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Temporal visitation patterns 
of points of interest in cities 
on a planetary scale: a network 
science and machine learning 
approach
Francisco Betancourt 1,3*, Alejandro P. Riascos 1,3 & José L. Mateos 1,2,3

We aim to study the temporal patterns of activity in points of interest of cities around the world. In 
order to do so, we use the data provided by the online location-based social network Foursquare, 
where users make check-ins that indicate points of interest in the city. The data set comprises more 
than 90 million check-ins in 632 cities of 87 countries in 5 continents. We analyzed more than 11 
million points of interest including all sorts of places: airports, restaurants, parks, hospitals, and 
many others. With this information, we obtained spatial and temporal patterns of activities for 
each city. We quantify similarities and differences of these patterns for all the cities involved and 
construct a network connecting pairs of cities. The links of this network indicate the similarity of 
temporal visitation patterns of points of interest between cities and is quantified with the Kullback-
Leibler divergence between two distributions. Then, we obtained the community structure of this 
network and the geographic distribution of these communities worldwide. For comparison, we also 
use a Machine Learning algorithm—unsupervised agglomerative clustering—to obtain clusters or 
communities of cities with similar patterns. The main result is that both approaches give the same 
classification of five communities belonging to five different continents worldwide. This suggests 
that temporal patterns of activity can be universal, with some geographical, historical, and cultural 
variations, on a planetary scale.

In recent years, cities have become a topic of considerable scientific  interest1–3. In the last decade, the develop-
ment of technologies applied to inform the activities of humans has made available an unprecedented amount 
of data associated with the digital trace of humans in  cities4,5. For instance: the use of credit card  transactions6, 
the use of digital devices to access transportation services, like  taxis7, buses and  subway8,  bicycle9, and telecom-
munications networks like cell  phones10–16 and GPS  devices17,18.

A very important source of information for the study of human behavior in cities are Location-Based Social 
Networks (LBSN)19. In these, people share information about the places they visit that may be of interest to other 
people in this social network. These venues, also known as Points of Interest (POIs), correspond to places within 
the city that can be characterized by features, such as restaurants, bars, gyms, hospitals, museums, parks and so 
on. Besides the type of feature, LBSN identify, for each POI, the spatial location (coordinates or addresses) and 
the time of visit (date and hour); these visits are recorded as check-ins using, typically, a mobile-phone applica-
tion. Therefore, we end up with a data set with detailed information of the type of place and the exact location, 
together with the day of the week, and time of the visit. LBSN provide valuable information on the interaction of 
people among themselves, as well as the physical places where these interactions occur. This interplay has been 
explored in studies of urban  mobility20, human  behavior21,22, social  interactions23 and encounter  networks24.

In this study, we use data from one of the more relevant location-based social networks:  Foursquare25. This 
LBSN has been used previously in several  studies23,24,26–34, of human mobility and social relationships, encoun-
ter networks due to human mobility, spatial and temporal activity patterns, among others. A more detailed 
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description of Foursquare will be given in the next sections. In this paper, we will focus mainly on the temporal 
patterns of human activities in cities throughout the world. This temporal signature of the vastness of human 
dynamics can be captured through time series, using different sources such as email  records35, mobile phone 
 calls36, data sets from the public  sector37 and the analysis of the frequency of check-ins during the visitation of 
POIs in  cities38. In this work, we will study the temporal patterns that emerge due to the frequent visitation of 
points of interest in different cities around the world. The data set we analyzed contains more than 11 million 
POIs of 632 cities of 87 countries located in 5 continents. We will focus mainly on the temporal patterns of 
activities on a weekly basis, that distinguish weekdays and weekend. Using network  science39, we generate an 
undirected weighted network connecting pairs of cities. The links between each pair of cities have a weight that 
quantifies the similarity of the temporal patterns of visitation of POIs. To measure the similarity between the 
two distributions of temporal patterns, we used the relative entropy (Kullback-Leibler divergence)40 between 
the corresponding distributions. Once we have our network of cities, we obtained the community structure of 
this network using a well-known method of community detection: the Louvain algorithm. Then we locate these 
communities of cities geographically and notice a strong correlation between geography and temporal patterns 
of activities. On the other hand, besides the network science approach, we use a Machine Learning approach to 
classify the clusters in the data set of temporal distributions of activity. In particular, we used the unsupervised 
agglomerative hierarchical clustering  algorithm41 to obtain clusters or communities of cities that have similar time 
distributions of check-ins in Foursquare. Both approaches, network science and machine learning, give a very 
similar classification of five communities that distribute geographically in five different continents throughout 
the world.

The dataset used comprises over 90 million records made in more than 11 million POIs. Each record con-
tains information about the place and time at which a person visited a POI. Additionally, using another dataset 
constructed from public information on Foursquare, it is possible to know the precise coordinates of venues 
and the type of place based on different categories used by this social network to classify sites. Thus, this is a 
database that provides spatial and temporal information on 2,733,324 individuals around the world, as well as 
information on the type of activities they perform. In this manner, we obtained spatial and temporal patterns of 
activity in many cities. In this work, we will focus mainly on the temporal patterns of activities on a weekly basis.

Finally, it is worth mentioning part of the motivation that led to this research. The origins of the present 
paper can be traced back to our interest in the interplay between human mobility in cities and the encounter 
(or contact) networks that emerge. In a paper published in  201724 by two of the authors, we explore precisely 
this emergence by analyzing data from Foursquare in two cities: New York City and Tokyo. We had the spatial 
and temporal data corresponding to the check-ins of many users visiting POIs in both cities. Thus, we explore 
the co-occurrences of two users in the same place at the same time in order to obtain the encounter or contact 
network. The motivation was, among other things, to study the propagation of viruses during an epidemic. By 
the way, this study was done and published previously to the current COVID-19 pandemic, where these contact 
networks were important to track the onset of the pandemic at the beginning of 2020. Years later, we keep study-
ing the rich data set of Foursquare, but, instead of two cities, we explore more than 600 cities around the globe. 
In particular, the points of interest in cities are precisely the places where many people congregate and therefore 
can lead to an explosion of ideas and innovation, but at the same time can lead to the origin of epidemics of 
infectious diseases. That is part of our motivation to study in more detail the mobility and the temporal patterns 
of activity of POIs and to make a quantitative comparison of these patterns using metrics such as the Kullback-
Leibler divergence. With this metric, we constructed a network of cities on a planetary scale and obtained the 
community structure of this network.

The paper is structured as follows: After the Introduction, we show first the Results with all the details in 
separate sections, then a Discussion and finally the Methods we employ.

Results
Check-ins and points of interest in Foursquare. In this work, we use Foursquare check-ins as a proxy 
of human activity in cities. Check-ins are spatio-temporal interactions between users and points of interest 
(POIs). They provide vast information about people’s interests, site characteristics, and behavioral patterns in 
cities, among many others. This is why Foursquare metadata and location-based social networks in general, can 
provide useful information for studies of mobility, infrastructure, human behavior, and public policy, just to 
mention a few examples.

We study a large-scale and long-term Foursquare data set collected by Yang et al.23,28 that is publicly  available42. 
The data set contains 90,048,627 check-ins made by 2,733,324 users from April 2012 to January 2014. The authors 
collected active check-ins from Twitter by searching a hashtag generated automatically for users that linked 
their Foursquare activity with that social network. Then, with the set of places where check-ins occurred, they 
collected the POIs description; this information is available to the public from the Foursquare platform. The 
records include detailed information about the POIs, their coordinates, and the exact time of each user check-
in23,28. In this manner, the database provides the space-temporal activity obtained from the sequence of successive 
check-ins for each user. Furthermore, the registers include a short description that labels each POI with specific 
keywords (for example “restaurant”, “metro”, “university”) and a social network of users defined via the mutual 
following between Twitter accounts. We did not incorporate this information in our study (see the “Methods” 
section for a detailed description of the data).

The complete dataset includes information of Foursquare users in every country in the world. From the 253 
country codes, check-ins on countries with 5000 or more POIs represent 98.92% of data. Almost all of the data 
is concentrated in a third of the countries. To visualize the geographical distribution of the POIs worldwide, we 
grouped them according to their coordinates. We generate a two-dimensional histogram dividing the latitude 
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and longitude using square bins with side 0.1◦ and counting the number of POIs in each coordinate square. This 
allowed us to identify regions with non-null POIs and those with the highest concentration. In Fig. 1 we depict 
the spatial distribution obtained; it consists of 3600× 1410 squares covering latitudes from −56.6◦ and 84.6◦ , 
and longitudes from −180◦ to 180◦ ; latitudes excluded are due to the lack of POIs on those regions. The number 
of POIs in each region is codified in the colorbar, where a logarithmic scale was chosen to show the wide range 
of values. The great coverage of this dataset is clear, as well as the existence of regions with high concentrations 
of POIs reaching up to 70,128 POIs in a single square defined above. The plot is the result of projecting the coor-
dinates of the globe on a rectangle which implies spatial distortions; still, the frontiers of continents are identifi-
able even though no borders were used or drawn. A high density of POIs can be appreciated in North America 
and Europe, but active regions are also present in South America, the Middle East, and East Asia. Although to 
a much lesser extent, there are some localized regions with high numbers of POIs in Africa and Oceania. The 
details of this information are discussed in the “Methods” section in Table 1, where the 15 countries with most 
of the POIs are listed; 80% of the venues belong to these countries.

Temporal activity of users in Foursquare. The classification of POIs and check-ins at the level of cities 
allows us to perform temporal, spatial and spatio-temporal analysis of features. For example, in Ref.24 a detailed 
study of the activity in Foursquare, of users in New York and Tokyo, is presented. We focused our study on cit-
ies that hold the majority of the data. From the total number of points of interest in the database, we selected 
only those belonging to cities with more than 10,000 check-ins. This resulted in a set of 632 cities located in 87 
countries, as illustrated in Fig. 2. These 632 cities, represented by red dots on the map in panel 2a, are located in 
countries across all continents, reflecting the diversity in social, economic, cultural, linguistic, and other terms, 
crucial for the study of human activity in cities. As we will see later, this diversity allows us to identify common-
alities among all cities, but also and especially differences in activity patterns of cities. To illustrate these com-
monalities and contrasts, we selected eight cities that capture some of this diversity. These cities are Barcelona 
(Spain), New York (United States), Mexico City (Mexico), Sao Paulo (Brazil), Istanbul (Turkey), Jakarta (Indo-
nesia), Tokyo (Japan), and Moscow (Russia). These cities are shown with different colors on the map in Fig. 2a. 
In Fig. 2b, we present the temporal distribution of check-ins made during the nearly 22 months of observation in 
these eight cities that were intentionally selected to represent the behaviors in different regions with a great vari-
ety of cultural and linguistic characteristics. Also, these cities were chosen because they have a greater number of 
check-ins. Temporal information of the check-ins was grouped by urban area and was generated using the local 
time, obtained through the Universal Coordinated Time and adding the minutes corresponding to the timezone 
correction (see “Methods” section for details). In this way, we can identify daily routines for many geographical 
areas around the world. For this study, we defined the time granularity as 168 hours (corresponding to a full 
week), so we have, for each region, a histogram with all the check-ins made in the period of observation gathered 
by hour. We considered this histogram as a characteristic print of human temporal activity within a region. In 
doing so, clear patterns emerge with slight differences between regions. Some regularities are evident: there is 
low activity of check-ins during the night and high activity during the day; this matches the behavior reported 
by Yang, et al.23, for a subset of this data at a global scale. In this case, the pattern persists at a local scale, as has 

Figure 1.  Points of interest worldwide from human activity in Foursquare. This analysis includes 11,179,790 
points of interest (POIs). The counts codified in the colorbar show the number of POIs in each rectangle 
of a grid from −180◦ to 180◦ in the longitude and from −56◦ to 85◦ in the latitude (the dimensions of the 
grid are 3, 600× 1, 410 squares defined by sides with 0.1◦ ). A logarithmic scale was used to show the non-
null frequencies of POIs found in the squares; the zones with null counts of POIs are depicted in black. This 
representation only considers geographical information of POIs, no map was used for this analysis. This figure 
was created using python 3.8 and the matplotlib (3.5.0) package (https:// matpl otlib. org).

https://matplotlib.org
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been shown for other  phenomena16,37,38. But, at this level, differences in patterns become noticeable; the part of 
the day that concentrates most of the activity, the maximum number of check-ins in a day, and the change of 
the activity patterns for weekdays and weekends describes the collective behavior of city inhabitants that varies 
from one city to another.

In Fig. 2c,d, we show the spatial distribution of POIs for two cities: New York and Tokyo. When placing a 
point at the coordinates of each POI, different spatial patterns emerge directly linked to urban infrastructure in 
the first place. Street grids and blocks in urban areas can be identified. But some patterns emerge, which are very 
different in each case, related to the quantity and density of the POIs. For example, a large area of high density 
can be seen in the case of New York, in the Manhattan area, while in Tokyo the high-density areas form more 
compact and dispersed clusters in a larger region. In addition, the attractiveness (total number of check-ins in 
a POI) of the venues is depicted in the colorbar that codifies the number of check-ins. The statistical analysis 
of the number of check-ins at each POIs reveal characteristics of a complex urban environment with a power-
law behavior in which most POIs register a lower number of check-ins while a few POIs have an attractiveness 
several orders of magnitude greater. Again, a similar result has been reported by Yang et al.23, at a global scale 
for the same dataset. This power-law behavior in the attractiveness of POIs is also observed at different scales in 
other studies; for example, in the attractiveness of sites measured from the activity of taxis in New York  City7 or 
the importance of airports in the United  States43. In this context, our findings in Fig. 2c,d show that the activity 
of users in Foursquare is associated with the complexity in the distribution of POIs. This feature is observed in 
all the cities in this study.

In Fig. 3 we extend the temporal analysis of check-ins to N = 632 cities in 87 countries. We consider activity 
counts as in panels in Fig. 2b, all the information of check-ins in a city i were gathered using the corresponding 
local time τ . The activity counts are normalized over the week to obtain the relative frequency or probability 
Pi(τ ) . The time τ can take the values from 1 (associated to the first hour of Monday) to 168 (the last hour of 
Sunday). In Fig. 3a, we present the probability Pi(τ ) of check-in at times τ in cities denoted by i = 1, 2, . . . , 632 . 
The results reveal marked differences between low nocturnal activity and high daytime activity. Also, patterns 
emerge in all of them by grouping check-ins by their local time τ of occurrence. For all the cities, fluctuations 
in the values of Pi(τ ) are small at night, but during the day we see different behaviors of the curves describing 
each city with all kinds of deviations; for example, in some cities Pi(τ ) changes considerably in the early hours 
of the morning, others at night, whereas other cities differ considerably at weekends. To show these variations 
more clearly, in Fig. 3b we depict PTotal(τ ) , obtained for all the check-ins in the N = 632 cities. This quantity is 
equivalent to calculate the average between all cities

Figure 2.  Spatial and temporal analysis of check-ins in different cities. (a) 632 cities worldwide analyzed, 
represented with small dots, and eight selected cities: (i) Barcelona, (ii) New York, (iii) Mexico City, (iv) Sao 
Paulo, (v) Istanbul (vi), Jakarta, (vii) Tokyo, and (viii) Moscow. (b) Frequency counts for all the check-ins in the 
cities (i) to (viii) presented in (a) gathered using the local time when they were made. The counts reported in 
the histograms correspond to the number of check-ins in each hour of the week, from the first hour on Monday 
to the last hour on Sunday. (c) Points of interest in the Foursquare dataset in New York and (d) Tokyo. In this 
representation, the number of check-ins in the respective POI is codified in the colorbar. All figures were created 
using python 3.8 and the matplotlib (3.5.0) package (https:// matpl otlib. org). The map in panel (a) was created 
using the geopandas (0.12.1) package (https:// geopa ndas. org). Land borders in panels (c) and (d) were obtained 
from Open Street Maps Boundaries webpage (https:// osm- bound aries. com/).

https://matplotlib.org
https://geopandas.org
https://osm-boundaries.com/
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On the other hand, the respective standard deviation σ(τ) of the values Pi(τ ) give us a measure of the dif-
ferences observed in the cities considered. Our findings are shown in Fig. 3b as a shaded region defined by 
PTotal(τ )± σ(τ) . The dispersion of the values in particular hours of the day can be seen, and noticeable varia-
tions between weekdays and weekends can be observed.

Comparison of temporal activity between cities using the Kullback–Leibler divergence. The 
variety of results observed for the probabilities Pi(τ ) in Fig. 3a motivates the exploration of a criterion to com-
pare the temporal activity between two particular cities i, j. To this end, we use the Kullback-Leibler divergence, 
also known as relative entropy, defined  by40,44

where the sum in time τ ranges from 1 to 168 (all the hours in a week) and i, j = 1, 2, . . . ,N (see the “Methods” 
section for details). The Kullback-Leibler divergence satisfies our interest to compare the temporal distributions 
of check-ins, but its definition does not generate a symmetric measure since DKL(i, j) is different from DKL(j, i) . 
This would cause that even if a city i is determined to be similar to another city j, j is not necessarily similar to i. 
However, the average of the Kullback-Leibler divergence between pairs (i, j) and (j, i)

is symmetric. In this manner, similar distributions produce a small value and dissimilar ones are associated 
with larger values. Then, this symmetric quantity is adequate to describe the similarity between the temporal 
distributions of cities.

In Fig. 4, we present the results obtained from the evaluation of DKLS(i, j) , in Eq. (3), to compare the temporal 
activity presented in Fig. 3a for all the cities i, j = 1, 2, . . . , 632 , considering the information of user’s check-ins in 
Foursquare. In Fig. 4a we present the statistical analysis of DKLS(i, j) for all pairs of cities. The results are depicted 
as a probability density ρ(DKLS) for the values DKLS , that is, we calculate the values of DKLS(i, j) for all the pairs 
(i, j). With these values, we obtained the histogram shown. We show, as an inset, the N × N matrix with elements 

(1)PTotal(τ ) =
1

N

N
∑

i=1

Pi(τ ).

(2)DKL(i, j) =
∑

τ

Pi(τ ) log

[

Pi(τ )

Pj(τ )

]

,

(3)DKLS(i, j) ≡
DKL(i, j)+DKL(j, i)

2

Figure 3.  Temporal analysis of check-ins in 632 cities. (a) Probability Pi(τ ) of check-in at times τ in N = 632 
cities denoted by i = 1, 2, . . . ,N . All the check-ins in each city were gathered by the local time when each 
register was made. Frequency counts are normalized over the week to obtain each Pi(τ ) . The time τ can take the 
values from 1 (the first hour of Monday) to 168 (the last hour of Sunday), and the results for each city i (codified 
in the colorbar) are presented with continuous lines. (b) The probability PTotal(τ ) obtained for all the check-ins 
in the 632 cities is plotted with a continuous line. In this case, the standard deviation σ(τ) for all the check-
ins and all the cities in (a) evaluated at time τ defines variations of this probability. The results are shown as a 
region defined by PTotal(τ )± σ(τ) presented with gray color. All figures were created using python 3.8 and the 
matplotlib (3.5.0) package (https:// matpl otlib. org).

https://matplotlib.org
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DKLS(i, j) ; the respective values are codified in the colorbar. The results for ρ(DKLS) show that a high fraction 
of the entries in the matrix have values DKLS around 0.1. For the diagonal elements we have DKLS(i, i) = 0 . On 
the other hand, the maximum value for two different cities is DKLS = 0.6078 , and occurs between the Brazilian 
city of Sapucaia do Sul and Meru, in Malaysia, as shown in Fig. 4b. At the opposite extreme, the minimum non-
null value reached is DKLS = 0.0023 , found for the comparison between Ankara and Izmir, both in Turkey. The 
respective probabilities are shown in Fig. 4c. The results observed in Fig. 4b are reasonable since we are comparing 
the activity in two complete different urban areas. In contrast, for the cities considered in Fig. 4c, the resemblance 
between these two cities is remarkable considering that they are more than 520 km apart. Additionally, a review 
of the data shows that of the 82,285 active users in Ankara and the 90,923 active users in Izmir, only 11,141 made 
check-ins in both cities; this represents only 6.87% of the total users with activity in these regions. The similar-
ity in their patterns is not explained by common users but by comparable urban behavior in the same country.

Networks and temporal patterns between cities. In this section, we apply methods of network sci-
ence to analyze the similarities between cities. To this end, we define a network in which nodes represent cities 
and links the similarity relationship between cities. In this way, two nodes are connected if the respective cities 
have similar temporal activity. To generate this structure, it is necessary to define what is considered sufficiently 
similar. We use a threshold value H. If two cities have values DKLS in Eq. (3) lower or equal than H then these 
cities are considered similar. All this information defines a similarity network for each value H. The respective 
N × N adjacency matrix is denoted as A(H) , with elements i, j given by

Additionally, we require Aii(H) = 0 for i = 1, 2, . . . ,N , to avoid self loops. From the symmetry of the distance 
DKLS , follows the symmetry of A(H) , defining an undirected network.

In Fig. 5, we analyze similarity networks as a function of H. In Fig. 5a we depict the adjacency matrix A(H) 
for different values of H. In this manner, for each H all the information of DKLS(i, j) in Fig. 4a is converted into 

(4)Aij(H) =

{

1 DKLS(i, j) ≤ H ,
0 otherwise.

Figure 4.  Comparison of temporal activity between cities. (a) Statistical analysis of the symmetric Kullback-
Leibler distances DKLS from the comparison of check-ins temporal distribution by pairs. The values are obtained 
from Eq. (3) for all the city pairs i, j = 1, . . . , 632 . The probability density ρ(DKLS) is obtained using bin 
counts in intervals with �DKLS = 0.005 . The matrix with all the elements DKLS(i, j) is presented as an inset. 
(b) The two most different probability densities of the set are of the cities Sapucaia do Sul in Brazil and Meru 
in Malaysia, with DKLS = 0.6078 ; the maximum value found. (c) The two most similar cities of our sample, are 
Ankara and Izmir both in Turkey, with DKLS = 0.0023 , the minimum non-null value. All figures were created 
using python 3.8 and the matplotlib (3.5.0) package (https:// matpl otlib. org).

https://matplotlib.org
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a binary matrix with entries 0 and 1. In Fig. 5b, we present the fraction of nodes that belong to the Largest Con-
nected Component, νLCC = SLCC/N , where SLCC is the size of the Largest Connected Component (LCC). The 
LCC obtained for the values of H explored in Fig. 5a are shown as insets.

In the results in Fig. 5b, it is worth noticing that for H = 0.005 , the network is formed by disconnected 
subnetworks with a few nodes and the LCC is a linear graph with 6 nodes; for H < 0.0023 each node is discon-
nected. On the other hand, the network is fully connected for H > 0.6078 ; the maximum value of DKLS found. 
The transition between these two limits gives rise to a convenient choice of H corresponding with a network 
that captures the nature of the similarity between the cities that we are analyzing. The results for νLCC reveal that 
the size of the LCC contains more than 90% of the nodes at H = 0.031 , 99% at H = 0.052 . On the other hand, 
H = 0.0723 is the minimal value of the similarity threshold that produces a connected network that includes all 
the N = 632 nodes (cities). Finally, we see that around H = 0.02 , νLCC suffers an abrupt change with H that is 
analogous to a percolation  threshold39, separating two regimes: one with νLCC < 0.3 , defining small sub-networks 
with high similarity in the temporal information and a second one with νLCC > 0.6 where the connected networks 
incorporate a high fraction of the cities.

On the other hand, in order to explore the relationship between the edges in each network generated with 
the value H and the geographical distance between cities, we define

where dij denotes the geographical distance between cities i and j and E (H) is the number of edges of the graph 
associated with A(H) (see “Methods” section for details on the calculation of geographical distances between 
cities). In Fig. 5b, we present as an inset the value 〈D〉H as a function of H. The results show that for small H, 
cities having very similar temporal activity histograms are also geographically closer. These average distances 
remain relatively low up to the network with H = 0.05 . However, after this value, the average distances grow to 
8512 km which is the average distance between all the cities analyzed.

Once we established a criteria to build similarity networks using the temporal activity of users of Foursquare 
in Fig. 3a, we can apply community detection algorithms. The concept of community has emerged in network 

(5)�D�H ≡

∑N
i,j=1 Aij(H)dij

∑N
i,j=1 Aij(H)

=

∑N
i,j=1 Aij(H)dij

2E (H)
,

Figure 5.  Similarity networks generated using different threshold values H. (a) Adjacency matrices A(H) 
with elements given by Eq. (4) using the values H ∈ {0.005, 0.01, 0.02, 0.04, 0.0723} , binary entries Aij(H) 
are depicted in white for 0 and black for 1. (b) Fraction of nodes in the largest connected component νLCC as a 
function of H in the interval 0.001 ≤ H ≤ 0.32 . The largest connected component of the networks generated 
with A(H) in panel (a) are presented and the inset shows 〈D〉H calculated using Eq. (5). All figures were created 
using python 3.8 and the matplotlib (3.5.0) package (https:// matpl otlib. org).

https://matplotlib.org
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science as a method for finding groups within complex systems identifying sub-networks with statistically sig-
nificantly more links between nodes in the same group than nodes in different  groups45–47. In our similarity 
network, these communities represent groups of cities with comparable activity Pi(τ ) . In Fig. 6 we present the 
results for a network with N = 632 nodes generated with H = 0.0723.

In Fig. 6a we depict five communities C1 , C2, . . . ,C5 detected using the Louvain’s  algorithm48 implemented 
in the library NetworkX in  Python49, see “Methods” section for a description of this algorithm. The number of 
nodes on each community Cs (with s = 1, 2 . . . , 5 ) is denoted by Ns and, from this analysis we obtain groups 
of cities with N1 = 148 , N2 = 136 , N3 = 133 , N4 = 113 , and N5 = 102 . In Fig. 6b we plot with thin gray 
lines the probabilities Pi(τ ) showed in Fig. 3a in groups defined by each community Cs ; each panel contains Ns 
curves. In addition, we include the statistical analysis considering all the check-ins in each group; the results are 
shown with colored thick lines. When grouped in this way, the curves observed within each community Cs are 
similar, evidencing the fact that they have the same shape as the averages.

The average curves in Fig. 6b show that the C1 community, whose average is plotted in blue, has a behavior 
from Monday to Friday characterized by three peaks throughout the day (at 8, 12 and 18 hours). On weekends, 
this pattern is broken and a single maximum is observed around 20 hours on Saturday and at noon on Sunday. 
The C2 community, with the orange average line, is characterized by a pronounced maximum at 13 hours and 
a second relative maximum at 19 hours, from Monday to Friday. This behavior is maintained on weekends but 
with less check-ins. The community C3 , with a curve in green, is the one with the least contrast between the shape 
from weekdays versus weekends. Every day the maximum is found at 18 hours. Still, from Monday through Friday 
there is a small local maximum at 8 hours that disappears on the weekend. C4 with the average presented in red, 
has the same features as C1 but with different relative sizes; in this case, the first daily maximum dominates over 

Figure 6.  Human activity patterns identified using community detection in similarity networks. (a) 
Community structure of the similarity network generated with H = 0.0723 , five communities C1 , C2,C3,C4 , 
C5 were detected using the Louvain’s algorithm and are represented with different colors. (b) Probability P (τ ) 
for the temporal activity of the cities in each community. Thin gray lines present the curves Pi(τ ) depicted in 
Fig. 3a whereas the colored thick line represents the statistical analysis of all the check-ins in the cities of the 
community. (c) Geographical representation of the network in (a). In this case, each node is a city depicted on a 
world map. All figures were created using python 3.8 and the matplotlib (3.5.0) package (https:// matpl otlib. org). 
The map in panel (c) was created using the geopandas (0.12.1) package (https:// geopa ndas. org).

https://matplotlib.org
https://geopandas.org
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the rest. The C5 community is the smallest and whose average behavior is depicted in purple. In this case the 
curve suffers different changes throughout the week. While there is a pattern with maxima at 9, 12 and 19 hours, 
and a valley at 15 hours, from Monday to Friday, the relative sizes are not always equal; on Monday the first and 
second peaks dominate, on Tuesday the second maximum is the largest, on Wednesday the three are practically 
the same size, on Thursday the first two peaks almost merge and dominate over the third, and on Friday the first 
almost disappears while the second peak dominates. Finally, on Saturday there is a change giving rise to two 
maximums at 13 and 20 hours, also present on Sunday although smaller.

In addition, considering that each probability curve Pi(τ ) corresponds to a node i, which in turn is a city 
with given coordinates, in Fig. 6c we plot the network with each node located in a world map. The node colors 
and the whole network connectivity are the same as in Fig. 6a. This network representation shows that the com-
munities formed from the similarity of city behaviors correspond to well-defined geographic regions. Cities in 
North America belong predominantly to the C1 community; those in Eastern Europe and the Middle East belong 
to C2 ; the C3 community is composed of several cities in Eastern India, and cities in East Asia and Oceania; C4 
contains most cities in South America, and most of the cities in Western Europe belong to the C5 community. 
This is a remarkable result that we will discuss further below.

Once we defined the communities of the network, we can compare the fraction of intra-community and 
inter-community links. Defining Ls as the number of links between nodes in community Cs , and Lst as the 
number of links between a node in Cs and a node in Ct , we calculate the fraction of inter-community links as 
Lst/(NsNt) and intra-community links as 2Ls/(Ns(Ns − 1)) . The values obtained allow us to compare the 
number of links with the total number of possible links. The values for the fraction of intra-community links 
are 0.79, 0.68, 0.51, 0.76 and 0.75 for C1, . . . ,C5 , respectively. Regarding the fraction of inter-community links, 
the values are below 0.1 except between communities C1 and C4 (North America and South America) with 0.32 
and, with 0.26, between C1 and C5 (North America and Europe); there are a fraction 0.15 of inter-community 
nodes between C2 (Middle East) and C5 (Europe), and 0.12 between C5 and C4 (South America). The results 
also show that C3 has little similarity with the other communities. Europe is a community with many elements 
in common with America and the Near East. East Asia, on the other hand, has few elements in common with 
the rest of the world in terms of temporal patterns of human behavior. These features are observed in the map 
in Fig. 6c evidencing cultural and historical features of each region.

Finally, it is worth mentioning that, unlike other cluster identification methods, e.g., agglomerative clustering 
(discussed in the next section), information on similarity between specific regions within the same communi-
ties is preserved in the individual links. In Fig. 6c, it is clear the high density of links between North America 
and the United Kingdom, as well as Brazil and Portugal, regions with cultural and linguistic relationships. The 
results also show that not all cities belong to the same community as would be expected based on their geographic 
region. Specifically, there are 8 cities in Chile, 3 in Mexico and 1 in Uruguay that are more similar to European 
cities than to American ones.

Identification of patterns using machine learning. Machine learning can be used as an alternative 
approach, with many algorithms involved, to classify objects or patterns in a very efficient  way41,50. In particular, 
we used the unsupervised hierarchical agglomerative clustering to classify our temporal patterns of activity in 
cities. When we apply this algorithm to our data set, we obtained five clusters, as shown in Fig. 7. This number of 
clusters or communities is obtained by maximizing the modularity. The clusters of cities detected are presented 
in Fig. 7a. For comparison, these clusters are depicted using the same colors as those used in Fig. 6c. In this clas-
sification of the dataset of check-ins, each cluster obtained by this procedure is denoted as C ′

s  and contains N′
s 

elements (with s = 1, 2 . . . , 5 ). We have: N′
1 = 178 , N′

2 = 128 , N′
3 = 140 , N′

4 = 90 , and N′
5 = 87 . A com-

parison of Fig. 7a and our findings in Fig. 6c shows that the differences between Ns and N′
s are mainly due to 

cities from South America and the Caribbean that were in C1 (blue) are now in C ′
4  (red), and between Russian 

Figure 7.  Pattern identification using agglomerative hierarchical clustering. (a) Geographical representation 
of 5 clusters detected. (b) Activity patterns in each group. All figures were created using python 3.8 and the 
matplotlib (3.5.0) package (https:// matpl otlib. org). The map in panel (a) was created using the geopandas 
(0.12.1) package (https:// geopa ndas. org).

https://matplotlib.org
https://geopandas.org
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and Indian cities that were in C2 (orange) now belong to C ′
3  (green). In addition, Fig. 7b shows the probabilities 

Pi(τ ) grouped according to this classification. Again, in each panel, corresponding C ′
s  , the N′

s curves of the 
cities are shown in thin gray, while the average behavior for each time τ is shown with a colored thick line. The 
resemblance to the behaviors shown in Fig. 7b is remarkable showing that the emergent patterns in the dataset 
can be detected by different algorithms.

Discussion
In this work, we use Foursquare check-ins as a proxy of human activity in cities. The data set explored provides 
vast information about people’s interests, site characteristics, and behavioral patterns in cities, among many oth-
ers. The information analyzed contains 90,048,627 check-ins made by 2,733,324 users from April 2012 to January 
2014 with active check-ins obtained from registers on Twitter by searching a hashtag generated automatically 
for users that linked their Foursquare activity with that social network. Information from 632 cities from 87 
countries, with more than 10,000 POIs, was used. We explore the spatial properties of POIs and check-ins and 
the temporal features of the check-ins which, as self-reported spatio-temporal interactions between people and 
places, provide valuable information about activities carried out in cities. In particular, we analyze statistically 
the check-ins per hour on weeks for each city.

From the probabilities describing the temporal activity of each city, we apply a symmetrized Kullback-Leibler 
divergence to compare these probabilities across all 632 cities. From this information, we define similarity net-
works in terms of a threshold value H to decide if two cities have a similar activity or not. We explore the size 
of the largest connected component as a function of H; in particular, we found that around H = 0.02 a critical 
percolation threshold exists, whereas for H = 0.0723 the largest connected component includes all the nodes of 
the network. Our findings reveal collective emergent behaviors that go beyond the spatial and mobility aspects 
that define metropolitan areas, megacities, or functional urban areas, and allows for the tracking of higher-order 
structures, as was proven in some cities that have great similarity, despite the fact that their geographical separa-
tion prevents them from being the same.

We apply Louvain’s algorithm for community detection to the similarity network generated with H = 0.0723 ; 
the results define 5 groups of cities with similar activity of check-ins. By locating all the cities in a map, we 
notice a remarkable pattern: The five communities of cities belong to five different regions that correspond to 
different continents. In addition, we use a Machine Learning algorithm to classify the activity patterns obtained. 
Although this method is completely different from the Network Science approach, we nevertheless obtained 
basically the same classification. Specifically, the Machine Learning algorithm that we used was the Unsuper-
vised Agglomerating  Clustering41,50. Both approaches, although very different, lead to the same classification of 
five different communities worldwide. Even more surprising, these five communities clearly correspond to five 
different regions on a planetary scale: 1) North America, (2) South America, (3) West Europe, (4) East Europe 
and Middle East, and (5) East Asia.

It can be clearly noticed that practically in all cities there are these patterns of maxima and minima of human 
activity at the same hour during the week. At the same time, we notice a different pattern during the weekdays and 
another one slightly different during weekends. These patterns are very robust in the sense that the maxima and 
minima are clearly noticeable, even in the average curves involving the 632 cities in the analysis. Since these 632 
cities are distributed in many parts of the world, spanning 5 continents, we think that the patterns are related to 
some universal aspects of human behavior. For instance, the fact that we humans are universally a diurnal species. 
This is one of the so-called human universals in the literature of human evolution. This fact can be seen in the 
minima of activity for all cities at deep night (around of 2 or 3 am). This universal periodicity is also related to 
circadian rhythms in humans and other internal clocks studied in chronobiology. However, the 3 peaks during 
the day, which appear early in the morning (between 6 and 7 am), at noon (around 12 or 13 hours), and in the 
afternoon (around 19 and 20 hours), can be related more with modern routines associated with working hours.

In summary, using a vast data set from location-based social networks, we analyze 632 cities of 87 countries 
around the world to obtain temporal patterns of human activity that characterize points of interest within the 
cities. Using network science and machine learning algorithms we unravel communities with different patterns of 
human behavior. This suggests that human activity patterns can be universal with some geographical, historical 
and cultural variations on a planetary scale.

Methods
Foursquare data and demography. In this section, we recall some recent demographics of Foursquare. 
The user demographics is the  following51:

• urban communities: 64%, towns and rural communities: 36%.
• medium-sized town: 28%, large city: 26%

This means that we have users of Foursquare from both urban, town and rural communities. Even though the 
urban percentage is larger, as expected, the difference is not that high; the rural or town percentage is roughly 
1 in 3. This means that the data set used in our study reflects not only an urban feature but reflects small town 
or rural features as well.

On the other hand, the gender and age distribution is as  follows52:

• male: 52%, female: 48%.
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• ages: 18-24 years old: 19%, 25-34 years old: 32%, 35-44 years old: 20%, 45-54 years old: 14%, 55-64 years old: 
10%, 65+ years old: 6%.

Here we notice that the percentage of males and females is basically the same: half and half. Therefore, our data 
set and analysis can be applied to both females and males. Regarding age distribution, we notice that about half 
(50%) of users of Foursquare have ages between 25 and 44 years old. This is expected since people at that age: 
young adults, are the ones that show more mobility and activity. It is clear that the mobility, activity and interest 
in reporting through check-ins to the social network tends to diminish with age. However, the distribution is 
somewhat broad.

Regarding the type of places visited and checked as POIs, it is worth mentioning that the categories are very 
broad. There are in Foursquare more than 1100 venue categories, distributed in ten major Foursquare categoriza-
tion groups of points of interest  POIs53: Arts and Entertainment, Business and Professional Services, Community 
and Government, Dining and Drinking, Event, Health and Medicine, Landmarks and Outdoors, Retail, Sports 
and Recreation, Travel and Transportation. This points to a large diversity of interests that are captured in the 
data set that we used in our analysis.

Other relevant data about Foursquare are the  following54,55:

• Foursquare Places has over 100 million POIs across 247 countries and territories, as of January 4, 2023.
• 100M+ global POI
• 200+ countries and territories
• 14 billion user verified check-ins
• 1100+ venue categories
• 1 billion + photos, tips, reviews

Regarding the numbers of the particular data set used in this research, let us point out that we used data of 
Foursquare from April 2012 to January 2014. All the details of the data set and the processing, data mining, and 
data analytics, can be found in the following sections: Discussion, Methods—Dataset description, and Meth-
ods—Grouping POIs by urban area. Many of the results can be found in Tables 1 and 2. Just to summarize the 
size of the data set studied, let us list the numbers involved: 

1. User: 2,733,324
2. POIs: 11,180,160
3. Check-ins: 90,048,627
4. Countries: 253 (87 of which include 99% of the data)
5. Cities: 6,463 (632 with more than 10,000 check-ins)
6. Continents: 5
7. Categories of POIs: 519

Given all these demographics together with the numbers, diversity, and vastness of the data set analyzed, and the 
use of aggregate data, the results can be a good description of the temporal activity in cities worldwide.

Table 1.  Foursquare data set by country. The first 15 countries sorted by the number of points of interest 
(POI) are shown, as well as the number of check-ins, users, and the percentage of the total dataset that 
represents.

 Country POIs Check-ins Users

Code Name Number % Number % Number

US United States 1990327 17.80 12778097 14.19 426341

ID Indonesia 1198611 10.72 7765315 8.62 361193

BR Brazil 1159258 10.37 9991354 11.10 261079

TR Turkey 1098373 9.82 17500113 19.43 592630

RU Russia 546532 4.89 4291601 4.77 122268

JP Japan 519409 4.65 4784080 5.31 81293

MY Malaysia 493453 4.41 4926145 5.47 127390

MX Mexico 408434 3.65 3981409 4.42 147563

TH Thailand 353444 3.16 2633608 2.92 82765

PH Philippines 219097 1.96 1998063 2.22 60197

ES Spain 212161 1.90 1083153 1.20 67638

GB United Kingdom 210777 1.89 1271622 1.41 77949

IT Italy 197007 1.76 867931 0.96 52394

CL Chile 195226 1.75 2209981 2.45 53714

DE Germany 142347 1.27 623759 0.69 45574
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Dataset description. Check-ins information was collected by Yang, et  al.22,23,28,29 and it is publicly 
 available42. The datasets are divided into two sets. The first one is a list of check-ins obtained through an auto-
mated search on Twitter with the help of its API streaming  service29. Foursquare allows linking users’ accounts 
with other social media such as Twitter or Facebook, to share the check-ins on these platforms too. If this is 
the case, when one user registers their presence in a place, automatically, a tweet or a post is generated with the 
information of the check-in and some elements like hashtags and the URL of the venue’s page at Foursquare. 
Although the users that link their accounts in this way are only a subset of all the Foursquare users, this dataset 
contains information on about 2,733,324 users made in almost 22 months (from April 4, 2012, to January 29, 
2014). With the information of tweets, a check-in dataset D4S was made with 90,048,627 rows, each one corre-
sponding to a check-in, i.e. the interaction between a user, with an anonymized ID, and a POI, where the ID is an 
alphanumeric identifier of the site in the Foursquare platform. Each record includes the Coordinated Universal 
Time (UTC) when the check-in occurred and the fourth column is the correction of the UTC corresponding to 
the Time Zone where the check-in was made. The user ID data has 2,733,324 different values, which corresponds 
to the activity of the same number of users. The POI ID column has 11,180,160 different values, which is equiva-
lent to the number of POIs in the dataset.

From the information in the tweets, it is possible to obtain the POI profile from Foursquare’s site and with it 
the information contained in the second dataset, DPOI . Each POI ID is the same alphanumeric code that appears 
in D4S ; this column contains 11,180,160 different values. In addition, each place is described by its geographical 
coordinates: latitude, and longitude, described by floating numbers that obey the World Geodetic System 1984 
standard (WGS84) with 6 decimal places, which is equivalent to a precision of less than one meter. Each POI 
is described by a category name; the dataset contains 519 different categories of which “Home (private)” is the 
most common with 1,310,012 sites, followed by “Residential Building (Apartment / Condo)” with 354,858; the 
third most popular is “Office” with 317,149; the fourth place is occupied by “Building” with 255,121 sites; the 

Table 2.  Foursquare data by city. The 31 cities with the highest number of check-ins are shown. This selection 
contains information on a wide variety of countries with different geographic, cultural, linguistic, economic, 
and religious characteristics.

 City Country POIs Check-ins POIs / km2 Check-ins PC

Istanbul TR 334517 7343552 249.640 0.520404

Jakarta ID 398154 2908026 79.488 0.080083

Kuala Lumpur MY 200199 2558716 150.752 0.403605

Tokyo JP 191162 2405876 35.946 0.072842

Mexico City MX 137655 1804660 65.116 0.092265

Bangkok TH 169220 1741638 65.896 0.118231

Moscow RU 160868 1643199 85.477 0.116726

São Paulo BR 137494 1478616 68.576 0.077356

Izmir TR 74237 1443711 210.303 0.516692

Quezon City [Manila] PH 123941 1343955 61.055 0.061959

New York US 137841 1311179 25.602 0.082202

Santiago CL 89115 1276748 123.771 0.201507

Ankara TR 59610 1021287 158.537 0.340152

Bandung ID 119357 933686 117.709 0.114121

Singapore SG 72981 827715 83.027 0.119596

Surabaya ID 110852 756628 63.308 0.090586

Los Angeles US 91011 698605 16.157 0.048916

Osaka [Kyoto] JP 66574 667631 21.081 0.042544

Yogyakarta ID 83635 609749 53.785 0.119592

Rio de Janeiro BR 55765 570441 40.794 0.058220

Belém BR 39125 490162 143.842 0.234762

Chicago US 55319 485198 14.444 0.071565

Saint Petersburg RU 56800 482715 107.780 0.112237

Kuwait City KW 43547 473904 91.485 0.149590

London GB 48778 430524 26.168 0.044801

Lima PE 34989 404408 39.942 0.043646

Denpasar ID 54399 393148 130.453 0.209318

Bursa TR 25214 392454 120.067 0.233577

Manaus BR 34633 390084 132.693 0.193399

Medan ID 46528 387255 62.961 0.097886

Seoul KR 79306 382646 32.383 0.017714
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following are “Café”, “Restaurant”, “Bar” and “Hotel” with 188436, 153027, 145878 and 138476 sites, respectively. 
This information also includes the country code of the POI according to the two-letter ISO 3166-1 standard; 
containing 253 different codes. Then, the dataset includes check-in on every country in the world. From the 
253 country codes, 84 countries with 5000 POIs or more represent 98.92% of the data. Using the information 
in the country code, we group all the POIs by their code, obtaining 253 datasets, DPOI (code) , each containing 
the POIs of a single country. In Table 1, 15 countries with most of the POIs are listed; 80% of the venues belong 
to these countries. From this, we can highlight the presence of countries with remarkable diversity in terms of 
culture and geography.

With the information of each set DPOI (code) , D4S can be filtered, grouping the check-ins by country code. In 
this manner, it is possible to know the number of check-ins per country and the number of users who had activ-
ity in each country, as shown in the Table 1. In addition to the number of POIs and check-ins, this table shows 
the percentage that this number represents of the total. The same is not done in the case of users since many 
users have activity in more than one country. Although the order in the ranking varies, the same countries that 
concentrate the majority of the POIs add up to the largest number of check-ins. Regarding check-ins, the records 
in the 85 countries that contain 25,000 check-ins or more, represent 99.54% of the data.

Grouping POIs by urban area. Our topic of interest is the behavior of people in cities, so classifying POIs 
and check-ins by country is not enough. The definition of what a city is and what its borders are is a complex 
topic and has been dealt with by different  authors3,56,57. In this work, we opt for the definition of Functional 
Urban Area used by the European Commission, which integrates factors such as infrastructure, population, and 
economy, and with which the Joint Research Centre generated the Global Human Settlement—Urban Centre 
Database (GHS), a dataset with the borders of 13,135 urban areas worldwide. This information is contained in 
a shapefile publicly  available58 that includes the name of the city, its population, coordinates, area, the country, 
and region in which it is located, if it extends beyond the borders of a single region within the same country 
(New York, whose functional urban area is divided into counties belonging to the states of New York and New 
Jersey, in the United States) or even in more than one country (for example, Detroit, in the United States, whose 
functional urban area extends to Ontario, Canada, including the city of Windsor); among much more informa-
tion. We use this dataset to group POIs by functional urban areas using Geopandas, a Python package for data 
analysis with geographic  information59. Of all the urban areas contained in the GHS, 6,463 cities have, at least, 
one Foursquare POI. The POIs that are located within these cities represent 74 percent of the total; 82% of the 
total check-ins were carried out in them. We focused on the 632 urban areas that have more than 10,000 check-
ins, which represent 63% of the total POIs (7,026,688), and 76% of the total check-ins (68,356,896). That is, 
more than three-quarters of the total check-ins in the database were made in urban areas with more than 10,000 
check-ins. The 31 cities with more records are shown in Table 2. Again, we find great diversity in cultural, social, 
and geographic terms, giving the Foursquare dataset great relevance for the study of urban dynamics. Along with 
the number of check-ins, the number of POIs per square kilometer and the number of check-ins per city inhabit-
ant were calculated to give us an idea of the urban environments reflected by the Foursquare activity.

Geographic analysis of distances. Each city, as well as each POI, has associated coordinates. To measure 
the distance between cities, the Haversine formula is  required60. This formula calculates the physical distance 
between cities based on the great-circle distance between two points on a sphere, specifically the Earth’s surface, 
as follows

where ϕi and �i are, respectively, the latitude and the longitude of the point i and r the radius of the sphere. To 
perform this calculation, we utilized the Haversine 2.8.0 library for  Python61.

Kulback–Liebler divergence. The Kullback-Leibler divergence, also known as relative entropy, is an 
important quantity to calculate the difference between two probability distributions P(z) and Q(z) describing a 
stochastic variable z. For discrete distributions, this divergence is given  by40,44

Here Q acts as a reference distribution. Also, it is important to emphasize that DKL(P||Q) is not a distance in the 
sense of a metric since the distance between P and Q is not necessarily the same as between Q and P. Also, from 
the definition in Eq. (7), it is clear that DKL(P||Q) > 0 and is null when P = Q.

Networks and community detection. Undirected networks with N nodes are described by an adjacency 
N × N matrix A with entries 1 if two different nodes are connected and 0 otherwise. An important quantity in 
the study of networks is the degree of node i given by ki =

∑N
l=1 Ail , which gives the number of connections to 

that node.
In many real networks, it is common to have subsets of nodes called communities. A community is defined 

as a locally dense connected subgraph in a network. The Louvain method is an algorithm to detect communities 
from large networks. The method optimizes the modularity Q, given  by45,46,48
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where ci , cj are the communities of the nodes i and j, δx,y denotes the Kronecker delta and, E = 1
2

∑N
i,j=1 Aij is 

the total number of edges in the network.
In the implementation of the method, the main goal is to generate a partition of the set of nodes in com-

munities with labels ci for i = 1, 2, . . . ,N  . The method works with the iteration of two steps: in the first step, 
for each node i, the change in modularity �Q is calculated for removing i from its community and moving it 
into the community of each neighbor. Then, once this value is calculated for all communities, i is placed into 
the community that resulted in the greatest modularity increase. If no increase is possible, the node i remains 
in its original community. This process is applied repeatedly and sequentially to all nodes until no modularity 
increase can occur. Once a local maximum of modularity is reached, the first step is ended. In the second step, 
all the nodes in each community are grouped building a new network where nodes are the communities from 
the previous step. Any links between nodes of the same community are now represented by self-loops on the 
new community node and links from multiple nodes in the same community to a node in a different community 
are represented by weighted edges between communities. Once the new network is created, the second step has 
ended and the first step is applied to the new network. The values of Q define a scale that measures the relative 
density of edges inside communities in comparison with the edges outside communities (see Ref.47,48 for details).

Machine learning and agglomerative clustering. Machine learning (ML) is a branch of artificial intel-
ligence that focuses on creating methods that can learn and improve their performance on tasks by leveraging 
 data62. ML algorithms build models based on training data to make predictions or decisions. There are two main 
categories of Machine Learning algorithms: supervised and unsupervised. In supervised learning, the algorithm 
is provided with labeled data, which consists of a set of input-output pairs. The goal of the algorithm is to learn 
a general rule or function that maps inputs into outputs. This is done by building a mathematical model of the 
data. The algorithm iteratively optimizes an objective function to learn a function that can accurately predict the 
output associated with new inputs.

In unsupervised learning, the algorithm is provided with unlabeled data and must identify patterns or struc-
ture in the data on its  own62. Unsupervised learning algorithms discover patterns in the data and adapt their 
behavior based on the presence or absence of these patterns in new data. As a part of unsupervised learning, 
cluster analysis is the process of dividing a group of observations into subsets or clusters, where each one contains 
similar  observations50. The objective of clustering is to categorize untagged data into clusters based on a specific 
metric of similarity or distance. Essentially, a cluster is regarded as a collection of data points that exhibit some 
common pattern or structure. Clustering techniques vary in their assumptions on the data’s structure and use 
different similarity metrics to evaluate the internal compactness and separation of clusters.

Hierarchical clustering is one of the most commonly used methods for grouping unlabeled data into clusters 
based on some similarity measure. This approach involves using either agglomerative or divisive algorithms to 
create nested clusters by either combining or separating previous clusters. Agglomerative clustering initially 
considers each data point as a separate cluster and merges them pairwise until all data is contained in a single 
cluster, or until a specific condition is met, such as grouping data into a specific number of clusters. To accomplish 
this, a distance metric is used to determine the distance between each pair of data points, and a criterion for 
determining which clusters to merge at each stage is employed. In this study, the Euclidean distance was used to 
measure the distance between check-in distributions, and the criterion for merging clusters was to combine the 
two whose union minimized the variance of distances within all clusters. To do this, the Scikit-learn63 python 
library was used.

Data availability
The datasets analysed during the current study are available in the webpage: https:// sites. google. com/ site/ yangd 
ingqi/ home/ fours quare- datas et.
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