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A new class of Poisson Ridge‑type 
estimator
Esra Ertan * & Kadri Ulaş Akay 

The Poisson Regression Model (PRM) is one of the benchmark models when analyzing the count 
data. The Maximum Likelihood Estimator (MLE) is used to estimate the model parameters in 
PRMs. However, the MLE may suffer from various drawbacks that arise due to the existence of 
multicollinearity problems. Many estimators have been proposed as alternatives to each other to 
alleviate the multicollinearity problem in PRM, such as Poisson Ridge Estimator (PRE), Poisson Liu 
Estimator (PLE), Poisson Liu‑type Estimator (PLTE), and Improvement Liu‑Type Estimator (ILTE). In 
this study, we define a new general class of estimators which is based on the PRE as an alternative 
to other existing biased estimators in the PRMs. The superiority of the proposed biased estimator 
over the other existing biased estimators is given under the asymptotic matrix mean square error 
sense. Furthermore, two separate Monte Carlo simulation studies are implemented to compare the 
performances of the proposed biased estimators. Finally, the performances of all considered biased 
estimators are shown in real data.

The Poisson Regression Model (PRM) is one of the benchmark models for count data in much the same way as 
the normal linear regression model is the benchmark for continuous  data1. In the PRM, yi is the response variable 
and follows a Poisson distribution with mean µi , then the probability function is defined as

where µi is expressed by using canonical log link function and a linear combination of explanatory variables 
as follows µi = exp

(

x′iβ
)

 where x′i is the ith row of X, which is an n×
(

p+ 1
)

 data matrix with p explanatory 
variables and β is a 

(

p+ 1
)

× 1 vector of coefficients.
The Maximum Likelihood method is the well-known estimation technique to estimate the model parameters 

in  PRMs2. The log-likelihood function for PRM is given as follows

The Maximum Likelihood Estimator (MLE) of β is obtained by maximizing the log-likelihood function, so 
the following equations are obtained as

Since Eq. (3) is nonlinear function of parameter β , the solution of S(β) is obtained using the following itera-
tively reweighted least squares (IRLS) algorithm

where Z is an n-dimensional vector with the ith element zi = log
(

µ̂i

)

+
yi−µ̂i

µ̂i
 and Ŵ = diag

[

µ̂i

]

3. The iteration 
ends when the difference between the old and updated values is less than a given small value, which is usually 
10−84. The asymptotic variance–covariance matrix of β̂MLE is cov

(

β̂MLE

)

=

(

X ′ŴX
)−1

.

Besides being a widely used estimator of MLE, one of its major disadvantages is that parameter estimates 
become unstable in the case of  multicollinearity5–13. The multicollinearity problem, which occurs because of the 

(1)f
(

yi
)

=
e−µiµ

yi
i

yi!
, i = 1, 2, . . . , n, yi = 0, 1, 2, . . .

(2)l(β) =

n
∑

i=1

yix
′
iβ − exp

(

x′iβ
)

− log
(

yi!
)

.

(3)S(β) =
∂ l(β; y)

∂β
=

n
∑

i=1

[

yi − exp
(

x′iβ
)]

xi = 0.

(4)β̂MLE =

(

X ′ŴX
)−1

X ′ŴZ,
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approximately linear relationship between the explanatory variables, affects the estimates of model parameters 
in the PRMs as well as in the linear regression models. One effect of the multicollinearity between explanatory 
variables is that the variance of the MLE becomes so large that the estimates of the model parameters become 
 unstable14–20.

In order to reduce the undesirable effects of multicollinearity, the biased estimators that are alternative to 
the MLE are generalized in a manner similar to that introduced in the linear regression model. For example, 
Månsson and  Shukur18 proposed the Poisson Ridge Estimator (PRE) as follows:

where k is a biasing parameter. The PRE is the generalization of the Ridge estimator introduced by Hoerl and 
 Kennard21 for the linear regression model.

Månsson et al.19, Amin et al.22 and Qasim et al.23 defined the Poisson Liu Estimator (PLE) as follows:

where 0 < d < 1 is a biasing parameter. The PLE is the generalization of the Liu estimator introduced by  Liu24 
for the linear regression model.

In recent years, the estimators with two biasing parameters have been proposed as an alternative to PRE and 
PLE. The purpose of estimators with two biasing parameters obtained by combining several estimators is to 
obtain more suitable estimators for parameter estimates. In this context,  Algamal25 defined the Poisson Liu-type 
estimator (PLTE) for the PRMs as follows:

where k> 0 and d ∈ R are the biasing parameters. The PLTE is a generalization of the Liu-type estimator, which 
is firstly introduced by  Liu26. The PLTE is based on the biasing parameters k and d.

Moreover, Asar and Genç15 and Çetinkaya and Kaçıranlar16 proposed another biased estimator with two bias-
ing parameters, defined by Özkale and Kaçıranlar27 for the linear regression models. The Poisson two-parameter 
Estimator (PTPE) is defined as:

where k> 0 and 0<d< 1 are the biasing parameters.
As an alternative to the estimators introduced so far, Akay and  Ertan5 proposed a general Improved Liu-type 

Estimator (ILTE) which includes MLE, PRE, PLE, PLTE and PTPE as special cases as follows:

where β̂∗ is any estimator of β and f (k) is a continuous function of the biasing parameter k. The estimator given 
in (9) is a generalization of the Liu-type estimator proposed by Kurnaz and  Akay28 for linear regression models.

In the literature, many estimators proposed for linear regression models can be generalized to be applied to 
PRMs. For example, the estimator depending on the Ridge estimator in linear regression models was proposed by 
Yang and  Chang29. In this sense, the biased estimator proposed by Yang and  Chang29 is adapted from the PRMs 
by Asar and Genç15. In addition, this estimator is applied to Negative Binomial regression models by Huang and 
 Yang30. Depending on the PRE, the estimator given by Huang and  Yang30 in the literature has been as follows:

where k and d are two biasing parameters. Although the estimator given in (10) is depending on the PRE, it is a 
general estimator which includes the MLE, PRE, and PLE as special cases, too.

From this point of view, another estimator depending on the Ridge estimator in linear regression models 
was proposed by Sakallıoğlu and Kaçıranlar31, and is defined by Sakallıoğlu and Kaçıranlar31 which is defined as:

where k and d are two biasing parameters and β̂RE =
(

X ′X + kI
)−1

X ′Y  . In this context, we can generalize the 
(11) estimators suggested for PRMs. Based on the PRE, we can generalize the estimator proposed by Sakallıoğlu 
and Kaçıranlar31 given in (11) as follows:

where k and d are two biasing parameters. In this case, the estimator given in (12) is a general estimator which 
includes the MLE, PRE and PLE as special cases. Best of our knowledge, no study has been conducted about 
estimator in (12) for the PRMs.

In PRMs, it is known that the performance of biased estimators proposed as an alternative to MLE is gener-
ally affected by the value of the biasing parameter. In general, the methods used for the estimation of biasing 

(5)β̂PRE =

(

X ′ŴX + kI
)−1

X ′ŴXβ̂MLE , k > 0,

(6)β̂PLE =

(

X ′ŴX + I
)−1(

X ′ŴX + dI
)

β̂MLE ,

(7)β̂PLTE =

(

X ′ŴX + kI
)−1(

X ′ŴX − dI
)

β̂MLE ,

(8)β̂PTPE =

(

X ′ŴX + kI
)−1(

X ′ŴX + kdI
)

β̂MLE ,

(9)β̂ILTE =

(

X ′ŴX + kI
)−1(

X ′ŴX + f (k)I
)

β̂ ∗, k > 0,

(10)β̂PHY (k, d) =
(

X ′ŴX + I
)−1(

X ′ŴX + dI
)(

X ′ŴX + kI
)−1

X ′ŴXβ̂MLE , k > 0, 0 < d < 1,

(11)β̂SK (k, d) =
(

X ′X + I
)−1(

X ′X + (k + d)I
)

β̂RE , k > 0,−∞ < d < ∞,

(12)β̂PSK (k, d) =
(

X ′ŴX + I
)−1(

X ′ŴX + (k + d)I
)

β̂PRE , k > 0,−∞ < d < ∞,
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parameters have been adapted similarly to those used in linear regression models. On the other hand, the use 
of estimators with two biasing parameters has become increasingly widespread in recent years. However, one 
of the most important problems for estimators with two biasing parameters is finding optimal estimates of the 
biasing parameters is difficult. For this purpose, many iterative techniques have been proposed to estimate these 
biasing parameters. In these cases, one of the biasing parameters can be estimated depending on the other biasing 
parameter, or vice  versa15,16,30. Thus, the idea arises that an unknown functional relationship may exist between 
these two biasing parameters.

Based on the information mentioned above, our aim in this article is to introduce a new general class of 
estimators that arises when there is a functional relationship between the biasing parameters. In addition, the 
proposed general estimator can be defined to specifically include the estimators given by (4), (5), (6), (10) and 
(12). Thus, this proposed estimator constitutes a general class of estimators like the estimator given in (9). It is a 
more efficient alternative estimator when compared with the one defined in (9) which can overcome multicol-
linearity in the PRMs. Another purpose of this article is to compare these two class estimators with a simulation 
study under some conditions.

The remainder of the article is organized as follows: In "A new general biased estimator", a new biased esti-
mator is defined and some of its properties are given. The superiority of this estimator over the other biased 
estimators under the matrix mean square error sense are shown in "The superiority of the PRTE in PRMs". 
In "Determination of function", several rules are proposed to determine the relationship between the biasing 
parameters. Two separate Monte Carlo simulation studies are executed in "The Monte Carlo simulation studies". 
In "Numerical example: the aircraft damage data", a real numerical example is provided to evaluate the perfor-
mances of the proposed biased estimators. Some concluding remarks are given in "Some concluding remarks".

A new general biased estimator
For PRMs, we can define a new general class of estimators including (4), (5), (6), (10) and (12) estimators based 
on the PRE estimator as follows:

where g(k) is a continuous function of the biasing parameter k . When we select g(k) as a linear function of the 
biasing parameter k such as g(k) = ak + b where a, b ∈ R , the Poisson Ridge-type estimator (PRTE) is a general 
estimator which includes the other biased estimators as special cases:

β̂PRTE = β̂MLE for g(0) = 1 where k = 0 and b = 1.
β̂PRTE = β̂PRE for g(k) = 1 where a = 0 and b = 1.
β̂PRTE = β̂PLE for g(0) = b where a = 0 and b corresponds to the biasing parameter d.
β̂PRTE = β̂PHY (k, d) for g(k) = b where b corresponds to the biasing parameter d.
β̂PRTE = β̂PSK (k, d) for g(k) = k + b where a = 1 and b corresponds to the biasing parameter d.
Note that, the proposed estimator given in (13) is different form the biased estimator given in (9). That is, 

when we use β̂PRE instead of β̂∗ in (9), the resulting estimator β̂ILTE(PRE) is given as follows:

where f (k) is a continuous function of the biasing parameter k . Note that the estimator given in (14) does not 
exactly correspond to the estimators given by (10) and (12), respectively. To show that the estimators given in (13) 
and (14) are different estimators, let’s examine the asymptotic scalar mean square error (SMSE) and asymptotic 
matrix mean square error (MMSE) of these estimators.

In order to obtain the asymptotic SMSE and the asymptotic MMSE of an estimator, we denote α = Q′β , 
�=diag

(

�1, ..., �p+1

)

= Q′
(

X ′ŴX
)

Q, where �1 ≥ �2 ≥ · · · �p+1 > 0 are the ordered eigenvalues of X ′ŴX,Q 
is the orthogonal matrix whose columns constitute the eigenvectors of X ′ŴX and the ith element of Q′β is 
denoted as αj , j = 1, 2, ..., p+ 1.

The asymptotic SMSE and the asymptotic MMSE of an estimator β̂ = Hβ̂MLE , where H is an 
(

p+ 1
)

×
(

p+ 1
)

 
matrix, are defined as:

Note that there is a relationship SMSE
(

β̂

)

= tr
(

MMSE
(

β̂

))

 between MMSE and SMSE criteria. Because 
of the relation of α = Q′β ; β̂MLE , β̂PRE , β̂PLE , β̂PLTE , β̂ILTE and β̂PRTE have the same SMSE values as 
α̂MLE , α̂PRE , α̂PLE , α̂PLTE , α̂ILTE and α̂PRTE , respectively.

Using (9), (13) and (14), it is easily computed that

(13)β̂PRTE =

(

X ′ŴX + I
)−1(

X ′ŴX + g(k)I
)

β̂PRE , k > 0,

(14)β̂ILTE(PRE) =

(

X ′ŴX + kI
)−1(

X ′ŴX + f (k)I
)

β̂ PRE , k > 0,

(15)
MSEM

(

β̂

)

= E
(

β̂ − β

)(

β̂ − β

)′

= H
(

β̂MLE − β

)(

β̂MLE − β

)′

H ′ + (Hβ − β)(Hβ − β)′

SMSE
(

β̂

)

= E
(

β̂ − β

)′(

β̂ − β

)

=

(

β̂MLE − β

)′

H ′H
(

β̂MLE − β

)

+ (Hβ − β)′(Hβ − β).

(16)
MMSE

(

β̂ILTE

)

= Q
(

(�+ kI)−1
(

�+ f (k)I
)

�−1
(

�+ f (k)I
)

(�+ kI)−1

+
(

f (k)− k
)2
(�+ kI)−1αα′(�+ kI)−1

)

Q′
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Moreover, we can give the SMSE functions of ILTE, ILTE (PRE) and PRTE as follows:

where the first term is the asymptotic variance and the second term is the squared bias. It should be noted that 
MMSE and SMSE functions of ILTE (PRE) and PRTE are different. Also, the MMSE and SMSE functions of other 
existing functions can be obtained according to the appropriate selection of f (k) and g(k).

Let β̂1 and β̂2 be any two estimators of β parameter. Then, β̂2 is superior to β̂1 with respect to the MMSE sense 
if and only if MMSE

(

β̂1

)

−MMSE
(

β̂2

)

 is a positive definite (pd) matrix. If MMSE
(

β̂1

)

−MMSE
(

β̂2

)

 is a 
non-negative definite matrix, then SMSE

(

β̂1

)

− SMSE
(

β̂2

)

≥ 0. But, the reverse is not always  true32.
In order to compare the MMSEs for the above-mentioned biased estimators, we are using the following 

theorem.

Theorem 2.1 Let A be a positive definite matrix, namely A > 0, and c nonzero vector. Then, A− cc′ is positive 
definite matrix iff c′A−1c ≤ 133.

The superiority of the PRTE in PRMs
In this section, we compare the PRTE with the ILTE according to the MMSE criterion. Here, we give a general 
theorem for comparing estimators with different choices of g(k) and f (k) functions. In this way, a general theo-
rem is obtained for comparing the estimators mentioned above in terms of MMSE sense.

The following theorem is given to show the superiority of PRTE over ILTE.

Theorem 3.1. Let be k > 0 and −�j −
(�j+1)(�j+f (k))

�j
< g(k) < −�j +

(�j+1)(�j+f (k))
�j

 where j=1,2,...,p+1. Then 
MMSE

(

β̂ILTE

)

−MMSE
(

β̂PRTE

)

> 0 iff

where bias
(

β̂PRTE

)

=
((

g(k)− k − 1
)

�− kI
)

Q(�+ I)−1(�+ kI)−1α.

Proof Using (19) and (21), we obtain

D = (�+ kI)−1
(

�+ f (k)I
)

�−1(�+ kI)−1
(

�+ f (k)I
)

− (�+ I)−1
(

�+ g(k)I
)

(�+ kI)−1�(�+ kI)−1
(

�+ g(k)I
)

(�+ I)−1 is the pd matrix if 
(

�j + 1
)2(

�j + f (k)
)2

− �
2
j

(

�j + g(k)
)2

> 0. 

(17)

MMSE
(

β̂ILTE(PRE)

)

= Q
(

(�+ kI)−1
(

�+ f (k)I
)

(�+ kI)−1�(�+ kI)−1
(

�+ f (k)I
)

(�+ kI)−1

+(�+ kI)−1
(

f (k)�− 2k�− k2I
)

(�+ kI)−1αα′(�+ kI)−1

(

f (k)�− 2k�− k2I
)

(�+ kI)−1
)

Q′
.

(18)

MMSE
(

β̂PRTE

)

= Q
(

(�+ I)−1
(

�+ g(k)I
)

(�+ kI)−1�(�+ kI)−1
(

�+ g(k)I
)

(�+ I)−1

+
((

g(k)− k − 1
)

�− kI
)

(�+ I)−1(�+ kI)−1αα′(�+ kI)−1(�+ I)−1
((

g(k)− k − 1
)

�− kI
))

Q′.

(19)SMSE
(

β̂ILTE

)

=

p+1
∑

j=1

(

�j + f (k)
)2

�j

(

�j + k
)2

+

p+1
∑

j=1

(

f (k)− k
)2
α2
j

(

�j + k
)2

(20)SMSE
(

β̂ILTE(PRE)

)

=

p+1
∑

j=1

(

�j + f (k)
)2
�j

(

�j + k
)4

+

p+1
∑

j=1

(

f (k)�j − 2k�j − k2
)2
α2
j

(

�j + k
)4

(21)SMSE
(

β̂PRTE

)

=

p+1
∑

j=1

�j

(

�j + g(k)
)2

(

�j + 1
)2(

�j + k
)2

+

p+1
∑

j=1

((

g(k)− k − 1
)

�j − k
)2
α2
j

(

�j + 1
)2(

�j + k
)2

(22)

bias
(

β̂PRTE

)′

Q
(

(�+ kI)−1
(

�+ f (k)I
)

�−1(�+ kI)−1
(

�+ f (k)I
)

−(�+ I)−1
(

�+ g(k)I
)

(�+ kI)−1�(�+ kI)−1
(

�+ g(k)I
)

(�+ I)−1
)−1

Q′bias
(

β̂PRTE

)

< 1

MMSE
(

β̂ILTE

)

−MMSE
(

β̂PRTE

)

= Q
(

(�+ kI)−1
(

�+ f (k)I
)

�−1(�+ kI)−1
(

�+ f (k)I
)

−(�+ I)−1
(

�+ g(k)I
)

(�+ kI)−1�(�+ kI)−1
(

�+ g(k)I
)

(�+ I)−1
)−1

Q′ − bias
(

β̂PRTE

)

bias
(

β̂PRTE

)′

= Qdiag

{

(

�j + f (k)
)2

(

�j + k
)2
�j

−
�j

(

�j + g(k)
)2

(

�j + 1
)2(

�j + k
)2

}p+1

j=1

Q′ − bias
(

β̂PRTE

)

bias
(

β̂PRTE

)′

.
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Thus D is the pd matrix if −�j −
(�j+1)(�j+f (k))

�j
< g(k) < −�j +

(�j+1)(�j+f (k))
�j

 and k > 0 where j=1,2,...,p+1. 
By Theorem 2.1, the proof is completed.

Determination of g(k) function
Since the performance of the biased estimators is related to the choice of biasing parameters, it is an important 
problem to find the optimal biasing parameters for the proposed biased estimators. Different techniques for 
estimating the biasing parameters in the PRE, PLE, PLTE, PSK and PHY are generalized depending on the simi-
larities between linear regression models and  PRMs5,15–19,23,30,34. The performance of PRTE depends on the 
function g(k) , and therefore only on the biasing parameter k . It should be noted that we have given the appropri-
ate choice of the g(k) function in the introduction that different estimators can be obtained. We may give a 
method to find the optimal g(k) function that approximately minimizes SMSE

(

β̂PRTE

)

 according to k . Our aim 
here is to determine the k and g(k) functions together, which can make the SMSE

(

β̂PRTE

)

 function approximately 
minimum. In other words, our goal here is to choose the appropriate k and g(k)  functions such that the decrease 
in the variance term is greater than the increase in squared bias. Note that SMSE

(

β̂PRTE

)

 is a nonlinear function 
of the biasing parameter k . So, writing h(k) = SMSE

(

β̂PRTE

)

, then we find h′(k) as follows differentiating h(k) 
with respect to k,

When h′(k) = 0 , there are two facts as follows;

Fact 1 �j
(

�j − g ′(k)�j − g ′(k)k + g(k)
)

= 0 differential equation is found. From the solution of this differential 
equation, we obtain

where c is the constant of integration.

Fact 2 α2
j

((

k + 1− g(k)
)

�j + k
)

−
(

�j + g(k)
)

= 0 equation is found. We have

According to the first and the second facts, it is convenient to choose g(k) as a linear function of the biasing 
parameter k. Note that, g(k) which is obtained in Fact 2 is a solution of the differential equation which is obtained 
in Fact 1. According to the results obtained in Fact 1 and Fact 2, we can propose the following generalizations. 
Firstly, note that the function g(k) given in (23) and (24) makes the SMSE

(

α̂PRTE
)

 function approximately mini-
mum for a j value. So, g(k) depends on the eigenvalues of X ′WX , the unknown parameter α and the estimate 
of the biasing parameter k. In other words, many functions can be determined depending on the functional 
relationship given in (23) and (24). For example, the following functional relationships can be proposed for the 
determination of function g(k):

where α2
min and α2

max are defined as the minimum and maximum value of α2
j , j = 1, 2, ..., p+ 1, respectively. 

Similarly, �min and �max indicate the minimum and maximum value of the eigenvalue of X ′ŴX , respectively.
In this study, we examined only the first degree polynomial functions given in (25) to (27) for g(k) function. 

Note that, the function g(k) can be selected as any continuous function of the biasing parameter k. Therefore, 
the proposed biased estimator depends on a single biasing parameter k. In this case, we should use an appropri-
ate estimate of biasing parameter k, which must be estimated to control the conditioning of the X ′WX matrix. 
Since the proposed estimator depends on a single biasing parameter k, the suitable estimates of k can be used 
given in Månsson and  Shukur18, Kibria et al.17,  Algamal25. In addition to the previously proposed estimators of 
the biasing parameter, we can also use the following estimators to estimate k:

h′(k) =

p+1
∑

j=1

2�j
(

�j − g ′(k)�j − g ′(k)k + g(k)
)

[

α2
j

((

k + 1− g(k)
)

�j + k
)

−
(

�j + g(k)
)

]

(

�j + 1
)2(

�j + k
)3

.

(23)g(k) = ck + (c − 1)�j ,

(24)g(k) =
α2j (�j+1)

1+�jα
2
j
k +

(

α2j −1

)

1+�jα
2
j
�j or g(k) =

α2j (�j+1)

1+�jα
2
j
k +

(

α2j (�j+1)

1+�jα
2
j

− 1

)

�j .

(25)g1(k) = c1k + (c1 − 1)�min where c1 ∈ (0, 1),

(26)g2(k) =
α2
min(1+ �min)

1+ �maxα
2
max

k +

(

α2
min(1+ �min)

1+ �maxα
2
max

− 1

)

�min,

(27)g3(k) =
min

�

α2
j
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where mj =

√

σ̂ 2

α̂2j
, j = 1, 2, ..., p+ 1 and σ̂ 2 = 1

n−p−1

n
∑

i=1

(

yi − ŷi
)2.

The Monte Carlo simulation studies
In this section, we designed two simulation schemes to compare the performances of different biased estimators 
in the PRMs. In the first simulation scheme, we discussed the effects of sample size (n), the degree of the col-
linearity (ρ) and the number of the explanatory variables 

(

p
)

 on the performance of the PRTE, PRE, PLE, PLTE, 
PSK, PHY estimators and PRTE, based on suggested best biasing estimates. In the second simulation design, 
we examined the effect of the biasing parameter on the performances of the PRTE and ILTE for each set of the 
values 

(

n, ρ, p, σ 2
)

 . For both simulation designs, we generated the explanatory variables by following Månsson 
and  Shukur18, Kibria et al.17, Kibria and  Lukman35 as

where wij are independent standard normal pseudo-random numbers and ρ is specified such that the correlation 
between any two variables is given by ρ2 . Four different sets of correlations are investigated corresponding to 
ρ = 0.85, 0.9, 0.99 and 0.999 . Number of explanatory variables is determined as p = 2, 4, 8 and 12. For each set 
of explanatory variables, the parameter β is selected as the normalized eigenvector corresponding to the largest 
eigenvalue of X ′X so that β ′β = 1 . We used glm function in the R Stats  package4. We also set the intercept term 
equal to 0.

In the simulation and application sections, the proposed best biasing parameter estimators for PRE, PLE, 
PLTE, PSK, and PHY estimators are used based on the works of Månsson and  Shukur18, Månsson et al.19, Kibria 
et al.17, Asar and Genç15, Alanaz and  Algamal34, Çetinkaya and Kaçıranlar16, Qasim et al.23, Huang and  Yang30.

To estimate k in PRE, we used the best estimator of k as k̂PRE = max
(

1
mj

)

 where mj =

√

σ̂ 2

α̂2j
, j = 1, 2, ..., p 

and σ̂ 2 = 1
n−p−1

∑n
i=1

(

yi − µ̂i

)2 which is recommended by Kibria et al.17.
According the results given by Qasim et  al.23, we used the best estimator of d in PLE as 

d̂PLE = max



0,min





α̂2j −1

max

�

1
�j

�

+α̂2max







.

For PLTE, the biasing parameters k and d are estimated by grouping them in three different ways as follows:

PLTE I: k̂PLTE = max
(

1
mj

)

 where mj =

√

σ̂ 2

α̂2j
, j = 1, 2, ..., p and d̂PLTE =

∑p
j=1

1−k̂PLTE α̂
2
j

(�j+k̂PLTE)
2

∑p
j=1

1+�j α̂
2
j

�j(�j+k̂PLTE)
2

.

PLTE II: k̂PLTE =
�1−100�p

99  and d̂PLTE =

∑p
j=1

1−k̂PLTE α̂
2
j

(�j+k̂PLTE)
2

∑p
j=1

1+�j α̂
2
j

�j(�j+k̂PLTE)
2

.

PLTE III: d̂PLTE = 1
2 min

{

�j

1+�j α̂
2
j

}

, j = 1, 2, ..., p and k̂PLTE = 1
p

p
∑

j=1

�j−d̂∗PLTE

(

1+�j α̂
2
j

)

�j α̂
2
j

.

Sakallıoğlu and Kaçıranlar31 did not provide a specific technique for estimating the biasing parameters k and 
d for SK estimator. Therefore, we used the following estimator to estimate the biasing parameters k and d in PSK:

PSK: k̂PSK = max
(

1
mj

)

 where mj =

√

σ̂ 2

α̂2j
, j = 1, 2, ..., p and d̂PSK =

∑p
j=1

�j

(

α̂2j −1
)

(�j+1)
2
(�j+k̂PSK)

2

∑p
j=1

�j

(

1+�j α̂
2
j

)

(�j+1)
2
(�j+k̂PSK)

2

.

Moreover, we used the methods proposed by Huang and  Yang30 to estimate the parameters of the PHY estima-
tor. Huang and  Yang30 proposed two methods. We refer to these methods as (K1, D1) and (K2, D2) (see Huang 
and  Yang30 for details). We used these methods by adapting them for the PHY estimator in PRMs. As a result, 
the estimator obtained with (K1, D1) indicates PHY I, and the estimator obtained with (K2, D2) with PHY II.

We used the following g(k) functions together with the k estimator to determine the PRTE:
PRTE I: k̂PRTEI = 1

n

(

p�max −
(

p+ 1
)

�min

)

 and g(k) = (1+�min)α
2
min

1+�maxα
2
max

k +
(

(1+�min)α
2
min

1+�maxα
2
max

− 1
)

�min.

PRTE II: k̂PRTEII =
p�maxα

2
med

nα2mean
 and g(k) = (1+�max)α

2
min

p(1+�maxα
2
max)

k +
(
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2
min

p(1+�maxα
2
max)

− 1
)

�min.

PRTE III: k̂PRTEIII =
p
n (�max − �min) and g(k) =
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�min . where 

α2
med and α2

mean are defined as the median end mean value of α2
j , j = 1, 2, ..., p+ 1, respectively.

The performance of the estimated MSEs (EMSEs) is used as basis for comparing the proposed estimators 
which are calculated for an estimator β̂ of β as

k̂PRTE =
p(�max − �min)

n
, k̂PRTE =

max
�

�jα̂
2
j

�

�p+1
j=1 α̂2

j

, k̂PRTE =
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(28)xij =
(

1− ρ2
)1/ 2

wij + ρwip+1, i = 1, 2, .., n, j = 1, 2, ..., p,
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where 
(

β̂r − β

)

 is the difference between the estimated and true parameter vectors at rth replication and N is 
the number of replications. For each case of n, p and ρ , the experiment was replicated 2000 times by generating 
response variables. Our Monte Carlo simulation studies were conducted using the R Programming Language. 
The results for different n, p and ρ are given in Tables 1, 2, 3 and 4 for p = 2, 4, 8 and 12 respectively.

The bold numbers in the tables show the estimators with the smallest EMSE values, and in addition, the 
signs (*), (**), and (***) represent the first, second, and third smallest EMSE values in each row, respectively. 
The results from Tables 1, 2, 3 and 4 are listed below:

1. According to the results from Tables 1, 2, 3 and 4, it can be seen that the degree of correlation (ρ), the number 
of explanatory variables 

(

p
)

 and the sample size (n) have different effects on all estimators in the simulation.
2. It has been observed that the EMSE values of PRTE I, PRTE II, PRTE III and PRTE IV are smaller than the 

other existing biased estimators. Although our proposed estimators PRTE I, PRTE II, PRTE III, and PRTE 
IV outperformed other existing estimators in all cases, it is also observed that they outperformed each other 
in different n, p and ρ values.

(29)EMSE
(

β̂

)

=
1

N

N
∑

r=1

(

β̂r − β

)′(

β̂r − β

)

,

Table 1.  The EMSE values of the estimators when p = 2.

p n ρ MLE PRE PLE PLTE I PLTE II PLTE III PHY I PHY II PSK PRTE I PRTE II PRTE III PRTE IV

2 50 0.85 3.3505 0.4251 0.6666 1.6658 1.8154 0.8999 1.8294 1.7538 1.4409 0.3999** 0.4042 0.4000*** 0.3997*

2 50 0.9 7.1098 0.3893 0.5615 3.3676 3.5148 0.9444 3.5087 3.4565 2.1748 0.3407*** 0.3433 0.3389** 0.3358*

2 50 0.99 32.3787 0.4784 0.3886 14.7461 14.8312 0.6181 14.8231 14.8011 3.2623 0.3428*** 0.3434 0.3425** 0.3400*

2 50 0.999 396.6289 0.6843 0.3317 189.2896 189.2943 0.4948 189.2885 189.343 3.2163 0.3250*** 0.3252 0.3248** 0.3241*

2 100 0.85 4.1795 0.4290 0.6463 2.0166 2.1865 0.9297 2.1837 2.1022 1.6097 0.3884*** 0.3906 0.3863** 0.3856*

2 100 0.9 5.5753 0.4177 0.6092 2.654 2.8457 1.0138 2.8297 2.7448 1.8903 0.3681*** 0.3696 0.3653** 0.3643*

2 100 0.99 35.2475 0.5059 0.3983 16.5814 16.7079 0.7410 16.684 16.6501 3.3132 0.3415*** 0.3418 0.3411** 0.3396*

2 100 0.999 420.3712 0.7112 0.3395 196.4906 196.4976 0.5258 196.4944 196.5028 2.9325 0.3339*** 0.3340 0.3338** 0.3336*

2 200 0.85 4.3705 0.4327 0.6949 2.1726 2.3697 0.9879 2.3652 2.2690 1.7706 0.3982*** 0.4007 0.3941** 0.3936*

2 200 0.9 5.3801 0.3963 0.6039 2.6009 2.7865 0.9417 2.7773 2.7027 1.9059 0.3485*** 0.3507 0.3450** 0.3444*

2 200 0.99 37.3897 0.5087 0.3891 17.348 17.4741 0.6873 17.4506 17.4194 3.1571 0.3380*** 0.3382 0.3377** 0.3368*

2 200 0.999 392.6338 0.7030 0.3369 182.3938 182.3917 0.5019 182.3881 182.3411 2.7437 0.3320** 0.3320** 0.3320** 0.3316*

2 500 0.85 4.6132 0.4175 0.6410 2.2544 2.4440 0.9466 2.4340 2.3525 1.7471 0.3704*** 0.3719 0.3668** 0.3667*

2 500 0.9 5.5349 0.4101 0.5948 2.6512 2.8319 0.9460 2.8192 2.7452 1.8788 0.3599*** 0.3613 0.3575** 0.3572*

2 500 0.99 43.9818 0.5336 0.3970 20.7216 20.8506 0.7392 20.8297 20.7898 3.3364 0.3490*** 0.3491 0.3487** 0.3484*

2 500 0.999 506.1048 0.7193 0.3363 235.1907 235.2138 0.5256 235.2081 235.1556 2.7036 0.3319** 0.3319** 0.3319** 0.3318*

Table 2.  The EMSE values of the estimators when p = 4.

p n ρ MLE PRE PLE PLTE I PLTE II PLTE III PHY I PHY II PSK PRTE I PRTE II PRTE III PRTE IV

4 50 0.85 14.8073 0.3343 0.7139 5.2396 8.1800 1.1858 7.8278 5.7486 4.4187 0.2396** 0.2491*** 0.2371* 0.2570

4 50 0.9 14.6284 0.3357 0.7303 5.2304 7.0981 1.1121 7.9068 5.6430 4.5980 0.2350** 0.2411*** 0.2338* 0.2434

4 50 0.99 121.3738 0.4260 0.2938 41.7830 42.6074 1.2557 64.1290 45.5313 15.7597 0.1943** 0.1934* 0.1943** 0.1974

4 50 0.999 1772.2454 0.7404 0.2133 605.9529 606.2798 0.4316 927.2069 666.0135 17.0897 0.2062*** 0.2053* 0.2061** 0.2061**

4 100 0.85 10.5035 0.3967 0.8442 3.8045 5.2600 1.0593 5.7930 4.0477 3.4920 0.2692*** 0.2701 0.2663** 0.2652*

4 100 0.9 17.2789 0.3340 0.6533 6.1263 7.9786 1.1913 9.2264 6.5948 5.1263 0.2315** 0.2341*** 0.2301* 0.2350

4 100 0.99 170.7186 0.5055 0.2774 59.7278 60.1472 1.0102 90.0369 64.9378 17.5231 0.2072*** 0.2066* 0.2071** 0.2086

4 100 0.999 1151.1888 0.6979 0.2089 387.5967 387.3600 0.4226 607.2847 419.3292 16.4946 0.1994*** 0.1986* 0.1994*** 0.199**

4 200 0.85 9.8088 0.4143 0.8649 3.5960 5.1733 1.0801 5.4090 3.8168 3.2808 0.2922*** 0.2923 0.2883** 0.2880*

4 200 0.9 14.3776 0.3539 0.7104 5.0917 6.5090 1.1040 7.7311 5.4392 4.4110 0.2466*** 0.2476 0.2447* 0.2450**

4 200 0.99 159.9949 0.5061 0.2825 55.5575 55.9240 1.0048 84.9881 59.8018 16.3681 0.2116* 0.2121** 0.2116* 0.2140***

4 200 0.999 1301.5585 0.7337 0.2068 450.2752 450.0915 0.4477 688.5009 489.0979 16.2530 0.1975** 0.1974* 0.1975** 0.1975**

4 500 0.85 10.1800 0.3855 0.7937 3.6070 4.9723 1.0087 5.5117 3.8471 3.2249 0.2599 0.2594*** 0.2571** 0.2565*

4 500 0.9 15.2034 0.3395 0.6786 5.3519 5.8787 1.1395 8.1412 5.7093 4.5755 0.2242 0.224*** 0.2228** 0.2218*

4 500 0.99 148.5091 0.4908 0.2732 50.9870 50.9130 0.9365 78.1364 54.9269 15.5351 0.2013** 0.2013** 0.2013** 0.2010*

4 500 0.999 1818.8245 0.7584 0.2015 632.8561 632.6658 0.4061 962.8215 684.2725 15.6989 0.1942* 0.1943*** 0.1942* 0.1945***
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3. When the number of variables p, and ρ are kept constant, the number of observations in the model did not 
have a significant effect on the PRTE I, PRTE II, PRTE III, and PRTE IV.

4. Regardless of n and p values, it is observed that PRTE I, PRTE II, PRTE III, and PRTE IV tended to give low 
EMSE values at high correlation.

5. When the number of observations (n) and correlation (ρ) in the model are kept constant, the EMSE values 
for PRTE I, PRTE II, PRTE III, and PRTE IV decrease with the increase in the number of explanatory vari-
ables 

(

p
)

.

In summary, all our proposed estimators outperformed the other considered estimators in all scenarios. 
However, it can be seen that there are cases where our estimators outperform each other due to different k and 
f (k) function choices in different scenarios. As a result, we can observe that the number of observations has 
a relatively small effect on EMSE values compared to ρ and p. In other words, PRTEs have a robust structure 
according to the number of observations, therefore it gives very good results in case of high collinearity.

In the second simulation scheme, we examined the effects of the biasing parameter k on ILTEs and PRTE 
performances when the sample size (n) , degree of the collinearity (ρ) , and number of explanatory variables 

(

p
)

 are 
constant. The purpose of this simulation is to examine the performances of ILTE and PRTE at various values of 
the biasing parameter k according to the EMSE values given in (29). The biasing parameter k was not estimated 
in the second simulation scheme. Only the EMSE values obtained by increasing the k values in the range [0, 2] 

Table 3.  The EMSE values of the estimators when p = 8.

p n ρ MLE PRE PLE PLTE I PLTE II PLTE III PHY I PHY II PSK PRTE I PRTE II PRTE III PRTE IV

8 50 0.85 16.9251 0.5693 1.7384 4.9866 9.3544 0.9601 9.9705 5.1974 4.9074 0.2783** 0.3383 0.2766* 0.3358***

8 50 0.9 34.2415 0.3185 1.3459 10.2258 14.8173 1.2638 20.3488 10.5736 9.6449 0.1757** 0.2107*** 0.1754* 0.2671

8 50 0.99 376.8382 0.3521 0.2981 112.4872 114.5209 2.4520 222.1473 115.3996 67.5860 0.1270*** 0.1186* 0.1268** 0.1344

8 50 0.999 3550.7387 0.5607 0.1043 1032.0721 1032.1650 0.9530 2101.0805 1057.0848 111.6942 0.0985 0.0882** 0.0982*** 0.0857*

8 100 0.85 28.0655 0.3338 1.3340 8.1175 11.7144 1.0920 16.4358 8.3348 7.8438 0.1865** 0.2236*** 0.1857* 0.2530

8 100 0.9 32.3341 0.3049 1.2851 9.6048 13.0163 1.2299 19.2689 9.7889 9.4039 0.1702** 0.2010*** 0.1697* 0.2345

8 100 0.99 364.0779 0.3548 0.2737 107.2006 108.1535 2.2750 217.2630 109.0771 64.2123 0.1104** 0.1102* 0.1104** 0.1236***

8 100 0.999 3532.0028 0.6299 0.1251 1049.2453 1049.0598 0.9829 2116.0276 1068.3102 97.2488 0.1080*** 0.1066* 0.1080*** 0.1079**

8 200 0.85 27.8812 0.3376 1.3170 8.2821 11.5251 1.0887 16.5757 8.4104 7.9684 0.2047** 0.2381*** 0.2038* 0.2594

8 200 0.9 38.4506 0.2743 1.0961 11.4140 13.2997 1.2850 23.0604 11.5321 11.0466 0.1537** 0.1698*** 0.1533* 0.1851

8 200 0.99 338.5512 0.3522 0.2783 102.2077 102.7632 2.0431 203.3376 103.3862 64.7562 0.1100* 0.1101** 0.1100* 0.1224***

8 200 0.999 3801.1621 0.6525 0.1217 1104.5663 1104.3255 0.7988 2250.1080 1117.1855 90.6886 0.1074** 0.1067* 0.1074** 0.1074**

8 500 0.85 23.9278 0.3604 1.3955 7.2290 8.7036 0.9510 14.4034 7.2898 7.0294 0.1731** 0.1790*** 0.1724* 0.1796

8 500 0.9 36.8726 0.2774 1.1082 11.0530 12.5696 1.1896 22.0890 11.1405 10.6167 0.1557** 0.1638*** 0.1552* 0.1693

8 500 0.99 333.0063 0.3596 0.2557 97.2928 97.3577 1.9152 197.5752 98.3202 59.9565 0.1048* 0.1053** 0.1048* 0.1091***

8 500 0.999 3371.3805 0.6615 0.1232 993.3309 993.0760 0.8654 2028.3847 1001.5095 86.1849 0.1064** 0.1062* 0.1064** 0.1066***

Table 4.  The EMSE values of the estimators when p = 12.

p n ρ MLE PRE PLE PLTE I PLTE II PLTE III PHY I PHY II PSK PRTE I PRTE II PRTE III PRTE IV

12 50 0.85 53.4955 0.3015 2.0251 14.5174 20.2989 1.0766 32.7296 15.2581 12.7215 0.1246** 0.1642*** 0.1245* 0.2562

12 50 0.9 70.2583 0.2442 1.7893 19.5074 24.4279 1.3157 43.2572 20.2771 16.7916 0.1204* 0.1368*** 0.1204* 0.2368***

12 50 0.99 548.3644 0.2280 0.4282 152.4782 155.4904 3.3321 336.1475 156.3263 101.6552 0.0906*** 0.0699* 0.0905** 0.0998

12 50 0.999 4667.8801 0.4415 0.1033 1265.9671 1266.5324 2.7146 2861.8004 1295.1068 264.6328 0.0879 0.0658** 0.0875*** 0.0628*

12 100 0.85 36.9427 0.4167 2.2049 10.1231 15.1137 0.9488 23.0251 10.3937 10.0361 0.1688** 0.2419*** 0.1685* 0.2954

12 100 0.9 48.6854 0.2949 1.9479 13.3593 17.9167 1.0852 30.7732 13.6499 13.3409 0.1201** 0.1766*** 0.1200* 0.2466

12 100 0.99 420.8219 0.2308 0.4158 113.6048 115.2467 2.9800 261.4296 115.2886 92.9058 0.0815** 0.0765* 0.0815** 0.1047***

12 100 0.999 5694.2354 0.5262 0.0988 1561.364 1561.328 2.0811 3598.6116 1583.9902 249.9250 0.0753 0.0709* 0.0752*** 0.0720**

12 200 0.85 35.8940 0.3973 2.1548 9.9192 14.1292 0.9314 22.5629 10.0764 9.8577 0.1831** 0.2617*** 0.1826* 0.2999

12 200 0.9 55.6204 0.2545 1.7140 15.4278 18.5915 1.1692 35.2408 15.5948 15.3354 0.1152** 0.1540*** 0.1150* 0.2043

12 200 0.99 498.4333 0.2532 0.3347 136.5324 137.0078 2.8547 312.8818 137.7243 113.3388 0.0745** 0.0737* 0.0745** 0.0897***

12 200 0.999 4934.7958 0.5365 0.1022 1376.3954 1376.3458 1.9218 3132.8827 1388.3893 241.3478 0.0723** 0.0711* 0.0723** 0.0740***

12 500 0.85 36.7089 0.3639 2.0657 10.1674 12.1931 0.8892 23.2058 10.2179 10.1927 0.1459** 0.1713*** 0.1455* 0.1818

12 500 0.9 60.5669 0.2356 1.5392 16.9069 18.6269 1.1705 38.3551 16.9884 16.6802 0.1214** 0.1491*** 0.1212* 0.1782

12 500 0.99 598.8263 0.2989 0.2946 169.3809 169.6310 3.0236 380.3873 170.2031 126.8035 0.0774* 0.0780** 0.0774* 0.0934***

12 500 0.999 4728.9493 0.5541 0.1029 1325.9854 1325.7740 1.9088 2999.9883 1332.0518 227.6858 0.0733** 0.0732* 0.0733** 0.0750
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by 0.1 were compared. There are many f (k) and g(k) functions we considered to evaluate the performances of 
these estimators. In order to compare the performances of these estimators under some n, p and ρ as an example, 
the ILTEs and PRTE determined by the following f (k) and g(k) functions are considered:

• β̂ILTE =

(

X ′ŴX + kI
)−1(

X ′ŴX + f (k)I
)

β̂MLE where f (k) = �minα
2
min

1+�maxα
2
max

k +
(

�minα
2
min

1+�maxα
2
max

− 1
)

�min

• β̂ILTE(PRE) =

(

X ′ŴX + kI
)−1(

X ′ŴX + f (k)I
)

β̂PRE where f (k) = α2min

1+�maxα
2
max

(k + �min)
2 − (k + �min)

• β̂PRTE =

(

X ′ŴX + I
)−1(

X ′ŴX + g(k)I
)

β̂PRE where g(k) = (�min+1)α2min

1+�maxα
2
max

k +
(

(�min+1)α2min

1+�maxα
2
max

− 1
)

�min

Note that, when we use β̂PRE instead of β̂∗ in β̂ILTE , the obtained estimator is shown β̂ILTE(PRE) . Also, the f (k) 
functions used in the β̂ILTE and β̂ILTE(PRE) were determined in accordance with the rules given by Akay and 
 Ertan5. Note that when the method given by Akay and  Ertan5 is applied to β̂ILTE(PRE) , f (k) that minimizes the 
SMSE

(

β̂ILTE(PRE)

)

 function is a quadratic function.
We considered the cases ρ = 0.9, 0.99, 0.999 , n = 50, 100, 500 , and p = 4, 8, 12 . Depending on these n, ρ and 

p values, the explanatory variables are generated according to (28). The simulation is repeated 2000 times for 
each k value. The results are given graphically in Figs. 1, 2 and 3.

According to Figs. 1, 2 and 3, we can obtain the following results depending on each set of the values 
(

n, ρ, p
)

;

1. At small values of the biasing parameter k, PRTE outperforms other ILTE and ILTE(PRE). Although both 
the PRTE and ILTE(PRE) include the PRE, the performance of the ILTE(PRE) is quite poor compared to 
the PRTE at small values of the biasing parameter.

2. When the collinearity between the explanatory variables is relatively low, i.e. ρ = 0.9 , ILTE(PRE) exhibits 
quite different behavior from ILTE and PRTE. If the value of correlation of explanatory variables and the 
number of explanatory variables increases, ILTE, ILTE(PRE) and PRTE show almost the same behavior. 
However, PRTE exhibits a more consistent behavior at varying values of the biasing parameter k.

As a result of the second simulation design, we recommend the PRTE to the researchers. In general, the per-
formance of these estimators depends on f (k) and g(k) functions, respectively. In practice, we need to replace 
these functions with suitable functional relationships that can occur between the biasing parameters.

Numerical example: the aircraft damage data
In this section, the aircraft damage data is reanalyzed to demonstrate the benefits of PRTE. This data consists of 30 
observations with three explanatory variables. The first variable (x1) is a dichotomous variable showing the type 
of the aircraft. The explanatory variables (x2) and (x3) are bomb load in tons and total months of aircrew experi-
ence, respectively. The count variable y is the number of locations where damage was inflicted on the  aircraft3. 
This dataset is also used by Myers et al.3 , Asar and Genç15, Amin et al.7, Lukman et al.36, and Akay and  Ertan5.

Asar and  Genc15, Amin et  al.7 and Akay and  Ertan5 considered the following model 
µ = exp (β0 + β1x1 + β2x2 + β3x3) . Except for the intercept term, the eigenvalues of X ′X are 208,522.5106, 
374.8961 and 4.3333. Thus, the condition number is 48,120.9495, indicating a high multicollinearity problem 
among the explanatory variables. Firstly, the variables are standardized and then the intercept term is added 
to the vector of variables. Also, the eigenvalues of the matrix X ′WX are obtained as �1 = 47.5850 �2 = 2.2844 , 
�3 = 1.4097 and �4 = 0.3681 . The condition number is 129.2719 which is considerably larger than 30, indicat-
ing that MLE is still affected due to multicollinearity. The numerical results are given in Tables 5 to compare the 
PRTEs with other existing estimators.

In addition, the bootstrap sampling method is used to calculate the SMSE values of the given biased esti-
mators. For this reason, 10,000 bootstrap samples have been created. For each of these samples, the parameter 
estimates of the given biased estimators are calculated. The mean of the MLE estimates is considered the real 
parameters. Then the calculated SMSE values are given in Table 5. From Table 5, it can be seen that the estimator 
with the best SMSE value is PRTE I and PRTE III.

Now, we want to examine the performances of ILTE, ILTE(PRE), and PRTE, which were examined in the 
previous section. Figure 4 graphically shows the estimated variance values of these estimators based on the value 
of the biasing parameter k. Also, Fig. 5 shows the SMSE performance of β̂ILTE , β̂ILTE(PRE) and β̂PRTE estimators 
according to the biasing parameter k.

Figures 4 and 5 indicating that the proposed PRTE is a strong alternative to other estimators at small values 
of the biasing parameter k. This result is also compatible with the second simulation results given in the previ-
ous section.

To compare the estimators under the MMSE sense, the parameter estimation obtained with the bootstrap 
sampling method is used in place of the unknown parameter α . R Programming is used with tolerance 10−12 
to show the MMSE differences as a positive definite (pd) matrix. That is, if any of the eigenvalues is less than or 
equal to tolerance, then the matrix is not pd. Otherwise, the considered matrix is pd.

Finally, our aim in this part is to compare the estimators obtained from the choice of various f (k) and g(k) 
functions as a result of the theorem given in  “The superiority of the PRTE in PRMs”. To illustrate Theorem 3.1, 
the function f (k) and g(k) are taken as f (k) = 0.05k + 0.05 and g(k) = 0.5k − 0.05 , respectively. In this case, 
cov

(

β̂ILTE

)

− cov
(

β̂PRTE

)

 is pd matrix for for 0 < k ≤ 2.0057 . Also, k values which provide (22) criterion are 
0 < k < 2.0054 . Consequently, MMSE

(

β̂ILTE

)

−MMSE
(

β̂PRTE

)

 is the pd matrix where 0 < k < 2.0054.
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Some concluding remarks
In this article, we defined a new general class of estimator named the PRTE as an alternative to MLE and the 
other existing biased estimators in the presence of multicollinearity for the PRMs. The PRTE is a general estima-
tor which includes other biased estimators, such as the PRE, PLE, PHY and PSK estimators as special cases. In 

Figure 1.  The EMSE values of ILTE, ILTE(PRE), PRTE as a function of k values where ρ = 0.9.
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this study, we propose several rules for the determination of function g(k) . By using Monte Carlo simulations, 
the performance of the proposed PRTE with the existing estimators is evaluated in the smaller EMSE sense. The 
results show that the proposed PRTE outperforms the existing estimators in case of high multicollinearity. In 
addition, the comparison of ILTEs and PRTE is given with a general simulation study. In this simulation study, 
these two general estimators are compared according to the values of the biasing parameter k. It is observed that 
the PRTE is superior at small values of the biasing parameter k. Although the PRTE and ILTE(PRE) are both 
depending on the PRE, the main advantage of PRTE over ILTE(PRE) is that it can minimize the SMSE function 

Figure 2.  The EMSE values of ILTE, ILTE(PRE), PRTE as a function of k values where ρ = 0.99.
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with the help of a liner function of the biasing parameter k. Also, the estimators are applied to real dataset and 
it is observed that the results are consistent with simulation study. Depending on the experimental conditions 
examined, the proposed biased estimator outperforms the other existing biased estimators. Therefore, based 
on the results of the simulations and example, the PRTEs are recommended to the practitioners when there is 
multicollinearity problem in the PRMs.

Figure 3.  The EMSE values of ILTE, ILTE(PRE), PRTE as a function of k values where ρ = 0.999.
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Table 5.  The estimated parameter values and the SMSE values of the estimators.

β̂0 β̂1 β̂2 β̂3 var

[

β̂
]

SMSE

[

β̂
]

β̂MLE 0.1262 1.5576 2.6710 − 1.4157 3.8847

β̂PRE 
(

k̂PRE = 2.7044

)

0.4200 0.7970 1.2620 − 0.5504 0.2329 0.3707

β̂PLE 
(

d̂PLE = 0

)

0.2994 1.1554 1.8704 − 0.8852 0.6714 0.6739

β̂PLTEI 
(

k̂ = 2.7044, d̂ = −1.2946

)

0.2793 1.1611 1.9365 − 0.9646 1.3472 1.3494

β̂PLTEII 
(

k̂ = 0.1088, d̂ = 0.3268

)

0.2329 1.3552 2.1716 − 1.0640 0.6947 0.6956

β̂PLTEIII 
(

k̂ = 36.3139, d̂ = 0.0484

)

0.3820 0.1383 0.2081 − 0.0787 0.0093 0.0556

β̂PHYI 
(

K̂1 = 0.0637, D̂1 = 0.9485

)

0.1507 1.5078 2.5561 − 1.3366 2.8723 2.8723

β̂PHYII 
(

K̂2 = 0.0506, D̂2 = 0.2048

)

0.2734 1.2170 1.9907 − 0.9645 0.9259 0.9277

β̂PSK 
(

k̂SK = 2.7044, d̂SK = 1.2396

)

0.2117 1.4161 2.3129 − 1.1287 1.1497 1.1502

β̂PRTEI
(

g(k) = 0.1766× 10
−4k − 0.3681

)

k̂PRTEI = 6.2833
0.5387 0.3238 0.4858 − 0.1687 0.0305 0.0513

β̂PRTEII
(

g(k) = 0.1568× 10
−3k − 0.3680

)

k̂PRTEII = 1.8500
0.4952 0.5991 0.9146 − 0.3420 0.0887 0.1011

β̂PRTEIII
(

g(k) = 0.1003× 10
−4k − 0.3681

)

k̂PRTEIII = 6.2956
0.5387 0.3234 0.4852 − 0.1684 0.0305 0.0512

β̂PRTEIV
(

g(k) = 0.2769× 10
−3k − 0.3680

)

k̂PRTEIV = 1.2282
0.4695 0.6907 1.0597 − 0.4083 0.1198 0.1301

Figure 4.  The estimated variance values of ILTE, ILTE(PRE) and PRTE as a function of k.
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Data availability
All data generated or analyzed during this study are used by the given reference in this article. The data analyzed/ 
generated are available upon the reasonable request by the E. E.
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