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The use of gradient descent methods for optimizing k-eigenvalue nuclear systems has been shown to 
be useful in the past, but the use of k-eigenvalue gradients have proved computationally challenging 
due to their stochastic nature. ADAM is a gradient descent method that accounts for gradients 
with a stochastic nature. This analysis uses challenge problems constructed to verify if ADAM is a 
suitable tool to optimize k-eigenvalue nuclear systems. ADAM is able to successfully optimize nuclear 
systems using the gradients of k-eigenvalue problems despite their stochastic nature and uncertainty. 
Furthermore, it is clearly demonstrated that low-compute time, high-variance estimates of the 
gradient lead to better performance in the optimization challenge problems tested here.

Autonomous algorithmic-based design is becoming a powerful optimization tool in many engineering  fields1,2. 
Nuclear engineering stands to gain from these powerful optimization tools. These automated tools can help 
explore vast design spaces where the optimal case is neither intuitive nor easy to find due to an intractable number 
of potential solutions. Automated design of nuclear systems can also help break away from traditional human 
biases that are often present. For example, an AI system chose to add a moderator material within a region that 
was intended to be a “fast spectrum” section for shaping a neutron energy spectrum of the Fast Neutron  Source3 
at the University of Tennessee, Knoxville.

Gradient  descent4,5 has been shown to be an effective tool for engineering  problems6–8. Nuclear engineering 
has little documentation on the use of these methods within the  field9–12. The autonomous design algorithm 
used in this work is a stochastic gradient descent. This algorithm utilizes the derivatives of an objective func-
tion to iteratively take steps toward the minimum of the objective function and is designed to work well with 
a stochastic gradient, such as those estimated by Monte Carlo neutron transport simulations. Previously, this 
group published the demonstration of gradient descent for the design optimization of neutronic systems with 
quantitative constraints using the interior point method to optimize the k-eigenvalue, keff  , and reaction  rates13. 
The major issue brought up by the previous work was the stochastic nature of the gradients built from Monte 
Carlo neutron transport simulations. In this work, the gradient is built from sensitivities estimated using the 
Tools for Sensitivity and Uncertainty Analysis Methodology Implementation, TSUNAMI, code from the SCALE 
 package14–16. Sensitivity in this analysis describes how sensitive an eigenvalue or reaction rate ratio is to the total 
macroscopic cross-section, � . The sensitivities are used as the gradient in the form shown in Eq. (1), where f is 
either keff  or reaction rate based on the problem.

Methodology
In this section, the methods used to implement the gradient descent model ADAM coupled with TSUNAMI 
are discussed. Also, the challenge problems used to test if ADAM is a suitable optimization method for nuclear 
processes are introduced.

Algorithm. The gradient descent model used in this analysis is the ADAM (Adaptive moment estimation) 
 method17. The ADAM method name stands for adaptive moment estimate. ADAM combines two well-estab-
lished gradient descent methods:  Adagrad18 and  RMSProp19. ADAM leverages Adagrad’s ability to use sparse 
gradients and RMSProp’s utility with on-line and non-stationary settings. ADAM is designed to ensure step size 
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magnitude does not change with gradient changes, works well with sparse gradients, and has natural step size 
annealing. The ADAM algorithm can be seen below, where β1 , β2 , ǫ and α are hyperparameters used to tune 
performance, t is the current step, x is the list of variables being optimized, gt is the gradient vector, m is the 
first-moment estimate, v is the raw second-moment estimate, m̂ is the bias-corrected first-moment estimate, and 
v̂ is the bias-corrected second-moment estimate. The variables β1 and β2 are limited on [0, 1) and determine the 
momentum of the algorithm, α adjusts the step size of the algorithm, and ǫ is used to ensure the algorithm is not 
dividing by zero. Momentum, in this case, refers to a gradient’s likelihood to stay on its current path.

Gradient. The gradients for this work are calculated using TSUNAMI, a Monte Carlo based method, which 
makes them stochastic by nature. This means that the derivatives informing the gradient descent algorithm 
are noisy and have an associated uncertainty. The previously used Interior Point Method does not account for 
uncertainty or noise, meaning the gradient was assumed to be exact. This requires long TSUNAMI run times or 
the resulting gradients are noisy. The use of ADAM intends to correct this issue due to the built-in accounting 
for uncertainty within the gradient. This allows for high-variance sensitivities to be used to optimize nuclear 
systems.

The continuous energy version TSUNAMI-3D is used to calculate eigenvalue and reaction sensitivities for 
constructing the gradients used in the analysis. This version of TSUNAMI-3D provides 2 methods to calculate 
the sensitivity of k-eigenvalue: Iterative Fission Probability (IFP) and Contribution-Linked eigenvalue sensitivity/
Uncertainty estimation via Tracklength importance CHaracterization (CLUTCH). Both methods use general per-
turbation theory to calculate the first-order sensitivity  values14. The IFP method calculates the adjoint-weighted 
tallies and the importance for future generations, based on the neutron population. The CLUTCH method uses an 
importance function and determines sensitivity through the number of fission neutrons created by a  collision20. 
The IFP method is used for the optimization of keff  because it requires fewer neutron histories to be used and 
therefore allows us to use very high-variance sensitivities with fast run times to build the gradient for each step.

The sensitivity of the reaction rate is calculated using general perturbation theory through the GEneralized 
Adjoint Responses in Monte Carlo (GEAR-MC) method which uses both the CLUTCH and IFP  methods21. 
This method calculates the generalized importance function as a sum of intergenerational (IFP) and intragen-
erational (CLUTCH) effects. The sensitivities for both keff  and reaction rate are valid to use as gradients for this 
analysis because they are an unbiased estimator of the  gradient14. Sensitivities are defined as functions of the 
macroscopic cross-section of the material. The sensitivity with respect to the macroscopic cross-section can be 
used as a density sensitivity because the macroscopic cross-section is the product of material number density and 
microscopic cross-section. In this work, microscopic cross sections and molar mass are assumed to be known 
for a given material, resulting in the relationship, shown in Eq. (2), between macroscopic cross section and the 
mass density of the material:

where N is the number density, σ is the total microscopic cross section, NA is Avogadro’s number, M is the molar 
mass, and ρ is the mass density of a material—the physical design parameter that is varied for optimization.

Results
Proposal of challenge problems. Four challenge problems are proposed to test the use of TSUNAMI to 
build a gradient for the ADAM method. All four challenge problems are expected to have a smooth gradient 
(when the sensitivities have very low statistical variance) and no local minima other than the global minima. 
Challenge problems one, two, and three mirror the challenge problems developed in the first  publication13. The 
set-up is a 55 cm × 55 cm 2-dimensional, unreflected system. This geometry is then discretized into pixels, with 
the material being constant within each pixel. The material for each pixel is allowed to be a fixed homogenous 
mixture of UO2 (at 3% enrichment) and H2O . The density of this mixture in each pixel is varied as a param-
eter for optimization. This mixture is a ratio of 1 UO2 to 3.4 H2O . The SCALE material card is reported in the 
additional information section. This problem is purposefully designed to have a known optimal keff  of 1 with a 
perfectly circular geometry. The pixelated version of the optimal solution has a keff  slightly less than 1, depending 
on the spatial resolution. These problems aim to test ADAM: 
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1. as a nuclear system optimization algorithm,
2. test if a constraint can be implemented into the gradient, and
3. determine if high-variance sensitivities can be used in gradient descent optimization.

In the first challenge problem, the prism is broken into an 11× 11 grid of 5 cm × 5 cm pixels that each have a 
unique density. The density in each pixel is expressed by the Sigmoid function, defined as f(x) in Eq. (3), which 
is used to allow x to be in the range of negative infinity to positive infinity while restricting the density to remain 
in the range of zero to one. For this challenge problem, zero represents void and unity represents the density of a 
homogenized light-water-reactor fuel pin. This challenge problem optimizes the density of each pixel to maximize 
keff  with a constraint on the total mass of the system. The amount of total mass of the system is restricted to the 
mass of 61 pixels of the nominal density. This value was chosen as 61 because the system can become critical 
with 61 pixels (50.4% full) of the material in a cylindrical configuration. This problem aims to test the ability 
of ADAM to maximize the performance of a nuclear challenge problem while the variables are constrained.

To enforce the constraint on the keff  optimization problem, the objective function is changed such that the score 
is lowered if the mass goes above 61 by an exponential penalty term. This method goes against the norm within 
the community of using the log-barrier  method22,23 because we wanted to allow the simulation to violate the 
constraint during the course of the optimization. The hyperparameters of this exponential penalty term need to 
be optimized such that they force the mass to the desired constraint. The equation used for the objective function 
and gradient for this problem can be seen below. The function, O(x), is the optimization function and dOdx  is the 
gradient used within the ADAM algorithm. The variables r and v are parameters that allow the penalty function 
to be tuned such that it only takes effect once the constraint is exceeded and S(x) represents the sensitivities 
calculated by TSUNAMI.

The second challenge problem uses the same geometry and density variable as problem one but aims to minimize 
mass with a constraint on keff  . The constraint is set such that keff  must be greater than unity. This problem dem-
onstrates the use of TSUNAMI sensitivities in the constraint function. A new objective function was developed 
to minimize the mass of the system while constraining the keff  of the system. The new equation used can be seen 
below where O(x) is the objective function, dOdx  is the gradient used within ADAM, r is a tuning parameter for 
the keff  constraint, x is the set of one hundred twenty-one parameters for mass, and S(x) refer to the sensitivities 
pulled from TSUNAMI.

The third challenge problem is an expansion of the 11× 11 geometry. This problem mimics challenge problem 
one’s geometry with a 44× 44 pixelation where the outer dimensions are still 55 cm × 55 cm, and the material 
is varied in a similar way. The same material is used for this problem as the previous problems. The number of 
full cells is changed proportionally to ensure the same amount of material is used. The new number of cells used 
as the mass constraint is 61×44

2

112
= 976 . This is the only change to the objective function and derivatives used 

in the first challenge problem, where 61 is replaced with 976. This problem aims to show that when we expand 
the number of variables within the system, the ADAM algorithm can still converge. The finer grid also gives 
ADAM more geometric freedom to form a better-resolved solution. It should also be noted that the sensitivities 
from TSUNAMI will have a larger relative uncertainty per pixel due to the finer spacial discretization. Therefore, 
challenge problem three will show how an increase in uncertainty and noise in the derivatives will not affect 
ADAM’s ability to find a solution.

The fourth challenge problem is an 80 cm slab geometry reflected (symmetric) on two axes, effectively creat-
ing a 1-dimensional problem. This slab is then divided into 8 equal regions in the non-reflected direction. The 
geometry is also reflected on the face of region one, doubling the slab size with material symmetry. The slab is 
made of the same material as the previous problem. This geometry was chosen to represent the axial flux shape 
of a 1-dimensional system. The objective of this challenge problem is to flatten the fission reaction rate profile 
across all cells by changing the density of the material in each region. This problem aims to test the ability of 
the GPT method of reaction rate sensitivity as a gradient for optimization. Below are the equations used for the 
objective function and derivatives used for this challenge problem, where i and j refer to the discretization loca-
tions, RR refers to the reaction rate, and S(xi) is the sensitivity of the reaction rate ratio at location i over location j.
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The implementation of ADAM, for the challenge problems solved in this article, utilizes sensitivities from TSU-
NAMI as the gradient directly. TSUNAMI outputs sensitivities in two ways: material-based and element-based. 
For the challenge problems chosen, material sensitivities are used, because the problems are not optimizing the 
ratio of the material. They are optimizing the location of the material. The TSUNAMI run made at each step is 
constructed to use very little computation time to test if the algorithm works with a high-variance gradient. Each 
TSUNAMI run uses 10 skipped generations, 5 latent generations, 10 active generations, and 10,000 neutrons per 
generation, which allows us to use these short calculations, and high-variance gradients.

Verification of challenge problems. Challenge problem one is an 11× 11 discretization of a 55× 55 cm 
prism reflected in the vertical direction. Each pixel has an associated density that ranges from 0 to the nominal 
density of the homogenized fuel pin. This problem aims to determine if the TSUNAMI sensitivities can be used 
as a gradient for optimization. ADAM uses the derivatives of the objective function presented in the “Method-
ology” section to optimize the material density (effectively managing the location of the material) within the 
system. An innovative aspect of this approach already discussed in previous  work13 is that setting the density 
to be a continuous variable is one way to approach the design optimization of arbitrary geometry. A penalty 
term can be added to force the density to converge to either 0 or unity at the end of the optimization creating a 
solution with discrete density. In this case, the physics of the problem force the optimal solution to converge to 
0/1 density for all pixels. The initial condition of the system begins with the material evenly distributed over all 
cells with the mass being slightly less than the constraint where keff  is below 0.75. ADAM is able to optimize the 
location of the material to find a keff  of 0.9806± 0.0032 . The change in material location can be seen in Fig. 1 
below. This shows how the material was moved into a cylindrical shape, which is optimal for this system. Note 
that the optimal solution is symmetric as all pixelated versions of the cylinder with 61 units of mass will have 
the same calculated keff  regardless of rotation or location. Figure 2 shows the sensitivity profiles in the first and 
last steps of the algorithm. The sensitivities’ average magnitude is 0.00507± 0.00362 . This shows that ADAM 
can be used to optimize the keff  for a system with high-variance sensitivities because the sensitivities have 71% 
uncertainty on average.

The main parameters used to tune the performance of ADAM for this problem are the number of simulated 
neutrons per update step and the step size hyperparameter α . Figures 3 and 4 show different results while isolating 
the tuning of these parameters. The number of simulated neutrons is proportional to the computational runtime 
for each step and the statistical accuracy of the derivatives. Although more simulated neutrons produce more 
lower-variance, better performance was seen with many, quick, high-variance steps rather than with few, long, 
low-variance steps. This is shown in Fig. 3 by plotting the approach to optimal of keff  against the cumulative 
number of neutrons simulated. All of the plots seem to approach the same asymptotic behavior where lower 
neutrons per step (lower runtime) are favorable. Do note that the case of 6 generations is an exception to this 
trend. The α analysis (Fig. 4) shows that a larger value can help to speed up the approach to optimal keff  , but 
too large a value of α can be volatile as seen in the case where α = 0.5 . Alternatively, the lowest value of α (0.05) 
approaches the optimal with fewer depressions but increased the time needed to reach the maximum.

Challenge problem 2 is the same geometry as challenge problem 1. This problem aims to test the ability to 
use TSUNAMI sensitivities as part of the constraint for the optimization. ADAM uses the derivatives of the 
objective function presented in the “Methodology” section to optimize the mass within the system by changing 
pixel densities within the system.

The ADAM algorithm was able to maintain a keff  of 1.0018 with a mass of 65.95 units. The approach to this 
result can be seen in Fig. 5, below. This result was due to the algorithm getting stuck in local minima due to the 
coarse nature of the 11× 11 pixelation. The resulting configuration has the expected shape, similar to challenge 
problem 1, for the optimal result, as seen in Fig. 5.

The hyperparameters in the penalty term required tuning for this challenge problem. Figure 6, below, shows 
different tunings of constraint hyperparameters, r and v. These show different cases where the penalty term can 
begin to drop off very sharply once the constraint is met or can take time to fall off even after the constraint is 
met. This tuning can be used to enforce a strict result where the constraint is always met or allow for results 
where the constraint is close to being met but the system mass is lower.

Challenge problem 3 is a 44× 44 discretization of the 55 cm × 55 cm prism reflected on the vertical axis. Each 
pixel has an associated density that ranges from zero to the nominal density. This problem aims to determine 
whether higher-variance derivatives and a larger optimization space will improve or hinder the ability of the 
ADAM algorithm. ADAM uses the derivatives of the objective function presented in the “Methodology” section 
to optimize the mass within the system by changing pixel densities within the system.

The sensitivity magnitudes of the problem are 0.000537± 0.000599 on average. The sensitivity profiles for the 
first and last step of this convergence can be seen above in Fig. 7. It is also important to note that many sensitivity 
values have uncertainty greater than 100%. The first step has 1086 out of 1936 sensitivity values where uncertainty 
was greater than 100%. This result further supports the case that ADAM does not require converged sensitivity 
values to reach a converged result, rather it prefers to take many quick steps at the cost of higher uncertainty 
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on the sensitivities. The solution also shows that ADAM will perform better with more geometric options than 
with better gradient convergence.

The 44× 44 geometry problem ended on a keff  of 0.98910 with a total of 973.9 fuel cell mass after 2000 steps. 
This is greater than the keff  of the 11× 11 problem while maintaining the mass constraint. Figure 8, above, shows 
how the mass moved within the system over the course of the algorithm. Figure 9 shows ADAM’s approach to 
the chosen keff  constraint. Figure 9, also, shows the mass constraint of the problem over each step. With a finer 
mesh grid, the material was allowed to form a cylindrical design, which is optimal for this system. The percentage 
uncertainty on the sensitivities is, on average, 1.56× larger for each cell in the 44× 44 system than the 11× 11 
system. This shows that even though the ADAM algorithm had higher-variance sensitivities for each parameter, 
it could still find a better solution to the problem presented.

Challenge problem 4 was designed to test the ability of ADAM to use reaction rate sensitivity from TSU-
NAMI as a gradient. The geometry for the system is a 1D slab geometry divided into eight 10-cm regions with 
reflective boundaries on the face of region one, as seen in Fig. 10. The objective of this problem is to optimize the 
fission reaction rate profile to be flat. The parameters for this optimization are the density variable of each cell. 
The gradients used for this problem are the fission reaction rate ratio sensitivities calculated using TSUNAMI’s 
GEAR-MC method.

The cells begin with evenly distributed material. This results in a sinusoidal flux shape as seen in Fig. 11, with 
the fission reaction rate ranging from 0.02 to 0.1. ADAM was able to use the reaction rate sensitivities to find a 
system where the fission reaction rates across all cells ranged from 0.060 to 0.065. Figure 11 shows how the fis-
sion rate changes throughout the algorithm. It also shows the final step taken compared to the initial case. This 
shows visually how the fission reaction rate is flattened across the system. Figure 12 shows how ADAM adjusted 
the material within the system to find the optimal fission reaction rate.

Discussion
In conclusion, ADAM and TSUNAMI work well together for optimizing keff  problems despite the stochastic 
nature of the gradient. The first two challenge problems demonstrated the use of high-variance keff  sensitivities 
from TSUNAMI for the gradient of the objective function and the penalty term, respectively. The first problem 

Figure 1.  This figure shows the movement of material throughout the course of optimization of an 11× 11 
cell geometry. The algorithm optimized the geometry to maximize keff  with a constraint on the mass within the 
system. The steps show how the geometry moves from a flat geometry toward a cylindrical shape.
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Figure 2.  The sensitivity (with standard deviation) for the first and final are shown here. This shows that the 
sensitivities do not change much throughout the course of optimization. This helps ADAM to maintain on-line 
approximation of the derivatives for the problem.

Figure 3.  This shows the effect of running different numbers of simulated neutrons per step for the 
k-eigenvalue optimization with a fixed α value of 0.1. Each different colored line shows a different number 
of simulated neutrons where the x-axis is the total number of neutrons simulated. This shows that running 
different numbers of simulated neutrons per step can have a dramatic effect on the total amount of neutrons 
needed to reach convergence. Do note that the number of simulated neutrons is directly proportional to 
runtime.
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Figure 4.  This plot shows the effects of changing the α hyperparameters after a different number of steps within 
ADAM with a constant number of 10 simulated neutrons per step. Each line represents a different variation of α . 
This demonstrates that α can have an effect on the stability and number of steps needed to converge. α must be 
fine-tuned to receive the best results.

Figure 5.  The top-left plot shows the keff  throughout the course of the 11× 11 keff  optimization. The top-right 
plot shows the mass of the system throughout the optimization. ADAM was reach the optimal value of keff  but 
not within the constraint of mass. This was expected because the optimization was constructed to start with a 
large mass and would descend to an optimal. The bottom-left plot shows the first moment from Eq. (4) for the 
best case found. This shows that ADAM was removing material from the outside and maintaining mass near the 
center. The bottom-right figure shows the mass of the system for the best case. This shows that ADAM was able 
to use the first moment to design an optimal design.
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was able to find a keff  of 0.9806± 0.0032 with a mass below the constraint of 61 units. Problem two was able to 
reach a mass of 65.95 with a keff  above the constraint of criticality ( keff > 1.00 ). Challenge problem 3 displayed 
that ADAM scales excellently with increasing dimensionality of the search space and gives a better answer with 
a finer geometry structure despite the associated uncertainty increase. The key demonstration was that with the 
ADAM method, it is most efficient to use very high-variance sensitivity information. The final keff  value was 

Figure 6.  The different hyperparameters of the penalty term are shown with differing values. These 
hyperparameters must be tuned to reach an optimal value but can be precomputed to be close to the best 
configuration.

Figure 7.  This figure shows the sensitivities and standard deviation for the first and last step of the 44× 44 
geometry optimization of keff  . The sensitivity started out with a random sensitivity profile but converged to a 
cylindrical shape once the material was moved toward the middle of the geometry. The standard deviations 
follow the same trend but remain sparse throughout the optimization.
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0.98910 with 50.3% of a full geometry. The fourth challenge problem demonstrated the use of reaction rate ratio 
sensitivity from TSUNAMI as the gradient of ADAM. The problem was able to reduce the reaction rate ratio 
from 80 to 7.7%. These problems demonstrated the validity of using high-variance TSUNAMI keff  and reaction 
rate sensitivities for keff  problems. ADAM was able to use these high-variance gradients and reach solutions 
that match the desired outcomes.These results show that ADAM could potentially be used to optimize nuclear 
systems dominated by neutronics, such as searching for a maximum reactivity configuration in criticality safety 
applications.

Figure 8.  These figures show the material movement throughout the course of the 44× 44 keff  optimization. It 
can be seen that the material moves toward the center of the geometry. The finer mesh of the 44× 44 geometry 
allows for the shape to be more cylindrical.

Figure 9.  The left image shows the optimization of keff  for the 44× 44 geometry. The right image shows the 
mass constraint over the course of the optimization. These show that the optimal value was not reached because 
the mass constraint was maintained.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8474  | https://doi.org/10.1038/s41598-023-32112-7

www.nature.com/scientificreports/

Figure 10.  This figure shows the slab geometry used for challenge problem 4. Each different color slab 
represents a different cell with its own mass. Notice the symmetry across the middle of the slab. This 
representation is used to visualize the reflective boundary condtion of the slab.

Figure 11.  This shows the fission reaction rate in each slab throughout the optimization. The optimization was 
to flatten the fission rate across the slab geometry. This visualization shows the fission reaction rates flattening at 
the final step.
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Data availability
The data sets generated and analyzed during the current study are available in the ADAM repository, https:// 
github. com/ Naww1 37/ ADAM.

Received: 16 September 2022; Accepted: 22 March 2023

References
 1. Belhocine, A., Shinde, D. & Patil, R. Thermo-mechanical coupled analysis based design of ventilated brake disc using genetic 

algorithm and particle swarm. JMST Adv. 3, 41–54 (2021).
 2. Zheng, X., Yao, W., Zhang, Y. & Zhang, X. Parameterized consistency learning-based deep polynomial chaos neural network 

method for reliability analysis in aerospace engineering. arXiv: 2203. 15655 (2022).
 3. Peavy, J., Chvála, O., Sobes, V. & Hines, J. Current progress on the design of a coupled fast-thermal subcritical assembly. Trans. 

Am. Nucl. Soc. 212, 1536 (2019).
 4. Curry, H. The method of steepest descent for non-linear minimization problems. Q. Appl. Math. 2, 258–261 (1944).
 5. Lemaréchal, C. Cauchy and the gradient method. Doc. Math. Extra Vol. ISMP 251, 10 (2012).
 6. Audrino, F. & Bühlmann, P. Volatility estimation with functional gradient descent for very high-dimensional financial time series. 

Eidgenöss. Tech. Hochsch. 99, 1–21 (2001).
 7. Madgwick, S., Harrison, A. & Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In 

2011 IEEE International Conference on Rehabilitation Robotics (IEEE, 2011).
 8. Ren, L., Ye, Z. & Zhao, Y. A modeling method for aero-engine by combining stochastic gradient descent with support vector 

regression. Aerosp. Sci. Technol. 99, 105775 (2020).
 9. Park, G. & Seong, P. Application of a self-organizing fuzzy logic controller to nuclear steam generator level control. Nucl. Eng. Des. 

167, 345–356 (1997).
 10. Na, M. On-line estimation of DNB protection limit via a fuzzy neural network. Nucl. Eng. Technol. 30, 222–234 (1998).
 11. Do Koo, Y., An, Y., Kim, C. & Na, M. Nuclear reactor vessel water level prediction during severe accidents using deep neural 

networks. Nucl. Eng. Technol. 51, 723–730 (2019).
 12. Ejigu, D. & Liu, X. Gradient descent-particle swarm optimization based deep neural network predictive control of pressurized 

water reactor power. Prog. Nucl. Energy 145, 104108 (2020).
 13. Peavy, J. et al. Gradient informed design optimization of select nuclear systems. Nucl. Sci. Eng. 196, 1559–1571 (2022).
 14. Rearden, B. Perturbation theory eigenvalue sensitivity analysis with Monte Carlo techniques. Nucl. Sci. Eng. 146, 367–382 (2003).
 15. Rearden, B., Mueller, D., Bowman, S., Busch, R. & Emerson, S. Tsunami primer: A primer for sensitivity/uncertainty calculations 

with scale. ORNL/TM-2009/027 (2009).
 16. Rearden, B. & Jessee, M. Scale code system. ORNL/TM-2005/39 (2018).
 17. Kingma, D. & Ba, J. Adam: A method for stochastic optimization. ArXiv: 1412. 6980 (2014).
 18. Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. 

Res. 12, 2121–2159 (2011).
 19. Tieleman, T. & Hinton, G. Lecture 6.5-rmsprop. In Coursera: Neural Networks for Machine Learning (2012).

Figure 12.  This figure shows how the material is moved throughout the optimization to flatten the fission 
reaction rates. It can be seen how the material is pushed to the side where the reaction rates where lower initially. 
This geometry was able to achieve a flat fission rate for this problem.

https://github.com/Naww137/ADAM
https://github.com/Naww137/ADAM
http://arxiv.org/abs/2203.15655
http://arxiv.org/abs/1412.6980


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8474  | https://doi.org/10.1038/s41598-023-32112-7

www.nature.com/scientificreports/

 20. Perfetti, C. Advanced Monte Carlo methods for eigenvalue sensitivity coefficient calculations. PhD Dissertation, University of New 
Mexico (2012).

 21. Perfetti, C. & Rearden, B. Continuous energy Monte Carlo methods for calculating generalized response sensitivities using tsunami-
3D. In PHYSOR (2014).

 22. Wright, S. On the convergence of the newton/log-barrier method. Math. Program. 90, 71–100 (2001).
 23. Lee, U. & Mesbahi, M. Constrained consensus via logarithmic barrier functions. In 2011 50th IEEE Conference on Decision and 

Control and European Control Conference (IEEE, 2011).

Acknowledgements
This material is based upon work supported by the Department of Energy National Nuclear Security Adminis-
tration through the Nuclear Science and Security Consortium under Award Number(s) DE-NA0003180 and/
or DE-NA0000979.

Author contributions
V.S. conceived the experiments. A.W., N.W., and A.M. conducted the experiments. All authors analyzed the 
results and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 32112-7.

Correspondence and requests for materials should be addressed to A.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-32112-7
https://doi.org/10.1038/s41598-023-32112-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Stochastic gradient descent for optimization for nuclear systems
	Methodology
	Algorithm. 
	Gradient. 

	Results
	Proposal of challenge problems. 
	Verification of challenge problems. 

	Discussion
	References
	Acknowledgements


