www.nature.com/scientificreports

scientific reports

W) Check for updates

OPEN A new class of Poisson Ridge-type

estimator

Esra Ertan®" & Kadri Ulag Akay

The Poisson Regression Model (PRM) is one of the benchmark models when analyzing the count
data. The Maximum Likelihood Estimator (MLE) is used to estimate the model parameters in
PRMs. However, the MLE may suffer from various drawbacks that arise due to the existence of
multicollinearity problems. Many estimators have been proposed as alternatives to each other to
alleviate the multicollinearity problem in PRM, such as Poisson Ridge Estimator (PRE), Poisson Liu
Estimator (PLE), Poisson Liu-type Estimator (PLTE), and Improvement Liu-Type Estimator (ILTE). In
this study, we define a new general class of estimators which is based on the PRE as an alternative
to other existing biased estimators in the PRMs. The superiority of the proposed biased estimator
over the other existing biased estimators is given under the asymptotic matrix mean square error
sense. Furthermore, two separate Monte Carlo simulation studies are implemented to compare the
performances of the proposed biased estimators. Finally, the performances of all considered biased
estimators are shown in real data.

The Poisson Regression Model (PRM) is one of the benchmark models for count data in much the same way as
the normal linear regression model is the benchmark for continuous data’. In the PRM, y; is the response variable
and follows a Poisson distribution with mean y;, then the probability function is defined as

et
fni) = yl'l’ i=1,2,...,ny,=012,... (1)
;!

where p; is expressed by using canonical log link function and a linear combination of explanatory variables
as follows ; = exp (x/B) where x is the ith row of X, which is ann x (p + 1) data matrix with p explanatory
variables and Bisa(p + 1) x 1vector of coefficients.

The Maximum Likelihood method is the well-known estimation technique to estimate the model parameters
in PRMs? The log-likelihood function for PRM is given as follows

IB) =Y yixiB —exp (xiB) — log (yi!). )

i=1

The Maximum Likelihood Estimator (MLE) of 8 is obtained by maximizing the log-likelihood function, so
the following equations are obtained as

al(B; " ,
S(B) = (fﬂ”=Z[yi—exp(x,~ﬁ)]xi=o. (3)
i=1

Since Eq. (3) is nonlinear function of parameter 8, the solution of §(B) is obtained using the following itera-
tively reweighted least squares (IRLS) algorithm

~ ~ -1 ~

Bie = (x/ wx) X'Wz, (4)
where Z is an n-dimensional vector with the ith element z; = log ([L,) + M and W = diag [/1,}3. The iteration
ends when the difference between the old and updated values is less than a given smalllvalue, which is usually
1078 The asymptotic variance—covariance matrix of ,3MLE is cov (B MLE) = (X "WX ) .

Besides being a widely used estimator of MLE, one of its major disadvantages is that parameter estimates
become unstable in the case of multicollinearity>~*. The multicollinearity problem, which occurs because of the
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approximately linear relationship between the explanatory variables, affects the estimates of model parameters
in the PRM:s as well as in the linear regression models. One effect of the multicollinearity between explanatory
variables is that the variance of the MLE becomes so large that the estimates of the model parameters become
unstable'*-2°.

In order to reduce the undesirable effects of multicollinearity, the biased estimators that are alternative to
the MLE are generalized in a manner similar to that introduced in the linear regression model. For example,
Maénsson and Shukur'® proposed the Poisson Ridge Estimator (PRE) as follows:

R . -1
Bpre = (X/WX + kI) X'WXBmie, k>0, (5)

where k is a biasing parameter. The PRE is the generalization of the Ridge estimator introduced by Hoerl and
Kennard?' for the linear regression model.
Mansson et al.'’, Amin et al.?? and Qasim et al.?® defined the Poisson Liu Estimator (PLE) as follows:

o = (X’WX n 1) - <X/WX n dI) Buie, 6)

where 0 < d < 1is a biasing parameter. The PLE is the generalization of the Liu estimator introduced by Liu**
for the linear regression model.

In recent years, the estimators with two biasing parameters have been proposed as an alternative to PRE and
PLE. The purpose of estimators with two biasing parameters obtained by combining several estimators is to
obtain more suitable estimators for parameter estimates. In this context, Algamal® defined the Poisson Liu-type
estimator (PLTE) for the PRMs as follows:

J— (X’WX + kI) o (X’WX - dI) B, )

where k> 0and d € R are the biasing parameters. The PLTE is a generalization of the Liu-type estimator, which
is firstly introduced by Liu*. The PLTE is based on the biasing parameters k and d.

Moreover, Asar and Geng'® and Cetinkaya and Kagiranlar'® proposed another biased estimator with two bias-
ing parameters, defined by Ozkale and Kagiranlar?’ for the linear regression models. The Poisson two-parameter
Estimator (PTPE) is defined as:

JR— (X’WX n kz) B (x/ WX + kdz) Priies ®)

where k> 0 and 0<d< 1are the biasing parameters.
As an alternative to the estimators introduced so far, Akay and Ertan® proposed a general Improved Liu-type
Estimator (ILTE) which includes MLE, PRE, PLE, PLTE and PTPE as special cases as follows:

P = (XWX + k1) - (XWX +fR1)B* k>0, ©)

where A* is any estimator of 8 and f (k) is a continuous function of the biasing parameter k. The estimator given
in (9) is a generalization of the Liu-type estimator proposed by Kurnaz and Akay?® for linear regression models.
In the literature, many estimators proposed for linear regression models can be generalized to be applied to
PRMs. For example, the estimator depending on the Ridge estimator in linear regression models was proposed by
Yang and Chang®. In this sense, the biased estimator proposed by Yang and Chang® is adapted from the PRMs
by Asar and Geng'. In addition, this estimator is applied to Negative Binomial regression models by Huang and
Yang®. Depending on the PRE, the estimator given by Huang and Yang™ in the literature has been as follows:

By (k, d) = (X’WX + 1)71 (X/VVX + dI) <X’WX + kl) X WXPyp k>00<d<1, (10)

where k and d are two biasing parameters. Although the estimator given in (10) is depending on the PRE, itis a
general estimator which includes the MLE, PRE, and PLE as special cases, too.

From this point of view, another estimator depending on the Ridge estimator in linear regression models
was proposed by Sakallioglu and Kagiranlar®, and is defined by Sakallioglu and Kagiranlar®! which is defined as:

Bsi(k,d) = (X'X +1) " (X'X + (k+ d)I) fre, k> 0,—00 < d < o0, (11)

where k and d are two biasing parameters and Arg = (X'X + kI) ~'X'Y. In this context, we can generalize the
(11) estimators suggested for PRMs. Based on the PRE, we can generalize the estimator proposed by Sakallioglu
and Kagiranlar® given in (11) as follows:

~ ~ -1 ~ ~
Brsic(k, d) = (x’wx n 1) (x’wx +k+ d)l)ﬂpRE, k> 0,—00 < d < oo, (12)

where k and d are two biasing parameters. In this case, the estimator given in (12) is a general estimator which
includes the MLE, PRE and PLE as special cases. Best of our knowledge, no study has been conducted about
estimator in (12) for the PRMs.

In PRMs, it is known that the performance of biased estimators proposed as an alternative to MLE is gener-
ally affected by the value of the biasing parameter. In general, the methods used for the estimation of biasing
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parameters have been adapted similarly to those used in linear regression models. On the other hand, the use
of estimators with two biasing parameters has become increasingly widespread in recent years. However, one
of the most important problems for estimators with two biasing parameters is finding optimal estimates of the
biasing parameters is difficult. For this purpose, many iterative techniques have been proposed to estimate these
biasing parameters. In these cases, one of the biasing parameters can be estimated depending on the other biasing
parameter, or vice versa'®!®3, Thus, the idea arises that an unknown functional relationship may exist between
these two biasing parameters.

Based on the information mentioned above, our aim in this article is to introduce a new general class of
estimators that arises when there is a functional relationship between the biasing parameters. In addition, the
proposed general estimator can be defined to specifically include the estimators given by (4), (5), (6), (10) and
(12). Thus, this proposed estimator constitutes a general class of estimators like the estimator given in (9). Itisa
more efficient alternative estimator when compared with the one defined in (9) which can overcome multicol-
linearity in the PRMs. Another purpose of this article is to compare these two class estimators with a simulation
study under some conditions.

The remainder of the article is organized as follows: In "A new general biased estimator", a new biased esti-
mator is defined and some of its properties are given. The superiority of this estimator over the other biased
estimators under the matrix mean square error sense are shown in "The superiority of the PRTE in PRMs".
In "Determination of function", several rules are proposed to determine the relationship between the biasing
parameters. Two separate Monte Carlo simulation studies are executed in "The Monte Carlo simulation studies".
In "Numerical example: the aircraft damage data", a real numerical example is provided to evaluate the perfor-
mances of the proposed biased estimators. Some concluding remarks are given in "Some concluding remarks".

A new general biased estimator
For PRMs, we can define a new general class of estimators including (4), (5), (6), (10) and (12) estimators based
on the PRE estimator as follows:

JR— <X’WX n 1)_1 (x’va T g(k)l) Brresk > 0, (13)

where g(k) is a continuous function of the biasing parameter k. When we select g (k) as a linear function of the
biasing parameter k such as g(k) = ak 4+ b wherea, b € R, the Poisson Ridge-type estimator (PRTE) is a general
estimator which includes the other biased estimators as special cases:

ﬂpRTE = ,BMLE for g(0) = 1wherek =0andb = 1.

,QPRTE = ,fijE for g(k) = 1wherea =0andb = 1.

BerTE = PpLE for g(0) = bwhere a = 0 and b corresponds to the biasing parameter d.

BerTE = BpHy (k, d) for g(k) = bwhere b corresponds to the biasing parameter d.

BprrE = Bpsk (k, d) for g(k) = k + b where a = 1and b corresponds to the biasing parameter d.

Note that, the proposed estimator given in (13) is different form the biased estimator given in (9). That is,
when we use ﬂpRE instead of ﬁ* in (9), the resulting estimator /SILTE(pRE) is given as follows:

. . -1, . .
BILTE(PRE) = (X/WX + kI) <X’WX +f(k)1>ﬁPRE>k > 0, (14)

where f (k) is a continuous function of the biasing parameter k. Note that the estimator given in (14) does not
exactly correspond to the estimators given by (10) and (12), respectively. To show that the estimators given in (13)
and (14) are different estimators, let’s examine the asymptotic scalar mean square error (SMSE) and asymptotic
matrix mean square error (MMSE) of these estimators.

In order to obtain the asymptotic SMSE and the asymptotic MMSE of an estimator, we denote @ = Q’$,
A=diag (/11, . ’1P+1) =qQ (X/ WX) Q,where A; > /3 > -+ Ap41 > Oare the ordered eigenvalues of XWX, Q
is the orthogonal matrix whose columns constitute the eigenvectors of X’ WX and the ith element of Q'8 is
denotedasoc] j=12,.,p+1L

The asymptotic SMSE and the asymptotic MMSE of an estimator 8 = H g, where H is an (p+1)x (p+1)
matrix, are defined as:

~ ~ ~ / ~ ~ /
MSEM(B) =E(— ) (B~ 8) =H(Buws — ) (Bune — B) H' + (HB — BHB - BY
(15)
~ ~ N . / .
smsE(B) =E(B—8) (B—8) = (e — B) H'H(Bunr — B) + (HB — BY (HB — .

Note that there is a relationship SMSE (,é) tr <MMSE </§>) between MMSE and SMSE criteria. Because
of the relation of o = Q B ,BMLE) ,BPRE, BpLE> ,BPLTE BiLre and ﬁpRTE have the same SMSE values as
QMLE> @PRE> &PLE> @pLTE, AL TE and &pRrTE, respectively.

Using (9), (13) and (14), it is easily computed that

MMSE (Bm) = Q((A+kDH(A+FBI) AT (A +fERI)(A+KDT!

F(F(R) — k)2 (A + KD e (A + kI)_1>Q’

Scientific Reports |

(2023) 13:4968 | https://doi.org/10.1038/s41598-023-32119-0 nature portfolio



www.nature.com/scientificreports/

MMSE (BILTE@RE)) = Q((A+KDTH(A+f(RI)(A +KDT AN +KDTHA +f(R)) (A + kD)7
+(A + kD7 (f(OA — 2kA — K*I) (A + kD) aa/ (A + kD)

(F)A — 2kA — K*T) (A + kD)

)@
(17)

MMSE (ﬁpm) = Q((A+ D" (A +gUI) (A +KD) " AA + kD" (A + g(R)I) (A + 1)
+((gtk) =k —1)A —K)(A + DA+ kD 'aa/ (A +KDTHA + D7 ((g(k) —k — 1) A — KI))Q.

(18)
Moreover, we can give the SMSE functions of ILTE, ILTE (PRE) and PRTE as follows:
; L) R0 =k
SMSE (Bt ) = ! + ! (19)
< ) ; (% + k) ; (7 +k)?
, B (o) R (0 — 2k )l
SMSE | BILTE(PRE) | = Z L T4 Z i (20)
( ) o (At k)4 =1 (% + k)4
p+1 2 p+1 , 2 5
N Ai(Ai + gk gy —k—1)A — k) o
SMSE(,BPRTE>=Z ;(; 8( )) +Z(( ) ] ) j 21)

j=1 (A"j + l)z(if + k)2 j=1 (’lj + I)Z(A"j + k)z

where the first term is the asymptotic variance and the second term is the squared bias. It should be noted that
MMSE and SMSE functions of ILTE (PRE) and PRTE are different. Also, the MMSE and SMSE functions of other
existing functions can be obtained according to the appropriate selection of f(k)and g(k).

Let 8; and B, be any two estimators of 8 parameter. Then, $; is superior to ) with respect to the MMSE sense

if and only if MMSE ,31 — MMSE (32 is a positive definite (pd) matrix. If MMSE /§1) — MMSE (,32) isa
non-negative definite matrix, then SMSE (ﬁ1> — SMSE ﬁz > 0. But, the reverse is not always true.

In order to compare the MMSEs for the above-mentioned biased estimators, we are using the following
theorem.

Theorem 2.1 Let A be a positive definite matrix, namely A > 0, and ¢ nonzero vector. Then, A — cc’ is positive
definite matrix iff  A"'c < 17,

The superiority of the PRTE in PRMs
In this section, we compare the PRTE with the ILTE according to the MMSE criterion. Here, we give a general
theorem for comparing estimators with different choices of g(k) and f (k) functions. In this way, a general theo-
rem is obtained for comparing the estimators mentioned above in terms of MMSE sense.
The following theorem is given to show the superiority of PRTE over ILTE.
Theorem 3.1. Let be k > 0 and —Xj - %W < g(k) < —)Lj + %W where j=1,2,...p+1. Then
MMSE </§ILTE> — MMSE (ﬁPRTE) > 0iff
n /
bias (Bowrz ) Q((A + kDTN (A + FOOT) A (A + kDT (A + 7 (1)

—(A+ DA +gRT) (A + KD A + KD (A +g(RI) (A + DY) Qbias (3PRTE) <1
(22)
where bias(BpRTE> = ((g(k) —k— l)A — kI)Q(A +D7 YA+ kD La.

Proof Using (19) and (21), we obtain
MMSE (Biure ) — MMSE(Bprre ) = Q((A + kD)™ (A +f(OT) A~ (A + KD (A +£(0T)
—(A+ DA +gT) (A + KD AA + KD (A +g(RI) (A + DY) T Q — bias (3PRTE) bias (;%RTE)/

_ Qdia {(/11 +R) il +e®)’
(4 +K)°%

Pl
Q' — bias(B bias( B .
(ij+1)2(ij+k)2},»_1 (B o)

D=A+kDT(A+fOI)AT A +KDT (A +FOI) — (A + 1)*; A+ g(k)I ,
(A + kD)7 A(A + KD (A +g(RI) (A + 1)~ tis the pd matrix if (4 + 1) (4 + £ (k) — 47 (4 +g(k)~ > 0.
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Thus D is the pd matrix if—),j - M < glk) < —},j + %w and k > 0 where j=1,2,...,p+1.
By Theorem 2.1, the proof is completed.

Determination of g(k) function

Since the performance of the biased estimators is related to the choice of biasing parameters, it is an important
problem to find the optimal biasing parameters for the proposed biased estimators. Different techniques for
estimating the biasing parameters in the PRE, PLE, PLTE, PSK and PHY are generalized depending on the simi-
larities between linear regression models and PRMs>!15-192%3034 The performance of PRTE depends on the
function g (k), and therefore only on the biasing parameter k. It should be noted that we have given the appropri-
ate choice of the g(k) function in the introduction that different estimators can be obtained. We may give a

method to find the optimal g(k) function that approximately minimizes SMSE ( BPRTE) according to k. Our aim
here is to determine the k and g (k) functions together, which can make the SMSE ( ,3 pRTE) function approximately
minimum. In other words, our goal here is to choose the appropriate k and g (k) functions such that the decrease
in the variance term is greater than the increase in squared bias. Note that SMSE /§ prTE ) is a nonlinear function
of the biasing parameter k. So, writing h(k) = SMSE (B pRTE>, then we find /' (k) as follows differentiating h(k)
with respect to k,

o =512 =8/ (0% =g Wk -+¢®) |af ((k+ 1= g®) s + ) = (4 + 80|

p (3 +1) (3 +K)’

When /' (k) = 0, there are two facts as follows;

Fact1 /; (A”j - g i —g Ik + g(k)) = 0 differential equation is found. From the solution of this differential
equation, we obtain

g(k) = ck + (c — 1)4;, (23)

where ¢ is the constant of integration.
Fact 2 ozjz ((k+1—g(k)4j + k) — (4 + g(k)) = 0 equation is found. We have

(k) = ajz(ij+1)k_|_ (%’2_1) 4 or g(k) = ajz()-j+1)k + <aj2(7-j+1) . 1>/1j- (24)

o2 2 1.0 2. or2
1+A]ozj 1+/1]on. 1+/L10tj 1+Ajaj

According to the first and the second facts, it is convenient to choose g(k) as a linear function of the biasing
parameter k. Note that, g(k) which is obtained in Fact 2 is a solution of the differential equation which is obtained
in Fact 1. According to the results obtained in Fact 1 and Fact 2, we can propose the following generalizations.
Firstly, note that the function g(k) given in (23) and (24) makes the SMSE (&pr7z ) function approximately mini-
mum for a j value. So, g(k) depends on the eigenvalues of X’ WX, the unknown parameter « and the estimate
of the biasing parameter k. In other words, many functions can be determined depending on the functional
relationship given in (23) and (24). For example, the following functional relationships can be proposed for the
determination of function g(k):

&i1(k) = 1k + (c1 = 1)Amin where¢; € (0, 1), (25)
2 ] 2 1
o (14 Amin) pin (1 + Zmin) ,
k) — —min k min — 1) Jimins

gZ( ) 1+ )“maxarznax ( 1+ ;“maxarznax )A (26)

min (ajz (4 + 1)) min ((sz (4 + 1)>
g3(k) = k+ -1 /lmim (27)

nmax (1 + }.jajz) nmax <l + )ujot]z)
where a7 and o, are defined as the minimum and maximum value of @?,j = 1,2,..,p + 1, respectively.

Similarly, Zmin and Zmay indicate the minimum and maximum value of the eigenvalue of X’ WX, respectively.

In this study, we examined only the first degree polynomial functions given in (25) to (27) for g(k) function.
Note that, the function g(k) can be selected as any continuous function of the biasing parameter k. Therefore,
the proposed biased estimator depends on a single biasing parameter k. In this case, we should use an appropri-
ate estimate of biasing parameter k, which must be estimated to control the conditioning of the X’ WX matrix.
Since the proposed estimator depends on a single biasing parameter k, the suitable estimates of k can be used
given in Mansson and Shukur'®, Kibria et al.’’, Algamal®. In addition to the previously proposed estimators of
the biasing parameter, we can also use the following estimators to estimate k:

Scientific Reports |

(2023) 13:4968 | https://doi.org/10.1038/s41598-023-32119-0 nature portfolio



www.nature.com/scientificreports/

~2 p+1 p+1
b p(ﬂmax — Amin) 3 max (i]a ~ 1
kprrp = =T pprg = a1 kerrE = H =
n ST a2 . ;
j=1 %j j=1 ]

N n

where mj = \/gj;,j =1,2,.,p+land 62 = n—117—1 Zl (}’i —j/i)z'
iz

The Monte Carlo simulation studies
In this section, we designed two simulation schemes to compare the performances of different biased estimators
in the PRMs. In the first simulation scheme, we discussed the effects of sample size (1), the degree of the col-
linearity (p) and the number of the explanatory variables (p) on the performance of the PRTE, PRE, PLE, PLTE,
PSK, PHY estimators and PRTE, based on suggested best biasing estimates. In the second simulation design,
we examined the effect of the biasing parameter on the performances of the PRTE and ILTE for each set of the
values (1, p, p,0'2). For both simulation designs, we generated the explanatory variables by following Méansson
and Shukur'®, Kibria et al.'’, Kibria and Lukman™ as

1/2 . .
xij = (1 — ,02) / Wi + pwipr1,i = 1,2,.,n,j = 1,2,..,p, (28)

where wj; are independent standard normal pseudo-random numbers and p is specified such that the correlation
between any two variables is given by p2. Four different sets of correlations are investigated corresponding to
p = 0.85,0.9,0.99 and 0.999. Number of explanatory variables is determined as p = 2,4, 8 and 12. For each set
of explanatory variables, the parameter f is selected as the normalized eigenvector corresponding to the largest
eigenvalue of X'X so that 8’8 = 1. We used glm function in the R Stats package*. We also set the intercept term
equal to 0.

In the simulation and application sections, the proposed best biasing parameter estimators for PRE, PLE,
PLTE, PSK, and PHY estimators are used based on the works of Mansson and Shukur'®, Mansson et al.'®, Kibria

etal.”’, Asar and Geng'®, Alanaz and Algamal®*, Cetinkaya and Kagiranlar'®, Qasim et al.?*, Huang and Yang®.
To estimate k in PRE, we used the best estimator of k as kpRE = max ( >where m; = /Z—;,j =12,.,p
)
and 62 p s> (i — ,ul) which is recommended by Kibria et al.””.

123

Accordm the results given by Qasim et al.”’, we used the best estimator of d in PLE as

~ . a2-1
dp g = max | 0, min 1

max )+ozr2naX
For PLTE, the biasing parameters k and d are estimated by grouping them in three different ways as follows:
p kerred?
. 52 . A = (ytpre)

PLTE I: kp, g = max ( )where mj = g,] =1,2,..,panddpr1g = 714%%

L = Gitere)”
p _1kpLTES
- (4 +kPLTE)Z

/1—1004,
99 1+4

PLTE II: kpp1p = and dpp7p =

JO‘J
=1 )
U ’j(‘j+kPLTE) R
7. * 7.2
P /“J_dPLl}:(1+AJaj>

PLTE I1I: dpy 1 = mln{l_‘_); Az} j=1,2..pand kprrp = Z

A ]oc
Sakallioglu and Kagiranlar®' did not provide a specific techmque for estimating the biasing parameters k and
d for SK estimator. Therefore, we used the following estimator to estimate the biasing parameters k and d in PSK:

1 (a2
P /111

52 ~ 2”_ (/ +1) (/ +k )

PSK: kPSK = max ( )where mj = \/Z:Z,j =1,2,..,panddpsx = (1+/ QBSK

] P J 17
20 ) o)’

Moreover, we used the methods proposed by Huang and Yang® to estimate the parameters of the PHY estima-
tor. Huang and Yang® proposed two methods. We refer to these methods as (K1, D1) and (K2, D2) (see Huang
and Yang® for details). We used these methods by adapting them for the PHY estimator in PRMs. As a result,
the estimator obtained with (K1, D1) indicates PHY I, and the estimator obtained with (K2, D2) with PHY II.

We used the following g (k) functions together with the k estimator to determine the PRTE:

1+ Amin ‘min 14+/min rznm

PRTE I: kprrer = L (pAmax — (p + 1) Amin) and gk = i )“d k+ ((1 Hmin)ey —l)ﬂumm.
7 ;Lmaxarzne (14+Amax) ‘min (1‘{'“ Xmax) ‘min N,
PRIEI: ke = 25 and gl = e -+ A ¥ i) 1) min

~ min ( (1+4;)o? min ( (14+4)e?
PRTE II: kprrem = (/bmax - /hmm) and g(k) ( ! + ( ( ’ j) - 1> Zmin.

(1+/.jaj 1 max (1+ijotj2)
2 1) 7)) a?
PRTE IV: kpRTE[V IM and g(k) = min % k + | min % — 1 | Amin. where
n(l+ljozj ) n(1+Ajaj )

0[2 ed and ozmean are defined as the median end mean value of «7,j = 1,2, ..., p + 1, respectively.

"The performance of the estimated MSEs (EMSEs) is used as basis for comparing the proposed estimators
which are calculated for an estimator 8 of 8 as
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P n P MLE PRE PLE PLTEI PLTEII PLTEIII | PHYI PHY II PSK PRTEI PRTEII | PRTEIIl |PRTEIV
2 |50 |085 33505 | 04251 |0.6666 1.6658 1.8154 | 0.8999 1.8294 17538 | 1.4409 |0.3999** | 0.4042 | 0.4000%* | 0.3997*
2 |50 |09 7.1098 | 0.3893 | 0.5615 3.3676 3.5148 | 0.9444 3.5087 3.4565 |2.1748 | 03407 | 03433 | 03389 |0.3358*
2 |50 099 | 32.3787 |0.4784 |0.3886 | 14.7461 | 14.8312 |0.6181 14.8231 | 14.8011 |3.2623 |0.3428** |0.3434 | 03425 | 0.3400
2 50 0999 [396.6289 |0.6843 |0.3317 |189.2896 |189.2943 |0.4948 189.2885 | 189.343 [3.2163 | 0.3250* |0.3252 | 0.3248** | 0.3241*
2 |100 |o085 41795 | 04290 |0.6463 | 2.0166 2.1865 | 0.9297 2.1837 21022 | 1.6097 | 03884 |0.3906 | 0.3863* |0.3856*
2 |100 |09 55753 | 04177 |0.6092 | 2.654 2.8457 | 1.0138 2.8297 27448 | 1.8903 | 03681 |0.3696 | 0.3653* |0.3643*
2 |100 |0.99 352475 |0.5059 [0.3983 | 16.5814 | 16.7079 |0.7410 16.684 16.6501 | 33132 |0.3415°* [0.3418 | 03411 | 0.3396*
2 100 |0999 [420.3712 |0.7112 |0.3395 |196.4906 |196.4976 |0.5258 1964944 | 1965028 |2.9325 |0.3339* |03340 | 03338 | 0.3336*
2 |200 |085 43705 |04327 |0.6949 | 2.1726 23697 | 0.9879 23652 22690 |1.7706 |0.3982% |0.4007 | 0.3941** | 0.3936*
2 |200 |09 53801 |0.3963 |0.6039 | 2.6009 27865 | 0.9417 27773 27027 [ 1.9059 |0.3485** [0.3507 | 0.3450** | 0.3444*
2 |200 |0.99 37.3897 | 0.5087 |0.3891 | 17.348 17.4741 | 0.6873 174506 | 17.4194 |3.1571 |0.3380* |0.3382  [0.3377** |0.3368*
2 [200 |0999 |[392.6338 |0.7030 |0.3369 |182.3938 |182.3917 |0.5019 1823881 |182.3411 |2.7437 |0.3320% | 0.3320° |0.3320* | 0.3316*
2 |500 |0.85 46132 04175 |0.6410 | 22544 24440 | 0.9466 2.4340 23525 | 17471 |0.3704%* [03719 | 03668 |0.3667*
2 |500 |09 55349 |0.4101 | 05948 | 2.6512 2.8319 | 0.9460 2.8192 27452 | 1.8788 |0.3599** [03613  |0.3575* |0.3572*
2 [500 [099 | 439818 |0.5336 |0.3970 | 20.7216 | 20.8506 |0.7392 20.8297 | 20.7898 |3.3364 |0.34907* |0.3491 | 0.3487** | 0.3484*
2 |500 |0.999 |506.1048 |0.7193 [0.3363 |235.1907 |235.2138 |0.5256 2352081 |235.1556 |2.7036 |0.3319%* | 0.3319* | 03319 |0.3318*
Table 1. The EMSE values of the estimators when p = 2.
N 1L, 1
EMSE(B) = >~ (B~ ) (B - B), (29)
r=1
where <ﬂAr - ;3) is the difference between the estimated and true parameter vectors at rth replication and N is
the number of replications. For each case of n, p and p, the experiment was replicated 2000 times by generating
response variables. Our Monte Carlo simulation studies were conducted using the R Programming Language.
The results for different n, p and p are given in Tables 1, 2, 3 and 4 for p = 2,4, 8 and 12 respectively.
The bold numbers in the tables show the estimators with the smallest EMSE values, and in addition, the
signs (*), (**), and (***) represent the first, second, and third smallest EMSE values in each row, respectively.
The results from Tables 1, 2, 3 and 4 are listed below:
1. According to the results from Tables 1, 2, 3 and 4, it can be seen that the degree of correlation (p), the number
of explanatory variables (p) and the sample size () have different effects on all estimators in the simulation.
2. It has been observed that the EMSE values of PRTE I, PRTE II, PRTE III and PRTE IV are smaller than the
other existing biased estimators. Although our proposed estimators PRTE I, PRTE II, PRTE III, and PRTE
IV outperformed other existing estimators in all cases, it is also observed that they outperformed each other
in different #, p and p values.
p |n |p MLE PRE |PLE |PLTEI |PLTEIl |PLTENI |PHYI |PHYIl |PSK PRTEI |PRTEIl |PRTEII |PRTEIV
4 |50 |085 14.8073 {03343 |0.7139 | 52396 | 8.1800 |1.1858 7.8278 | 57486 | 4.4187 |02396** | 0.2491%* |0.2371* | 0.2570
4 |50 |09 14.6284 | 03357 |0.7303 | 52304 | 7.0981 |1.1121 7.9068 | 5.6430 | 4.5980 |0.2350** | 0.2411%** |0.2338* | 0.2434
4 |50 099 | 1213738 |0.4260 |0.2938 | 41.7830 | 42.6074 |1.2557 641290 | 455313 | 157597 |0.1943* | 0.1934* | 0.1943* | 0.1974
4 |50 ]0.999 |1772.2454 |0.7404 |0.2133 |605.9529 |606.2798 |0.4316 | 927.2069 |666.0135 |17.0897 |0.2062°* |0.2053* | 0.2061** | 0.2061**
4 |100 |0.85 105035 | 03967 |0.8442 | 3.8045 | 52600 |1.0593 57930 | 4.0477 | 3.4920 |0.2692** |0.2701 0.2663** | 0.2652*
4 | 100 |09 172789 | 03340 |0.6533 | 6.1263 | 7.9786 |1.1913 92264 | 65948 | 51263 |02315% |0.2341%* |0.2301* | 0.2350
4 100 099 | 1707186 |0.5055 |0.2774 | 59.7278 | 60.1472 |1.0102 90.0369 | 64.9378 |17.5231 |0.2072*** |0.2066* | 0.2071** | 0.2086
4 100 |0.999 |1151.1888 |0.6979 |0.2089 |387.5967 |387.3600 |0.4226 607.2847 | 419.3292 | 16.4946 | 0.1994** | 0.1986* | 0.1994°* | 0.199**
4 200 |0.85 9.8088 | 0.4143 |0.8649 | 3.5960 | 5.1733 | 1.0801 54090 | 3.8168 | 3.2808 |0.2922** |0.2923 0.2883** | 0.2880*
4 |200 |09 143776 03539 |0.7104 | 5.0917 | 65090 |1.1040 7.7311 54392 | 44110 | 02466 |0.2476 0.2447% | 0.2450%*
4200 099 | 159.9949 |0.5061 |0.2825 | 55.5575 | 559240 |1.0048 84.9881 | 59.8018 |16.3681 |0.2116* | 02121** | 0.2116* | 0.2140%*
4200 |0.999 |1301.5585 |0.7337 |0.2068 |450.2752 |450.0915 |0.4477 | 688.5009 |489.0979 |16.2530 |0.1975%* | 0.1974* | 0.1975** | 0.1975*
4 |500 |0.85 10.1800 |0.3855 |0.7937 | 3.6070 | 4.9723 |1.0087 55117 | 3.8471 | 3.2249 |0.2599 0.2594%*% [ 0.2571% | 0.2565*
4 |500 |09 152034 | 03395 |0.6786 | 53519 | 58787 |1.1395 8.1412 | 57093 | 45755 |0.2242 0224 [02228* | 0.2218*
4 500 (099 | 1485091 |[0.4908 |0.2732 | 50.9870 | 50.9130 |0.9365 781364 | 549269 |15.5351 [0.2013** [0.2013** |0.2013** | 0.2010*
4 500 |0.999 |1818.8245 |0.7584 |0.2015 |632.8561 |632.6658 |0.4061 962.8215 | 684.2725 |15.6989 |0.1942* | 0.1943°* |0.1942* | 0.1945%*
Table 2. The EMSE values of the estimators when p = 4.
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p |n |p MLE PRE |PLE |PLTEI PLTEIl |PLTEIIl |PHYI PHYII |PSK PRTEI | PRTEIl |PRTEIIl |PRTEIV
8 |50 [085 169251 |0.5693 |1.7384 4.9866 9.3544 | 0.9601 9.9705 51974 | 49074 |0.2783** |0.3383 0.2766* | 0.3358**
8 |50 |09 342415 | 0.3185 | 1.3459 10.2258 | 14.8173 | 1.2638 203488 | 105736 | 9.6449 |0.1757*¢ | 02107 |0.1754* | 0.2671

8 |50 [099 | 376.8382 |0.3521 |0.2981 | 112.4872 | 114.5209 |2.4520 222.1473 | 1153996 | 67.5860 |0.1270** |0.1186* | 0.1268* | 0.1344

8 |50 [0.999 |3550.7387 |0.5607 |0.1043 |1032.0721 | 1032.1650 | 0.9530 2101.0805 | 1057.0848 | 111.6942 | 0.0985 0.0882** | 0.0982*** | 0.0857*
8 | 100 [0.85 28.0655 | 0.3338 | 1.3340 8.1175 | 117144 |1.0920 16.4358 8.3348 | 7.8438 |0.1865** | 0.2236** |0.1857* | 0.2530

8 |100 |09 32.3341 | 0.3049 | 1.2851 9.6048 | 13.0163 |1.2299 19.2689 97889 | 9.4039 |0.1702** | 0.2010°* |0.1697* | 0.2345

8 | 100 [0.99 | 3640779 |0.3548 |0.2737 | 107.2006 | 108.1535 |2.2750 2172630 | 109.0771 | 64.2123 |0.1104** |0.1102* |0.1104** | 0.1236***
8 | 100 |0.999 |3532.0028 |0.6299 |0.1251 | 1049.2453 | 1049.0598 | 0.9829 2116.0276 | 1068.3102 | 97.2488 |0.1080*** | 0.1066* | 0.1080*** | 0.1079**
8 200 [0.85 27.8812 | 0.3376 | 1.3170 82821 | 115251 |1.0887 16.5757 84104 | 7.9684 |0.2047° | 0.2381°* |0.2038* | 0.2594

8 [200 |09 38.4506 | 0.2743 | 1.0961 114140 | 13.2997 | 1.2850 23.0604 | 115321 | 11.0466 |0.1537** |0.1698*** |0.1533* | 0.1851

8 200 [0.99 | 3385512 |0.3522 |0.2783 | 102.2077 | 102.7632 |2.0431 2033376 | 1033862 | 64.7562 |0.1100* | 0.1101** [0.1100* | 0.1224***
8 200 [0.999 |3801.1621 |0.6525 |0.1217 | 1104.5663 | 1104.3255 | 0.7988 2250.1080 | 1117.1855 | 90.6886 | 0.1074** | 0.1067* | 0.1074** | 0.1074**
8 | 500 |0.85 23.9278 | 0.3604 | 1.3955 7.2290 8.7036 |0.9510 14.4034 72898 | 7.0294 |0.1731* [0.1790** |0.1724* | 0.1796

8 |500 |09 36.8726 | 0.2774 | 1.1082 110530 | 12.5696 | 1.1896 22.0890 | 11.1405 | 10.6167 |0.1557** | 0.1638*** |0.1552* | 0.1693

8 | 500 [0.99 | 333.0063 |0.359 |0.2557 | 97.2928 | 97.3577 | 1.9152 197.5752 | 98.3202 | 59.9565 |0.1048* | 0.1053** | 0.1048* | 0.1091***
8 500 |0.999 |3371.3805 |0.6615 |0.1232 | 993.3309 | 993.0760 |0.8654 20283847 | 1001.5095 | 86.1849 |0.1064** | 0.1062* | 0.1064** | 0.1066***

Table 3. The EMSE values of the estimators when p = 8.

p |n |p MLE PRE |PLE |PLTEI |PLTEIl |PLTEII |PHYI PHYII |PSK PRTEI |PRTEIl |PRTEINI | PRTEIV
12 (50 (085 53.4955 | 0.3015 | 2.0251 145174 | 20.2989 | 1.0766 327296 | 152581 | 127215 |0.1246%* | 0.1642°* | 0.1245* | 0.2562

12 [50 |09 70.2583 | 0.2442 | 1.7893 19.5074 | 24.4279 | 13157 432572 | 202771 | 167916 |0.1204* | 0.1368*** | 0.1204* | 0.2368***
12 |50 [099 5483644 | 0.2280 |0.4282 | 1524782 | 155.4904 |3.3321 336.1475 | 1563263 | 101.6552 | 0.0906*** | 0.0699* | 0.0905** | 0.0998

12 |50 [0.999 |4667.8801 |0.4415 |0.1033 | 1265.9671 | 1266.5324 | 2.7146 2861.8004 | 1295.1068 | 264.6328 | 0.0879 0.0658* | 0.0875°* | 0.0628*
12 100 [0.85 36.9427 | 0.4167 |2.2049 101231 | 15.1137 | 0.9488 23.0251 | 10.3937 | 10.0361 |[0.1688** |0.2419°** | 0.1685* | 0.2954

12 [100 |09 48.6854 | 0.2949 | 1.9479 13.3593 | 17.9167 | 1.0852 307732 | 13.6499 | 13.3409 [0.1201** | 0.1766** | 0.1200* | 0.2466

12 |100 [0.99 | 420.8219 | 0.2308 |0.4158 | 113.6048 | 115.2467 | 2.9800 261.4296 | 115.2886 | 92.9058 |0.0815** | 0.0765* | 0.0815** | 0.1047***
12 100 [0.999 |5694.2354 |0.5262 |0.0988 |1561.364 |1561.328 | 2.0811 3598.6116 | 1583.9902 | 249.9250 | 0.0753 0.0709* | 0.0752** | 0.0720**
12 200 [0.85 35.8940 | 0.3973 | 2.1548 9.9192 | 14.1292 | 0.9314 225629 | 100764 | 9.8577 |0.1831** |0.2617°* | 0.1826* | 0.2999

12 200 [09 55.6204 | 0.2545 | 1.7140 154278 | 18.5915 | 1.1692 352408 | 155948 | 15.3354 |0.1152** | 0.1540** | 0.1150* | 0.2043

12 200 [099 | 4984333 |0.2532 | 03347 | 1365324 | 137.0078 | 2.8547 312.8818 | 137.7243 | 113.3388 | 0.0745** | 0.0737% | 0.0745** | 0.0897**
12200 [0.999 |4934.7958 |0.5365 |0.1022 | 1376.3954 | 1376.3458 | 1.9218 3132.8827 | 1388.3893 | 241.3478 | 0.0723** | 0.0711* | 0.0723** | 0.0740***
12 500 [0.85 36.7089 | 0.3639 | 2.0657 10.1674 | 12.1931 | 0.8892 232058 | 102179 | 10.1927 |0.1459** |0.1713*** | 0.1455* | 0.1818

12 [500 |09 60.5669 | 0.2356 | 1.5392 169069 | 18.6269 | 1.1705 38.3551 | 169884 | 16.6802 |0.1214% |0.1491°* | 0.1212* | 0.1782

12 500 [0.99 598.8263 | 0.2989 |0.2946 | 169.3809 | 169.6310 | 3.0236 380.3873 | 170.2031 | 126.8035 |0.0774* | 0.0780** | 0.0774* | 0.0934***
12500 |0.999 |4728.9493 |0.5541 |0.1029 | 1325.9854 | 1325.7740 | 1.9088 2999.9883 | 1332.0518 |227.6858 | 0.0733** | 0.0732* | 0.0733** | 0.0750

Table 4. The EMSE values of the estimators when p = 12.

3. When the number of variables p, and p are kept constant, the number of observations in the model did not
have a significant effect on the PRTE I, PRTE II, PRTE III, and PRTE IV.

4. Regardless of n and p values, it is observed that PRTE I, PRTE II, PRTE III, and PRTE IV tended to give low
EMSE values at high correlation.

5. When the number of observations (n) and correlation (p) in the model are kept constant, the EMSE values
for PRTE I, PRTE II, PRTE III, and PRTE IV decrease with the increase in the number of explanatory vari-

ables (p).

In summary, all our proposed estimators outperformed the other considered estimators in all scenarios.
However, it can be seen that there are cases where our estimators outperform each other due to different k and
f (k) function choices in different scenarios. As a result, we can observe that the number of observations has
a relatively small effect on EMSE values compared to p and p. In other words, PRTEs have a robust structure
according to the number of observations, therefore it gives very good results in case of high collinearity.

In the second simulation scheme, we examined the effects of the biasing parameter k on ILTEs and PRTE
performances when the sample size (n), degree of the collinearity (), and number of explanatory variables (p) are
constant. The purpose of this simulation is to examine the performances of ILTE and PRTE at various values of
the biasing parameter k according to the EMSE values given in (29). The biasing parameter k was not estimated
in the second simulation scheme. Only the EMSE values obtained by increasing the k values in the range [0, 2]
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by 0.1 were compared. There are many f (k) and g (k) functions we considered to evaluate the performances of
these estimators. In order to compare the performances of these estimators under some 7, p and p as an example,
the ILTEs and PRTE determined by the following f (k) and g(k) functions are considered:

o Aure= (X/WX + kI)71 (X/ WX +f(k)I)I§MLE where f(k) = Imin®ig + ( Imingg l)imin

) 1+ Zmax @2 1+ Zmax 02 ax
o Bursere = (XWX +K) (XWX +£00T) fors where £(K) = 117058 (k + Amin)?* — (K + Znin)
n N -1 n n . 'Zm.ﬂx max . 2. .
o s = (VR 1) (XX g1 er ) - S (G222 1)

Note that, when we use ,3 prE instead of B *in /f? 1LTE> the obtained estimator is shown B 1L TE(PRE)- Also, the f (k)
functions used in the By 75 and B 1E(prE) Were determined in accordance with the rules given by Akay and
Ertan®. Note that when the method given by Akay and Ertan® is applied to B 1e(prE), f (k) that minimizes the

SMSE < BILTE( pRE)) function is a quadratic function.

We considered the cases p = 0.9,0.99,0.999, n = 50, 100, 500, and p = 4, 8, 12. Depending on these n, p and
p values, the explanatory variables are generated according to (28). The simulation is repeated 2000 times for
each k value. The results are given graphically in Figs. 1, 2 and 3.

According to Figs. 1, 2 and 3, we can obtain the following results depending on each set of the values (1, p, p);

1. At small values of the biasing parameter k, PRTE outperforms other ILTE and ILTE(PRE). Although both
the PRTE and ILTE(PRE) include the PRE, the performance of the ILTE(PRE) is quite poor compared to
the PRTE at small values of the biasing parameter.

2. When the collinearity between the explanatory variables is relatively low, i.e. p = 0.9, ILTE(PRE) exhibits
quite different behavior from ILTE and PRTE. If the value of correlation of explanatory variables and the
number of explanatory variables increases, ILTE, ILTE(PRE) and PRTE show almost the same behavior.
However, PRTE exhibits a more consistent behavior at varying values of the biasing parameter k.

As aresult of the second simulation design, we recommend the PRTE to the researchers. In general, the per-
formance of these estimators depends on f (k) and g(k) functions, respectively. In practice, we need to replace
these functions with suitable functional relationships that can occur between the biasing parameters.

Numerical example: the aircraft damage data

In this section, the aircraft damage data is reanalyzed to demonstrate the benefits of PRTE. This data consists of 30
observations with three explanatory variables. The first variable (x; ) is a dichotomous variable showing the type
of the aircraft. The explanatory variables (x,) and (x3) are bomb load in tons and total months of aircrew experi-
ence, respectively. The count variable y is the number of locations where damage was inflicted on the aircraft®.
This dataset is also used by Myers et al.>, Asar and Geng'®, Amin et al.”, Lukman et al.*%, and Akay and Ertan’.

Asar and Genc'®, Amin et al.” and Akay and Ertan® considered the following model
u = exp (Bo + B1x1 + B2x2 + B3x3). Except for the intercept term, the eigenvalues of X'X are 208,522.5106,
374.8961 and 4.3333. Thus, the condition number is 48,120.9495, indicating a high multicollinearity problem
among the explanatory variables. Firstly, the variables are standardized and then the intercept term is added
to the vector of variables. Also, the eigenvalues of the matrix X’ WX are obtained as 4; = 47.5850 1, = 2.2844,
A3 = 1.4097 and A4 = 0.3681. The condition number is 129.2719 which is considerably larger than 30, indicat-
ing that MLE is still affected due to multicollinearity. The numerical results are given in Tables 5 to compare the
PRTEs with other existing estimators.

In addition, the bootstrap sampling method is used to calculate the SMSE values of the given biased esti-
mators. For this reason, 10,000 bootstrap samples have been created. For each of these samples, the parameter
estimates of the given biased estimators are calculated. The mean of the MLE estimates is considered the real
parameters. Then the calculated SMSE values are given in Table 5. From Table 5, it can be seen that the estimator
with the best SMSE value is PRTE I and PRTE III.

Now, we want to examine the performances of ILTE, ILTE(PRE), and PRTE, which were examined in the
previous section. Figure 4 graphically shows the estimated variance values of these estimators based on the value
of the biasing parameter k. Also, Fig. 5 shows the SMSE performance of Bi.7g, B1rTE(PRE) and BprrE estimators
according to the biasing parameter k.

Figures 4 and 5 indicating that the proposed PRTE is a strong alternative to other estimators at small values
of the biasing parameter k. This result is also compatible with the second simulation results given in the previ-
ous section.

To compare the estimators under the MMSE sense, the parameter estimation obtained with the bootstrap
sampling method is used in place of the unknown parameter . R Programming is used with tolerance 10~!2
to show the MMSE differences as a positive definite (pd) matrix. That is, if any of the eigenvalues is less than or
equal to tolerance, then the matrix is not pd. Otherwise, the considered matrix is pd.

Finally, our aim in this part is to compare the estimators obtained from the choice of various f (k) and g(k)
functions as a result of the theorem given in “The superiority of the PRTE in PRMs”. To illustrate Theorem 3.1,
the function f (k) and g(k) are taken as f (k) = 0.05k 4 0.05 and g(k) = 0.5k — 0.05, respectively. In this case,

cov BILTE — cov| BprrE ) is pd matrix for for 0 < k < 2.0057. Also, k values which provide (22) criterion are
0 < k < 2.0054. Consequently, MMSE (51LTE) — MMSE (,épRTE) is the pd matrix where 0 < k < 2.0054.
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Figure 1. The EMSE values of ILTE, ILTE(PRE), PRTE as a function of k values where p = 0.9.

Some concluding remarks

In this article, we defined a new general class of estimator named the PRTE as an alternative to MLE and the
other existing biased estimators in the presence of multicollinearity for the PRMs. The PRTE is a general estima-
tor which includes other biased estimators, such as the PRE, PLE, PHY and PSK estimators as special cases. In
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Figure 2. The EMSE values of ILTE, ILTE(PRE), PRTE as a function of k values where p = 0.99.

this study, we propose several rules for the determination of function g(k). By using Monte Carlo simulations,
the performance of the proposed PRTE with the existing estimators is evaluated in the smaller EMSE sense. The
results show that the proposed PRTE outperforms the existing estimators in case of high multicollinearity. In
addition, the comparison of ILTEs and PRTE is given with a general simulation study. In this simulation study,
these two general estimators are compared according to the values of the biasing parameter k. It is observed that

the PRTE is superior at small values of the biasing parameter k. Although the PRTE and ILTE(PRE) are both
depending on the PRE, the main advantage of PRTE over ILTE(PRE) is that it can minimize the SMSE function
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Figure 3. The EMSE values of ILTE, ILTE(PRE), PRTE as a function of k values where p = 0.999.

with the help of a liner function of the biasing parameter k. Also, the estimators are applied to real dataset and
it is observed that the results are consistent with simulation study. Depending on the experimental conditions
examined, the proposed biased estimator outperforms the other existing biased estimators. Therefore, based
on the results of the simulations and example, the PRTEs are recommended to the practitioners when there is

multicollinearity problem in the PRMs.
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Bo A B B var[ﬁ] SMSE[ﬁ]

Bure 01262 | 1.5576 |2.6710 |—1.4157 |3.8847

Brre (fchE = 247044) 0.4200 |0.7970 | 1.2620 | —0.5504 |0.2329 |0.3707
BrLE (QPLE = 0) 0.2994 | 1.1554 | 1.8704 | —0.8852 |0.6714 |0.6739
,éPLTEI(JQ =2.7044,d = _1,2945) 02793 | 1.1611 | 1.9365 | —0.9646 |1.3472 |1.3494
Brrren (k =0.1088,d = 0,3268) 0.2329 |1.3552 |2.1716 |—1.0640 |0.6947 |0.6956
ﬁmen(fc =36.3139,d = 0.0484) 0.3820 |0.1383 |0.2081 | —0.0787 |0.0093 |0.0556
Bpivt (f<1 =0.0637,D; = 0.9485) 0.1507 | 1.5078 |2.5561 |- 1.3366 |2.8723 |2.8723
Bonvir ( Ry = 0.0506, Dy = 0,2048) 0.2734 | 1.2170 | 1.9907 | -0.9645 |0.9259 |0.9277
BPSK (icsx = 2.7044, asx = 1.2396) 0.2117 | 1.4161 |2.3129 |-1.1287 |1.1497 1.1502

Brrrer (g(k) = 0.1766 x 10~k — 0.3681)
. 05387 | 03238 |0.4858 | —0.1687 |0.0305 |0.0513
kprTEI = 6.2833

Brrren (g(k) = 0.1568 x 107>k — 0.3680)
. 04952 | 0.5991 | 0.9146 | -0.3420 |0.0887 |0.1011
kprren = 1.8500

Brrrem (g(k) = 0.1003 x 1074k — 0.3681)
R 0.5387 |0.3234 | 0.4852 | -0.1684 | 0.0305 0.0512
kprrEII = 6.2956

Berrewy (g(k) = 02769 x 1072k — 0.3680)
X 04695 | 06907 |1.0597 |-0.4083 |0.1198 |0.1301
kprrery = 1.2282

Table 5. The estimated parameter values and the SMSE values of the estimators.
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Figure 4. The estimated variance values of ILTE, ILTE(PRE) and PRTE as a function of k.
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