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Traffic monitoring system design 
considering multi‑hazard disaster 
risks
Michele Gazzea 1,4*, Amir Miraki 1,4, Onur Alisan 2, Monique M. Kuglitsch 3, Ivanka Pelivan 3, 
Eren Erman Ozguven 2 & Reza Arghandeh 1

Roadways are critical infrastructure in our society, providing services for people through and between 
cities. However, they are prone to closures and disruptions, especially after extreme weather events 
like hurricanes. At the same time, traffic flow data are a fundamental type of information for any 
transportation system. In this paper, we tackle the problem of traffic sensor placement on roadways 
to address two tasks at the same time. The first task is traffic data estimation in ordinary situations, 
which is vital for traffic monitoring and city planning. We design a graph-based method to estimate 
traffic flow on roads where sensors are not present. The second one is enhanced observability 
of roadways in case of extreme weather events. We propose a satellite-based multi-domain risk 
assessment to locate roads at high risk of closures. Vegetation and flood hazards are taken into 
account. We formalize the problem as a search method over the network to suggest the minimum 
number and location of traffic sensors to place while maximizing the traffic estimation capabilities and 
observability of the risky areas of a city.

Extreme weather and climate events have increased in frequency or magnitude in recent decades. Likewise, popu-
lations and assets at risk have also increased, with higher consequences for exposed and vulnerable infrastructure 
systems. Roadways are one of the most critical types of infrastructure in our society. They allow the movement 
of people, goods, and services through and between cities, improving the quality of life in a populated area. Our 
daily responsibilities heavily depend on the performance of the transportation system. Therefore, efficiently 
operating and maintaining it becomes crucial for mobility and the sustainability of human life.

Although there is tended to think natural disasters’ impacts on roadways are distinct circumstances, all 
too often, they are a complex series of events that stretch over and build on other catastrophes such as storms, 
floods, fires, structural collapse, etc1. Nevertheless, opportunities for managing compound risks of weather- and 
climate-related disasters can be developed by roadway authorities for effectively managing multi-hazard risks 
and adapting to climate change, including adjustments to current roadway monitoring systems.

Traffic flow data are one of the most fundamental types of information for any transportation system. Road-
way authorities place sensors at specific locations along the roads to measure the distribution and variation of 
traffic and calculate the annual average daily traffic (AADT). AADT is used for analyzing accident rates, highway 
planning, designing arterial street systems, estimating mobility trends, determining roadway geometry, conges-
tion management, pavement design, etc.2.

Due to the exponential growth in the built environment and the length of roads, it has become increasingly 
difficult and costly to place sensors on all roads. In addition to the high installation cost, traffic sensors have 
high operating and maintenance costs3. To achieve cost efficiency, researchers have proposed some optimal and 
near-optimal traffic sensor placement methods,4–7.

However, traffic monitoring systems are mostly designed for blue-sky days without considering emergency 
conditions after extreme weather and climate events. Therefore, cities are more vulnerable and disable to provide 
efficient evacuation strategies and restoration operations due to the lack of observability of critical sections of 
the roadway systems.

Natural disaster risk assessment for roadways is widely addressed in the literature, e.g.8–10. Traditionally, risk 
maps of the cities are created via visual inspection by the ground base patrols and sometimes using drones or 
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helicopters. These procedures are, however, time consuming and costly. Recently, satellites have become a viable 
solution for large-scale applications, especially for urban infrastructure assets11. The advantage of satellites comes 
from the optimal trade-off between resolution (up to 0.3 meters/pixel), quality, revisiting time, and cost. This 
allows efficient and frequent monitoring and better situational awareness about the status of roadways at the 
city level. These paper’s authors have developed machine learning-based approaches to detect roadway closures 
automatically after storms using high-resolution satellite images12–14.

In this paper, we tackle the problem of optimal sensor placement on roadways to address two tasks simultane-
ously. The first task is traffic data estimation in normal situations. The second one is to have enhanced observabil-
ity of roadways in case of extreme weather events in high-risk areas. We propose a satellite-based multi-domain 
risk assessment to locate roads at high risk of closures, given the vegetation along roadways and the possibility 
of floods. Furthermore, we design a novel graph-based method to estimate traffic flow on roads where sensors 
are not present. Finally, we formalize the problem as an iterative search method over the graph to minimize the 
number of sensors while maximizing the estimation capabilities and observability of the city.

New roadway monitoring systems should be planned and designed to account for compound risks due to 
the climate changes that may occur over their lifetimes. In addition, existing roadway monitoring systems may 
need to be retrofitted, given climate change. Yet, decision-makers need access to high-quality and reliable traffic 
information to support technical and institutional capacity to manage climate-related risks. To summarize, this 
paper’s contributions are as follows: 

1.	 to create a multi-hazard risk assessment framework using satellite-based AI and
2.	 to develop a multi-objective optimization scheme for traffic sensor placement considering normal and emer-

gency conditions

Use case
The study area is the city of Tallahassee, the capital of Florida. Several tropical cyclones severely hit Tallahassee 
in the last years including hurricanes of Category 3 or above. These include Tropical Storm Debby (2012), Hur-
ricane Hermine (2016), Hurricane Michael (2018), and Hurricane Ian (2022). During Hurricane Michael, 90% of 
the city-county remained without power for up to a week, and numerous fallen trees throughout the community 
made commuting almost impossible15.

For our approach, we acquired the data partly from the municipality, partly from the public domain, and 
commercial satellite images to develop our approach. In particular, we acquired a satellite image of the entire city 
from the PlanetScope constellation16, covering 402.8 km2 (155.5 mi2 ). The image contains eight spectral bands 
(coastal blue, blue, green I, green II, yellow, red, red edge, and near-infrared) with a spatial resolution of 3 m/pixel.

Additionally, we used Geographical Information System (GIS) data, including shapefiles of the roads stor-
ing their geographical coordinates, number of lanes, maximum speed limit, and the annual average daily traffic 
(AADT) traffic data. The locations of all the buildings (houses, private or public facilities, etc.) are also acquired. 
Moreover, a subset consisting of hospitals, medical facilities, fire stations and emergency shelters is extracted. 
We refer to these buildings as critical buildings as this kind of building becomes extremely important during 
disaster management. Finally, locations of high probability of flood were acquired from the municipality. Such 
areas have been calculated according to the past flooding history and include primarily lakes and rivers as well 
as and wetlands such as swamps and marshes. Figure 1 summarizes the data used.

Satellite image

Tallahassee, Florida

Roadway data

Infrastructures 
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Evacuation routes
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Figure 1.   Overview of the study area and the data used. The satellite image has been acquired from the 
PlanetScope constellation16. The satellite image and the roadway data are visualized and integrated with QGIS 
3.2017.
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Methodology
In this paper, we are interested in optimizing the number of traffic sensors for urban roadway systems. The sensor 
network should have high traffic prediction capabilities. This means that it is possible to estimate the traffic flow 
on roads that do not have sensors based on the data of the surrounding streets. At the same time, such sensors can 
serve as an additional surveillance tool, especially for disaster management, to have better situational awareness.

Given these premises, our framework is composed of two main modules. In the first module, we use a satellite 
image and available GIS data to create a risk map assessment of the roadway infrastructure automatically. Risk 
locations are essential for monitoring prior to extreme events. In the second module, we use a tailored graph-
based modeling algorithm to estimate road traffic flow. This is related to traffic forecasts in ordinary situations. 
Finally, we combine the two outcomes in a multi-objective recommendation engine to suggest a sensor place-
ment map. In other words, we want to place the sensors in locations that improve observability and situational 
awareness of the at-risk areas while providing good estimation capabilities of the traffic on other roads. Figure 2 
sketches our proposed framework, and each component is further described in the following.

Module 1: Multi‑hazard risk assessment.   The risk of an event is, by definition18, the product between 
the likelihood L of that event to occur and the impact I on the society or environment (Eq. 1).

Equation (1) states that a harmful event, even if it has a high probability to occur, can still be categorized as low 
risk if it does not have significant consequences on the society or environment.

In this study, we are considering the road network disruption after a hurricane. From the literature19 and our 
experience, we know that trees (e.g., fallen trees, tree debris, etc.) and floods are some of the leading causes of 
roadway closure and damages following extreme weather events, like hurricanes. A mathematical formulation 
of the likelihood L as a probabilistic function is challenging to derive due to the stochastic nature of hurricanes. 
Some studies, such as20 and21, tried to quantify single tree failure probability due to extreme weather events by 
proposing empirical mechanical models to estimate the possibility of tree failures. Such works consider tree 
characteristics (e.g., tree canopy, stem mass and tree mass, diameter at breast height, etc.), soil strength, and 
wind-induced bending moment on each tree and combine them with wind data22. However, due to the complex-
ity and limitations of measuring such characteristics, which are required information for mechanistic models, 
it is often impossible to obtain accurate estimations of the failure probability for trees on a large scale. Statistical 
models are another approach for predicting the probability of wind-related tree failure, as shown in23, but they 
still require data from surveys and inventories. Accurate flood predictions also require several types of data, 
such as the amount of rainfall occurring on a real-time basis, the rate of change in river stage, knowledge about 
the type of storm producing the moisture (duration, intensity and areal extent) and about the characteristics of 
rivers’ drainage basin, such as soil-moisture conditions, topography, and impermeable land area24. Therefore, in 
this study, we propose a simplified calculation based on tailored vegetation and flood exposures.

The impact of a roadway closure is, on the other hand, directly connected to the consequences of such a clo-
sure on the transportation network. It depends on the number of citizens and activities affected by the closure, 
whether it serves critical buildings (e.g., hospitals and emergency stations) and the importance of the road itself 
for the connectivity of the network. As such, we can rewrite Eq. (1) for our use case as:

 Therefore, in this first module, we detect at-risk areas within the transportation network by assessing the trees 
using satellite images. We assign a tree exposure score to each road based on the quantity, density, health, and 
distance of trees to the road. Furthermore, we use the areas that are more prone to be flooded to compute flood 
exposure per each road. ’ Then, we integrate the urban data from the municipality, precisely the number of 
buildings along the road, emergency facilities, and roadway locations. Finally, tree exposure, flood exposure, and 
impact are combined into a risk evaluation using Eq. (2). The output is a closure risk map of the road network.

Trees segmentation.  We use remote sensing techniques based on satellite images to detect trees, which are the 
main cause of roadway closures after hurricanes. Trees pose a significant threat as they can easily fall on the 
roads due primarily to the impact of strong winds. Furthermore, locations with an increased number of trees are 
also dangerous as it is more likely that some of them may fall, as experienced during Hurricanes Hermine and 
Michael25. It would be extremely challenging to acquire single tree parameters (e.g., height, canopy size, stem 
diameter) from satellite images, especially given the 3m/px image resolution. Nevertheless, we can calculate the 
density of trees, their distances from the road and estimate their health, which are the essential factors to con-
sider for the proposed closure risk analysis.

We first design a tree segmentation model Mtree . Given an input image, the corresponding output is a binary 
pixel-wise mask Otree taking two values, 0 for no-trees-bearing pixels and 1 for trees-bearing pixels. The seg-
mentation model labels the pixels that belong to or are part of a tree. We use an encoder-decoder-based U-net 
architecture26 as a segmentation model, tailoring it for our application. The architecture is composed by a cas-
cade of [16, 32, 64, 128, 256] convolutional filters activated by a relu activation function, followed by a batch 
normalization layer and a Max Pooling layer. The architecture is shown in Fig. 3. Binary cross entropy is used as 
loss function for training the network since only two labels are considered.

(1)Risk = L⊗ I

(2)
Risk = Tree Exposure; Flood Exposure

︸ ︷︷ ︸

L

⊗ (Building Density; Building Importance; Road Importance)
︸ ︷︷ ︸

I
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Trees’ health estimation.  Another element to consider is the tree health. An unhealthy tree may be an indication 
of a pathogenic wood-induced decay. As such the tree has a higher general propensity to fail27. The health of a 
tree is generally connected to the quantity and quality of its foliage, which is related to the amount of chloro-
phyll pigment in the leaves. However, a low amount of chlorophyll is not necessarily connected to poor health. 
Low chlorophyll content can be due to, for instance, species that are naturally less green than others or natural 
seasonal phenological cycles. Tree type is another factor that can affect the tree failure as some species are more 
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Figure 2.   Pipeline of the proposed approach. Module 1 computes risky areas prior to a natural disaster. Module 
2 models and predict the traffic flow over the roads. The two modules are run in parallel. Finally, the outcomes 
from the two modules are used in Module 3 to provide an optimal sensor placement that can maximize the 
traffic prediction performance while covering the at-risk areas with the minimum number of sensors. QGIS 
3.2017 software was used to create the maps, integrate and plot all the data and results.
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susceptible than others to uprooting28. However, estimating tree species from satellites is a challenging task. 
Some studies, like29, suggest an approach enabling a tree segmentation model to classify tree species. However, 
it requires at least a tree species reference dataset, which is not available in our study and is seldom available in 
general. Nevertheless, some studies, for example30, suggest that monitoring long-term trend in vegetation indi-
ces can give valuable information about a tree’s status. Positive trends are associated with growth while negative 
trends with decay in the tree foliage, thus health situation.

We use the Green Chlorophyll Vegetation Index (GCVI) calculated from the multi-spectral satellite as:

where ρNIR and ρGREEN are the atmospheric reflectance for the infrared and green band, respectively. The GCVI 
is used to estimate leaf chlorophyll content across a wide range of plant species. It provides a good prediction of 
chlorophyll content while allowing for more sensitivity and a higher signal-to-noise ratio than other indexes31. 
Common applications include monitoring the impact of seasonality, environmental stresses, and vegetation 
health.

To compute the trend of the vegetation index, we calculate the GCVI difference �GCVI for the same area in 
two consecutive years t = 2022 and t − 1 = 2021 as: �GCVI = GCVIt − GCVIt−1 . Both the images were acquired 
between June and July, which is summer in Tallahassee, with little variation in phenology among the tree spe-
cies. However, it is worth mentioning that, in general, the time interval heavily depends on the study area. In 
high temperate areas with more phenological variations among the species, additional time frames should be 
acquired, as explained in30. We expect the distribution �GCVI for the trees in the city to follow a Gaussian-like 
distribution. Practically, this means that most of the trees have been neutral over the two years. A minority of 
them experienced a positive �GCVI trend (growth) and others a negative �GCVI trend (decay). To isolate the 
most significant negative trend in �GCVI , similarly to19, we empirically set a threshold Th as Th = µ− σ , where 
µ and σ are the mean and standard deviation of the �GCVI distribution. This is justified by the fact that we are 
interested in detecting changes in the vegetation index that are statistically significant in relation to the average 
changes in the whole area. If a Gaussian model is representative of the empirical data, this threshold is considered 
reasonable by the authors.

Finally, we introduce a function fhealth(·) that maps the value of �GCVI into a health level factor value Ohealth . 
Trees with a �GCVI > Th are assigned a health level factor ′′1′′ (healthy) and trees with �GCVI < Th are assigned 
a health level factor 2 (unhealthy). Mathematically,

Vegetation indexes can estimate the amount of chlorophyll in vegetation. However, in general, they have issues 
discriminating between trees and other smaller types of vegetation (e.g., bushes, grass, or fields). Therefore, 
the final step is to multiply Ohealth with the tree segmentation map Otree obtained from the segmentation model 
Mtree . This allows for filtering out grass and fields, keeping only trees into consideration. The final output, Otree

health 
defined as

is a pixel-wise mask covering the whole study area where each pixel has one of the following values: 0 (no-tree), 
1 (healthy tree) or 2 (unhealthy tree).

Trees exposure calculation.  Finally, we combine tree density, proximity, and health into a number called tree 
exposure on road TE. To compute TE, we first extract equally distributed points every 20 meters along the road. 

(3)GCVI =

(
ρNIR

ρGREEN

)

− 1

(4)Ohealth = fhealth(�GCVI )

(5)Otree
health = Ohealth ⊗ Otree

16 16
I

3232 I/2
64 64 I/4

128 128 I/8
256 256 I/1

6
/1
6
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64 64

3232

16 16 I
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Figure 3.   Deep learning model architecture used to segment vegetation from a satellite image. Given a satellite 
image I as input, the corresponding output is a mask where trees are detected. Convolutional block (blue), 
pooling layers (red), up-sampling layers (blue), concatenation layers (gray), and classifier (purple).
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For each point P, we compute the tree exposure TEP by considering the health, distance from the roadway, and 
the density of the trees within a certain radius R from the point. We use a Gaussian weighting function to assign 
more weight to the trees closer to the road. The vegetation exposure calculation process is described in Eq. (6).

where Otree
health is the map calculated in the previous subsection and W is a Gaussian weighing function, introduced 

to assign more importance to the pixels at the center of the road. The integral is calculated within a circle of R 
radius from the point P on the roadway. Figure 4 graphically illustrates the process.

Finally, the tree exposure for the entire road is defined as the sum value among all the vegetation exposure 
calculated at the different sampled points (Eq. 7).

We scale the value of the tree exposure for all the roads in the network within the range (0, 1).

Flood exposure.  Similarly, we compute a number called flood exposure FE for each road. The flood exposure 
is calculated using the high flood probability zones provided by the municipality. Such zones are composed of 
water basins (e.g., rivers and lakes) and wetlands (e.g., marsh and swamps). We compute per each road the inter-
section between the road path and such high flood probability zones over the total road length. Hence:

A high value of flood exposure means that a road is passing through an area more prone to be flooded.

Roadway closure impact assessment.  Each road provides an essential way of accessing the different buildings 
in a city. If a road is blocked because of a fallen tree or a flood, the closure isolates the buildings and infrastruc-
tures accessed from that road. Moreover, a road connects topologically and geographically two points in a city. 
If a road is blocked, it may disconnect parts of the network, especially if there are few other roads to bypass the 
closed section. We use the betweenness centrality for roads (i.e., edges in the graph)32 to measure the degree of 
redundancy of roads mathematically. For each road, we calculate the number of buildings Nb , the number of 
critical buildings Nc that have access to that road and the measure of centrality �:

where V is the set of nodes of the graph, σ(s, t) is the number of shortest path between s and t, and σ(s, t|r) is 
the number of those paths passing through road r. The number of buildings Nb , critical buildings Nc and � are, 
similarly to the previous case, normalized within the range (0, 1).

Overall multi‑hazard risk assessment.  Finally, we combine the results form the previous calculations into a 
multi-hazard risk calculation. We compute the risk of a closure per each road by combining the tree exposure TE 
calculated from Eq. (7) and flood exposure FE, with the impact of disruption on the roadway network (Eq. 10). 

(6)TEP =

∫∫

∅R

Otree
health ·W

(7)TEroad =
∑

∀P∈road

TEP

(8)FEroad = road path ∪ flood zone

(9)Nbroad =
∑

road

buildings; Ncroad =
∑

road

critical buildings; �road =
∑

s,t∈V

σ(s, t|road)

σ (s, t)

Radius RP1

P2

P3

Gaussian weighting function W

Road r

0

1

2

Figure 4.   Tree exposure for a road. The road is sampled into equally distributed points P1, P2, . . . Pn . For each 
point we calculate tree exposure based on the amount and status of trees derived from Otree

health , weighted by a 
Gaussian-like function W.
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We recall that each term has been scaled within the same range (i.e., (0, 1)). This allows a direct sum without 
magnitude difference issues.

Module 2: Graph‑based traffic flow modeling.  From a mathematical view, a roadway network can be 
considered a graph where edges are roads and nodes are intersections between roads. Therefore, a transportation 
network can be analyzed using graph theory tools33,34. Graphs are one of the most important mathematical tools 
to model and analyze networks. In this paper, we consider the connected, undirected graph G = (V ,E) , where 
V is the set of vertices (or nodes), and E is the set of edges. We say that two vertices u and v in a graph G are 
connected if G contains a path from u to v35. The set of all adjacent vertices of v in G is called the neighborhood 
of v and is denoted by N(v).

When working with a geographical network (i.e., nodes and edges must have geographical coordinates to 
locate them in a real-world reference system), a pre-processing simplification step is needed. Roads are usually 
composed of piece-wise linear segments and include additional nodes that only exist to help streets bend around 
curves. However, they are not nodes in a topological sense. Topological nodes consist only of intersections 
between roads. Therefore, we first run a simplification process that removes nodes having NG(v) = 2.

After the simplification procedure, we consider the problem of estimating the traffic flow (i.e., AADT) of 
edges given the information of other edges. We recall that in the transportation graph, edges are roads. To ease 
the estimation procedure, we first calculate the dual graph out of the original graph. A dual graph G′ of a graph 
G is defined such that the edges of G are the nodes of G′ and the nodes of G become the edges of G′ . Note that 
this operation is reversible. In our case, the dual graph of the considered transportation network represents roads 
as nodes and intersections as edges. This way, the traffic information, such as AADT, is encoded into nodes. In 
estimation problems, the missing information of a node xi is assumed to be a function f of the information of its 
neighborhood, such that xi = f (xj), xj ∈ N(i) Typically, the most commonly used function is an average of the 
information around its neighborhood:

However, such a calculation may discard important information. Therefore, we propose a new estimation method 
for traffic data that considers a broader range of road characteristics and influences the traffic flow. We extract 
attributes for each road, specifically: the maximum speed limit S, number of lanes L, and network topology 
(orientation of the road θ and betweenness centrality � .) The speed limit and number of lanes as taken from the 
roadways shapefile data. The centrality � is calculated based on the road graph according to Eq. (9). The orien-
tation θ is instead calculated as arctan �y

�x for each road, where �x and �y is the difference between the ending 
point and the starting point of the road in the x and y axis, respectively.

To estimate the AADT on a node, we parameterized the function f as a linear combination of the AADT of 
its neighborhood. Mathematically,

where ˆAADTi is the estimated AADT value for the node i, j ∈ N(i) denote all the nodes in the neighborhood 
of i and α(i, j) are numerical parameters. In addition, we write the parameters α(i, j) as a linear combination of 
the road features φ:

where W1,W2,W3 and W4 are non-negative constants, acting as weights for the features. The road features 
φθ ,φL,φS and φ� are calculated from the road attributes θ , L, S and � as follows:

Figure 5 summarizes our node data estimation approach.
Finally, we solve the task of finding W1,W2 and W3 as an optimization problem to minimize for the predicted 

traffic data (AADT) over the whole graph.

where (W∗
1 ,W

∗
2 ,W

∗
3 ,W

∗
4 ) are the optimized weights.

Module 3: Multi‑objective recommendation.  In the previous section, the optimal values of the param-
eters W1,W2,W3 and W4 are found such that the AADT estimation is minimized for the whole graph. Never-
theless, in our study, we are interested in uncovering the at-risk areas, minimizing the traffic estimation error 

(10)Riskroad = (TEroad + FEroad)× (Nbroad + Ncroad +�road)

(11)xi =
1

|N(i)|

∑

∀j∈N(i)

xj

(12)ˆAADTi = f (AADTj , j ∈ N(i)) =

∑

j∈N(i) α(i, j)AADTj
∑

j∈N(i) α(i, j)

(13)α(i, j) = W1φθ +W2φL +W3φS +W4φ�

(14)

α(i, j) = W1 | cos(θi − θj)|
︸ ︷︷ ︸

φθ

+W2

[

1−
|Li − Lj|

max(L)−min(L)

]

︸ ︷︷ ︸

φL

+W3

[

1−
|Si − Sj|

max(S)−min(S)

]

︸ ︷︷ ︸

φS

+W4

[

1−
|�i −�j|

max(�)−min(�)

]

︸ ︷︷ ︸

φ�

(15)(W∗
1 ,W

∗
2 ,W

∗
3 ,W

∗
4 ) = argmin

( N∑

i=1

|AADTi − ˆAADTi|

)
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and keeping the number of sensors deployed as low as possible. Because the risk value assigned to each road, 
using Eq. (10), is a non-negative continuous number, it is not straightforward to categorize a road as at risk or 
not at risk. Therefore, we use the maximum deviation method36 to calculate a threshold Thrisk for the risk values. 
Roads with risk values less than such a threshold are categorized as not at risk, and roads with risk value greater 
or equal to the threshold are categorized as at risk. The maximum deviation method has been developed to find 
a threshold for uni-modal distributions where one group (in this case, not at risk roads) is larger than a second 
group (in this case, at risk roads). This way, roads are assigned to two groups: at-risk and not-at-risk roads. The 
multi-objective optimization scheme for traffic sensor placement is described in Algorithm 1.

Algorithm 1 Search method

Input: WeightsW1,W2,W3,W4 � in practice, the optimized weightsW ∗
1 ,W ∗

2 ,W ∗
3 ,W ∗

4 are used

Input: Initial subset nodes S0
Input: Select a prioritization policy (scenario 1,2,3)

1: for k = |S0| to N where N number of nodes in the graph G′ do
2: for each node j outside the subset S0 do
3: add temporarily the node j to S0
4: for each node i in the graph do
5: compute ÂADTi from S0
6: end for
7: calculate estimation error: MAPE = 1

N ∑N
i=1 |

AADTi− ˆAADTi
AADTi |

8: end for
9: if scenario 1 (put priority on risk) is selected: then
10: add to the subset S0 the node with highest risk � note that the traffic estimation error is not considered here

11: else if scenario 2 (put priority on traffic estimation error) is selected: then
12: add to the subset S0 the node with the minimum estimation error
13: else if scenario 3 (put priority on risk and traffic estimation error) is selected: then
14: add to the subset S0 the node with the highest risk among the 20% of the nodes with lowest estimation error

15: end if
16: end for
Output: Road priority list

1 2

3

i

Road attributes

Figure 5.   Node data estimation approach. The AADT value of the node i (red node) is estimated given the 
information provided by its neighborhood (here, nodes 1,2, and 3) weighted by the parameters α(i, j), j = 1, 2, 3 . 
The parameters α are calculated based on each node attribute: speed S (green), number of lanes L (blue), 
orientation θ (orange) and centrality � (yellow).
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As a starting point for our sensor placement strategy, we assume that we need to monitor all the at-risk roads 
and evacuation routes around the city. We denote the union of at-risk roads and evacuation routes as S0 , which 
is the minimum set of roads to be monitored in any case. This indirectly sets a lower bound on the number 
of sensors to deploy. Then, we propose an iterative search method to find additional roads to monitor in case 
more sensors are available. The inputs of the search method are: (i) the initial set S0 to monitor, (ii) the weights 
W1,W2,W3 and W4 modeling the traffic flow over the graph, as described in Eq. (13), and (iii) a prioritization 
policy. Although in practice, the optimal weights W∗

1 ,W
∗
2 ,W

∗
3  and W∗

4  found during the optimization step 
(Eq. 15) should be used, any other values of the coefficients are possible in theory. The output is a road priority 
list, which indicates the roads that should be prioritized and monitored by a sensor to ensure minimum traffic 
estimation error. We consider three different prioritization policies depending on whether, in adding more sen-
sors to new roads, we prioritize: monitoring at-risk roads (scenario 1), having better traffic estimation capabilities 
(scenario 2), or both (scenario 3).

Results and discussion
The framework has been developed in Python, using the Tensorflow/Keras libraries for the deep learning mod-
ules, scikit-image for the image processing parts, and networkx library for the topology analysis. QGIS 3.20 
has been used to visualize and integrate all the different data. The testing platform is a computer equipped with 
an Intel i7 Core 10th Gen processor, 32GB of RAM, and an Nvidia RTX 2080 Super as a GPU.

Creating the multi‑hazard risk map.  We first train and test the segmentation model Mtree A tree map for 
a portion of the city (83 km2 ) has been manually created with a balance between vegetated and non-vegetated 
areas. We created a dataset by randomly extracting 10000 80× 80 pixel tiles from this area. Thus, the dataset 
consists of a tensor of (10000, 8, 80, 80). We recall that 8 is the number of channels in the satellite image. We then 
split the dataset into a training and validation set with a 80-20 % proportion, respectively, as a common practice 
in machine learning37. Accuracy and the Jaccard coefficient are used to assess the model’s performance and pre-
vent overfitting when training comparing the segmentation output to the ground truth. Accuracy is a standard 
metric in classification, and it is defined as the proportion of correctly predicted pixels among the total number 
of pixels. The Jaccard index is one of the most used metrics in image segmentation and is defined as the ratio of 
intersection over the union between the prediction and the ground truth. Figure 6a shows the metrics during 
the training and validation procedures.

We note that the accuracy reaches a value above 95% already before 20 epochs and stabilizes at 98% while 
the Jaccard coefficient stabilizes at 95% . Results show that the segmentation model can detect the trees over the 
study area with good accuracy compared to the ground truth.

Finally, the trained model Mtree is used to segment trees over the whole study area by splitting it into tiles 
of 80× 80 pixels, performing the prediction over each tile, and stitching the tiles back together. This way, a 
segmentation map for the entire area is produced. Having a working segmentation model is fundamental when 
extensive tree inventory databases are not available, which is the case in a lot of parts of the world that have 
limited information, especially regarding tree inventories.

The GCVI (Eq. 3) has been calculated from the current and historical satellite images taken in 2022 and 
2021, respectively. Health is then estimated using �GCVI and fhealth as described in the “Methodology” Section. 
Due to the lack of surveys or references in the study area, health cannot be directly evaluated. Nevertheless, 
our method relies on current studies investigating the correlation between vegetation indexes and vegetation 
health. Figure 6b shows the distribution of �GCVI for the trees in the study area. The histogram confirms the 

Figure 6.   (a) Training and validation performances (accuracy and Jaccard coefficient) for the segmentation 
model Mtree . (b) Histogram of �GCVI . Threshold is calculated as µ− σ of the distribution to distinguish health 
from unhealthy trees.
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Gaussian-like distribution of the empirical data. A threshold Th = µ− σ is defined to group the trees into 
healthy and unhealthy, based on the assumption that unhealthy trees have a statistically high, negative �GCVI.

Figure 7 shows a portion of the output of the module Ohealth
tree  calculated as fhealth(�GCVI )⊗ Otree . The image 

is superimposed with roads, buildings and critical buildings.
Figure 8a and b show the calculated values for Nb and � , respectively. Figure 8a shows the calculated values 

for the number of buildings per road Nb , showing Tallahassee’s most densely inhabited area (red segments). 
Figure 8b shows the calculated values for the betweenness centrality � . Using Eq. (10) we generate a multi-
hazard risk map of the area combining the aforementioned different terms. Figure 8c shows such a risk map for 
the whole Tallahassee. Such a map shows the roads with greater risk, meaning that they are both more prone to 
disruptions and a disruption significantly affects the mobility.

Sensor placement recommendation.  The risk map is converted into a graph, simplified and dualized as 
a pre-processing step. Figure 9 provides a visualization of the procedure.

As described in the “Methodology” Section, we first group the roads into at-risk and not at-risk roads based 
on the calculated risk function and the maximum deviation threshold. Figure 10a shows the distribution, as 
histogram, of the risk values and calculated threshold. Such at-risk roads are merged with the evacuation routes 
around the city to initialize the starting subset S0 (Figure 10b). This is the set of roads that need to be monitored, 
setting the lower bound for the amount of sensors that need to be deployed.

We then simulate three different scenarios using our proposed search method (Algorithm 1) and the opti-
mal weights found in Eq. (15). We also simulate the same scenarios with the simple average method (Eq. 11). 
Figure 11 shows the mean absolute percentage error (MAPE) as a function of the roads monitored over each 
considered scenario (scenario 1, 2 and 3) using our proposed traffic flow model (Eq. 12) and a simple node 
neighborhood average (Eq. 11).

Figure 7.   Ohealth
tree  calculated as fhealth(�GCVI )⊗ Otree . It is a three-value mask where each pixel is either 0: 

no-tree (not visualized), or 1: healthy tree (green), 2: unhealthy tree (yellow). The image shows additionally the 
buildings (brown), critical buildings locations (blue cylinders) and considered roads (black lines). The satellite 
images is acquired from PlanetScope16. The image has been created with QGIS 3.2017.

Figure 8.   QGIS map of the study area showing roads colorized by (a) the number of buildings Nb , (b) 
betweenness centrality � , (c) risk map for the study area using Eq. (10). Roads have been colorized from low 
(green) to high (red) values according to equal count quantile.
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In the first scenario, the selection of nodes to be added iteratively to the subset is based on risk. This means 
that in the search algorithm, a node with higher risk is prioritized, and the sensor is placed on it. As we see 
from the figure, this scenario is not optimal for situations where a low traffic estimation error is important. For 
instance, if a traffic estimation error of 20% error is acceptable, then we need to place sensors on 73% of the roads.

In the second scenario, the selection of nodes to be added to the subset is based on the minimum estimation 
error. This prioritization policy leads clearly to a lower estimation error. Similarly to the previous case, if we 
require at least 20% error in the traffic estimation error, then only 30% of the roads require to have a traffic sensor.

In the third scenario, a combination of the two previous scenarios is taken into consideration. Since we bal-
ance at-risk roads and traffic estimation error, we expect the results to lay between the previous two scenarios. 
In this case, for a 20% traffic estimation error tolerance, 40% of the roads require a traffic sensor. Finally, we note 
that the curves generated using the proposed traffic flow model are constantly below the one generated using the 
simple average. This practically means that we can achieve a smaller prediction error in the traffic data using the 
same number of sensors. Figure 12 shows the output of the procedure as a QGIS map based on 20% tolerance 
error. Depending on the prioritization policy, different roads need to be monitored by placing a traffic sensor.

Practical considerations and broader impact.  Satellite data have several advantages compared to 
traditional infrastructure monitoring approaches, such as ground-based and aerial inspection with helicop-

Simplification Dualization

Figure 9.   Simplification and dualization procedure of a transportation network. In the original network, 
nodes (e.g., intersections) that have two edges are removed because they are part of the same road. Only nodes 
connecting three or more edges (e.g., roads) are kept. Furthermore, nodes connected to one edge are on the 
boundaries of the study area and should not be removed. This leads to the red-colored graph. During the 
dualization process, nodes become edges and edges become nodes. This way the road attributes are stored in 
nodes. This leads to the blue-colored graph.

Figure 10.   (a) Histogram of the risk values. The continuous distribution, shown as black solid line, has been 
estimated using kernel density estimation (KDE). Roads with a risk value less than the threshold are assigned to 
the not at-risk group (green), at-risk group (red) otherwise. (b) Initial monitoring subset S0 , defined as the union 
of at-risk roads (red segments) and evacuation routes (yellow segments).
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ters or drones. Traditional ground-based techniques are known to be time-consuming, costly, and unsafe while 
handling the complexity associated with emergency transportation operations. Above all, there has been a tre-
mendous drop in satellite data costs and high availability in recent years. For instance, Sentinel-1, 2, and 3 are 
expected to produce ca. 20 TB of free data per day38. This practically translates into the possibility of having 
many frequent, cheap, and up-to-date images, especially for large areas like an entire city. Such ”big data” are 
ideal fodder for data-driven (e.g., artificial intelligence or AI) approaches such as deep learning. However, there 
are some limitations to its application. The first limitation relates to the appropriateness of the data for the task at 
hand. Medium/high resolution (e.g., 3 m/px resolution used in this study) can seldom distinguish a single tree’s 
canopy structure and size, especially if they are packed together. As such, it is challenging to estimate single tree 
parameters for a detailed risk assessment. Furthermore, the estimation of tree health is also an additional source 
of uncertainty. In our satellite-based framework, we propose an alternative simplified model for multi-hazard 
risk calculation. Although the accuracy and Jaccard coefficient indicate a strong performance of our model, one 
of the challenges of AI-based models is the uncertainty of how they make decisions. Systematically exploring the 
spectrum of challenges presented when using AI-based methods for this type of application and trying to find 
solutions is an ongoing effort in an active community of experts at the intersection of geosciences and computer 
sciences/mathematics. Despite the limitations and uncertainties outlined above, we believe that our approach 
can serve as a complementary source for emergency management teams, not to fully replace but to be combined 
with the traditional roadway inspection approaches. In this paper, we considered mainly the vegetation and 
flood exposures as causes for roadway closures. The authors are, however, aware that this is a narrow scenario for 
risk assessment and during natural disasters such as those caused by hurricanes, many variables are at play. Cap-
turing these variables in a risk assessment scenario is very challenging. For instance, urban roads are also likely 
to be affected by other components such as electric poles, streetlights, buildings debris etc. In general, other 
elements such as wildfires, landslides or avalanches should be taken into account, depending on the consid-
ered geographical area. However, vegetation and floods remain the most significant causes of road disruptions, 

Figure 11.   Mean absolute percentage error (MAPE) as a function of the roads covered by a sensor for scenario 
1: based on risk, scenario 2: based on minimum estimation error, and scenario 3: based on combined risk and 
minimum estimation error.

Figure 12.   Final QGIS map output of roads that need to be monitored (red segments) by placing a traffic 
sensor based on: (a) scenario 1 with optimal weights, (b) scenario 2 with optimal weights, and (c) scenario 3 
with optimal weights.
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especially in the considered study area in Tallahassee. The proposed approach can possibly be extended to other 
infrastructure networks, such as electricity lines and railroads, with minor modifications.

In terms of sensor placement, we propose a procedure to select and choose which roads to optimally monitor 
with sensors, depending on different prioritization policies (i.e., risk or traffic estimation error). Which particu-
lar strategy to be used heavily depends on the planning for the transportation system based on costs, available 
resources, and accepted level of traffic estimation error. These inputs may vary from one city to another, and 
therefore it is not possible to provide a fixed rule. However, our framework works as a general, flexible, and rapid 
recommendation tool for supporting municipality roadway authorities in planning and management, providing 
better situational awareness of the transportation network.

Conclusions
In this paper, we propose a framework to place traffic sensors along roadways for efficient monitoring and 
improved situational awareness of the transportation network. The goal is to optimize the number and location 
of sensors to provide twofold benefits. The first targets to achieve better traffic flow surveillance and estimation 
along roadways during ordinary situations and second, to provide additional observability in case of natural 
disasters such as those caused by hurricanes. To do that, we use satellite imagery to detect the at-risk areas in the 
city automatically. Risk is calculated based on tree and flood exposures as well as the impact of a road closure on 
infrastructure accessibility. The traffic flow is modeled and estimated using a tailored graph-based estimation 
approach. While some uncertainties are still present, especially in the automatic risk assessment, our findings has 
the potential to assist planners and policymakers in better management of traffic operations. The solutions can 
help the city and transportation planning authorities to select the best locations to place traffic sensors for the 
city infrastructure, with reduced costs and resources. Furthermore, it leads to an improved situational awareness 
regarding locations at risk of multi-hazard. Future directions will be in testing the traffic conditions after using 
the proposed optimal sensory placement.

Data availability
The data supporting this study’s findings were provided to the authors by a commercial satellite image provider 
and the city of Tallahassee municipality. Still, restrictions apply to the availability of these data, which were used 
under license for the current study and are not publicly available. Authors will consider reasonable requests for 
data access from readers and discuss it with data owners for possible permissions. The corresponding author 
(mgaz@hvl.no) should be contacted to request the data from this study.
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