made to operate at an algorithmic clock frequency of 1 kHz, the spiking frequency of a single neuron is around 
23 Hz. The design is way cheaper than most online learning engines based on STDP.

HaSiST can yield higher throughput if implemented on a bigger, more powerful FPGA. Moreover, the accu-
racy might be improved if dropout and batch normalization are used.

Data availability
There are two datasets used for experimentation in this work: MNIST and 8x8-Digits. Both are accessible through 
the Python libraries, and are available publicly from the following sources.
MNIST Source: https:// www. tenso rflow. org/ api_ docs/ python/ tf/ keras/ datas ets/ mnist/ load_ data  8x8 Source: 
https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. datas ets. load_ digits. html  All the parameters/hyper-
parameters used for data processing and experimentation have been mentioned clearly in the manuscript. Table 1 
contains all the hyper-parameter values required to replicate the results presented in this work.
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