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A ubiquitous method for predicting 
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The method of finding new petroleum deposits beneath the earth’s surface is always challenging for 
having low accuracy while simultaneously being highly expensive. As a remedy, this paper presents 
a novel way to predict the locations of petroleum deposits. Here, we focus on a region of the Middle 
East, Iraq to be specific, and conduct a detailed study on predicting locations of petroleum deposits 
there based on our proposed method. To do so, we develop a new method of predicting the location of 
a new petroleum deposit based on publicly available data sensed by an open satellite named Gravity 
Recovery and Climate Experiment (GRACE). Using GRACE data, we calculate the gravity gradient 
tensor of the earth over the region of Iraq and its surroundings. We use this calculated data to predict 
the locations of prospective petroleum deposits over the region of Iraq. In the process of our study for 
making the predictions, we leverage machine learning, graph-based analysis, and our newly-proposed 
OR-nAND method altogether. Our incremental improvement in the proposed methodologies enables 
us to predict 25 out of 26 existing petroleum deposits within the area under our study. Additionally, 
our method shows some prospective petroleum deposits that need to be explored physically in the 
future. It is worth mentioning that, as our study presents a generalized approach (demonstrated 
through investigating multiple datasets), we can apply it anywhere in the world beyond the area 
focused on in this study as an experimental case.

The world runs on energy, without which the world could be near obsolete. With the industrial revolutions 
and inventions of energy-driven machinery, we now rely more on energy to run things than ever. The energy is 
produced mostly from petroleum such as fossil oils. However, human beings are yet to produce petroleum even 
with the latest and the most promising research to date. This forces us to search for petroleum beneath the earth’s 
surface, which gets developed through million-years-long geological formations. After finding and extracting 
petroleum from underground, we refine it into various types of fuels for real usage.

Different types of technologies are currently used for finding petroleum deposits1–3. Most of them are highly 
expensive and less accurate. Besides, the existing technologies generally need drilling to check if there is any 
petroleum deposit or not3. Therefore, finding new petroleum deposits generally demands a huge budget4. In this 
context, prior computing-based prediction to facilitate finding a new petroleum deposit incurring a low cost 
and resulting in high accuracy has become very important in today’s world. For making such computing-based 
predictions, data pertinent to existing petroleum deposits are required. A large number of existing petroleum 
deposits are located in the Middle East, where a prominent representative country is Iraq. As petroleum deposits 
are a good property for the geology of Iraq5, therefore, computing-based predictions of underground petroleum 
deposits based on data on the existing deposits in Iraq and its surrounding places are worth investigating, which 
we focus on in this study.

To explore similar contexts, numerous research studies have been performed for detecting petroleum deposits 
all over the world. These existing research studies leverage physical interventions. For example, in a conventional 
approach, a petroleum deposit is first guessed from accumulated experience, and then exploratory well drilling 
takes place6. The guess of having a petroleum deposit is based on previous experience with geological structures 
such as anticlines, which often proves to be inaccurate after performing the drilling6. In reality, the task of drill-
ing is highly expensive even though it is onshore4. To better portray how costly the drilling is, we present Table 1 
showing estimates of the costs of drilling a well more than a decade back covering both onshore and offshore.

Considering the cost of drilling, researchers have got interested in using remote sensing and geographical 
information system (GIS) to find the potential areas of petroleum deposits. If an area is found to be a potential 
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one in this way, seismic technology becomes worth using for further exploration. Following this approach, the 
studies in7,8 used locally-sensed gravity information to find a probable area of a new petroleum deposit. Apart 
from searching petroleum deposits in this way, remote sensing techniques are also used in different other envi-
ronmental studies owing to the promise the remote sensing techniques exhibit.

Considering these aspects, in this paper, we further leverage the notion of remote sensing by utilizing satellite 
data. Here, we use the gravity gradient tensor calculated from the data sensed by the GRACE satellite to predict 
a new potential petroleum deposit. Since the data sensed by the GRACE satellite appear to be open-source and 
the data are available for the whole world, our study based on GRACE satellite data presents a generalized com-
putational method for predicting petroleum deposits.

In our study, we first take the gravity data (sensed by the GRACE satellite) of our area of focus and its sur-
roundings. We consider the surroundings as the training regions and take the area under focus as our testing 
region. In parallel, we take the locations of the already-discovered petroleum deposits over the training and 
testing regions from the Peace Research Institute of Oslo (PRIO)9. Then, we combine the gravity data of our 
training and testing regions with the locations of already-discovered petroleum deposits to build our training 
and testing datasets. In the datasets, the total number of locations having no petroleum deposits is much higher 
than that having petroleum deposits, which results in imbalanced datasets having only a handful of positive 
cases. This is also the reason why we could not use deep learning in our study. To overcome the problem of hav-
ing imbalanced datasets, we oversample our training datasets using standard oversampling techniques to make 
them balanced. Subsequently, we apply 28 different machine-learning methods to our training datasets and find 
out the best-performing machine-learning methods among them. Then, we apply the models found from the 
best-performing machine learning methods on our testing datasets and analyze their performances. We find that 
there exists no machine learning method among our explored ones whose output model can give an expected 
level of performance on our testing data. To this end, we understand that none of the existing machine learning 
models can solely appear to be promising in detecting underground petroleum deposits.

Next, to go further, we propose a new method realizing a combination of OR-ing and then n-times ANDing. 
The method leverages the notion of n-voting over the best-performing models, and thus, improves the perfor-
mance of predicting underground petroleum deposits. We name this method as OR-nAND method. Besides, 
we perform graph-based analysis to minimize the number of considered best-performing models on which our 
proposed OR-nAND method is applied. Additionally, we present pictorial views of our findings on prospective 
undiscovered petroleum deposits in Iraq through heatmaps. Finally, we explore the whole method over another 
dataset from Harvard ArcGIS WorldMap10 to demonstrate the generalizability of our proposed method. While 
experimenting with the dataset from Harvard ArcGIS WorldMap, we find similar outcomes as already obtained 
for the dataset from PRIO.

In the process of this study, we make the following set of contributions in this paper.

•	 We take gravity information from the GRACE satellite and existing petroleum deposits over Iraq as well as 
its surrounding areas. We combine the information to generate 80 different training datasets and four testing 
datasets.

•	 We conduct oversampling methods over our training datasets to make them balanced. We apply 28 different 
machine-learning methods over each of the balanced datasets and find out the best-performing machine-
learning methods.

•	 We apply the models found from the best-performing methods over the testing datasets and find low accu-
racy there. To ameliorate the level of performance, we further propose a new method named OR-nAND by 
utilizing the notions of n-voting and graph-based analysis.

•	 Further, to demonstrate the generalizability of our proposed method, we explore the whole method over 
another dataset from Harvard ArcGIS WorldMap and demonstrate similar findings.

•	 Finally, we apply our improved models over Iraq to predict potential petroleum deposits that are yet to be 
explored. We present our findings using heatmaps to make them easily understandable.

The rest of the paper is organized as follows: “Related Work and Gap in the Literature” section presents related 
research studies in this field. In “Methodology of Our Study” section, we elaborate the methodology of our study. 
We describe our experimental setup in “Experimental Setup” section. “Results and Findings” section presents 

Table 1.   Drilling costs in different settings based on data presented in4.

Rig Location Type 2010 Rig Rate ($/day) Depth (ft) Drilling Days
Well Cost (Million 
$)

Onshore <100K 20,000 70–80 7–8

Onshore <100K 26,000 110 11

Onshore <100K 32,000 150 15

Offshore 500–800K 20,000 70–80 35–64

Offshore 500–800K 26,000 110 55–88

Offshore 500–800K 32,000 150 75–120
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our experimental results. We further discuss our findings in “Discussion” section. Finally, in “Future Work” 
and “Conclusion” sections, we point out scopes of future research and then conclude our paper.

Related Work and Gap in the Literature
Our study presented in this paper subsumes three different perspectives: petroleum deposits and their predic-
tions, the use of satellite data in studying the properties of the earth, and satellite-based study over and around 
the region of Iraq. Therefore, we present our related research studies from these three perspectives below.

Petroleum Deposits and Their Predictions.  Predicting a petroleum deposit is always challenging. A 
number of research studies have been done focusing on this problem. For example, Aghajani et  al. tried to 
detect high-potential petroleum deposits using normalized full gradients of gravity anomalies7. Their area under 
study was the Tabas basin of Eastern Iran. Similarly, Zeng et al. also tried to detect reservoirs using normalized 
full gradients of gravity anomalies. They applied their method to the Shengli oil field of East China8. Both of 
these studies share common limitations - they worked with data from a specific source (not an open source) 
and they worked with localized custom data. For example, Aghajani et al., managed the localized gravitational 
data from the geophysics department of the National Iranian Oil Company7,11. Besides, Zeng et al. collected the 
gravitational data from the Exploration Company of Shengli Petroleum Administration Bureau8. These data 
sources deal with localized data and are not openly accessible to all. On the other hand, in our study, we use open 
GRACE satellite data as the source of the gravitational data covering the whole earth. Using this gravitational 
data, we calculate the gravity gradient tensor in our study.

Besides, various automated and mathematical modeling-based approaches have been proposed over the years 
for exploring underground oil and gas reservoirs. The study in12 proposed a controlled-source electromagnetic 
data analysis-based method, which explores locating the right depth of reservoirs in oil field areas. Besides, the 
study in13 investigated low-temperature thermochronology-based techniques in the exploration of hydrocarbons. 
Additionally, the study in14 focused on searching for sweet spots to locate the most optimized drilling location 
in a reservoir. The study in15 introduced gradient-boosting decision trees (GBDTs) to automatically determine 
sweet spots based on well-log data sets. Similarly, the study in16 explored a model to locate the optimum position 
of wells in an underground reservoir. In another study17, a well located in the Nias Basin (in the west of Sumatra) 
is studied using geochemical data. In addition, the study in18 performed medium-term forecasting of salinity 
rates and groundwater levels using statistical and machine learning-based methods. Nonetheless, the study in19 
explored forecasting of thermal regimes in oil fields by developing a differential equation-based mathematical 
model to describe the process of formation of thermal conditions in a mine.

Satellite Data Mining.  Several research studies have been performed using satellite data mining. For 
example, Gido et al. used the GRACE data in the study of existing oil fields in Sudan. They did not attempt to 
detect or predict a new oil field, rather they studied ground subsidence due to the extraction of groundwater 
and oil from the existing oil deposits20. Nabaz et al. used remotely sensed Landsat satellite imagery, geographic 
information systems, and the hybrid cellular automata (Markov model) to study the region of Sulaimani Prov-
ince in Kurdistan, Iraq21. Before them, Rahel et al. did a similar work over the Halgurd-Sakran Core Zone of the 
National Park in the Kurdistan, Iraq22 using Landsat-5 and Landsat-8 images in association with the Cellular 
Automata (Markov chain) model. Besides, using the Landsat-8 and Markov-Cellular Automata, Emran et al. 
showed the degradation of the world’s largest mangrove forest and predict the forest cover23. Additionally, Satel-
lite imagery obtained from Landsat-8 was also used to detect and study oil slicks to get a deep insight into oil 
pollution in the Arabian Gulf and the Sea of Oman24 by Zhao et al. Nonetheless, remote sensing and GIS have 
been used in different research studies. For example, Naji et al., used remote sensing and GIS for spatial analysis 
of the chemical soil properties of South Basra, Iraq25. Moreover, remote sensing and GIS are also used to study 
sand and dust storms in the Middle East26–29. However, none of these studies on detecting petroleum deposits 
are performed based on the property of the earth sensed by a satellite.

Satellite‑based Studies over and around Iraq.  Behadili et al. investigated Landsat-7 data for the Al-
Nasiriya city of Iraq30. They looked at thermal bends from satellite images to study the extraction of emitted 
hydrocarbon. From this emission, they tried to find out unexplored oil and gas fields30. Besides, Perry et al. used 
multispectral satellite imagery over the region of Kurdistan, Iraq to detect hydrocarbon seepage31. Additionally, 
Omar et al. extracted tectonic linaments from Landsat-7 imagery in the Tawke oil field, Kurdistan, Iraq32. On the 
other hand, Allafta et al. performed a GIS-based analysis for flood-prone area mapping along the boundary of 
Iraq-Iran using satellite images33. All of these research studies primarily focused solely on satellite images. Thus, 
extracting the property of the earth from satellite data for the purpose of detecting petroleum deposits is yet to 
be investigated in the literature.

Methodology of Our Study
We perform our study following a number of steps. At first, we build our training and testing datasets. Building 
the datasets subsumes a combination of steps. After building the datasets, we apply a number of machine learn-
ing (ML) methods to each of the training datasets. Subsequently, we take the best-performing ML method for 
each training dataset and apply the best-performing model to the corresponding testing dataset. We find that 
the best-performing models do not come from any single ML method, and therefore, no single ML method can 
always exhibit the best performance. All of the best-performing models found in this way can predict some of 
the existing petroleum fields in the testing datasets. We, therefore, build a matrix based on the performances of 
the best-performing models over corresponding testing datasets. In the matrix, for each best-performing ML 
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model, we pinpoint the petroleum deposits in the corresponding testing dataset that are predicted by the model 
and count the total number of petroleum deposits predicted by the model. Then, we sort the matrix based on 
the total number of predicted petroleum deposits. Afterward, we apply graph-based analysis to find out the 
minimum number of ML models that should work together to provide a good prediction performance. Next, we 
apply n-voting over the outcomes of the ML models selected from the outputs of the graph-based analysis and 
find substantial accuracy in prediction. Here, while performing the graph-based analysis, we take the models 
that combinedly choose the existing petroleum deposits by being predicted by at least one of the models. This 
mimics the notion of an OR operation and therefore, we refer to this operation as OR-ing in our case. Then, we 
apply n-voting for finding the most probable new petroleum deposit through performing n times AND opera-
tion over the output of the selected models, Thus, we refer to this operation as nANDing in our case. Note that, 
when a point is selected as a probable new petroleum deposit by n-voting, the point may be selected by any set 
of the n models. Accordingly, two different points may be selected by different sets of n models. Here, the models 
that select the probable points can be completely different. However, the count of the selector model is at least 
n. In other words, nAND-ing is not fixed for any specified ML models, rather, it is fixed on the count of the ML 
models giving the prediction. That is why we name our overall proposed method as OR-nAND method. Finally, 
we convert our findings into pictorial views using heatmaps presenting predicted new petroleum deposits. 
Figure 1 shows the methodology in a flowchart form. We describe each part of the methodology in detail below.

Dataset Preparation.  One of the basic building blocks of our dataset is the data sensed by GRACE satel-
lites. GRACE satellites provide us with a monthly average of Earth’s spherical harmonic coefficients. Since the 
earth is like a sphere, we can calculate various properties of the earth, e.g., the gravitational field, magnetic field, 
etc., using these spherical harmonic coefficients using Legendre polynomials34.

The gravitational field of any point on the earth can be computed as follows.

here Cnm and Snm are the spherical harmonic (SH) coefficients35, which describe the mass distribution within 
the earth. ae is the equatorial radius. r, θ , and � are the radius, colatitude, and longitude respectively. Pnm is the 
associated Legendre function. GM is the gravitational constant multiplied by the mass of the earth.

On the other hand, the earth’s continental crust has an average density of 2900 kgm−336. Where any of the 
underground petroleum reservoirs exist, the density of the earth of that place will be less than the other places 
of surroundings having no reservoirs37. Due to the relationship with density, the gravitational field will face 
some curve in the spatial domain at that place38. Since this gravitational change will be extremely small, a more 
detailed sensitive property called Gravity Gradient Tensor (GGT)39 can be used to detect such anomalies in the 
gravitational field in the spatial domain.

Gravitational force in a gravitational field can be divided into three components in three directions. Each of 
them can be divided again into three directions, which is the second derivative of the gravitational force in the 
NED (North-East-Down) frame35. As a result, among a total of nine components, six are unique and named 
Gravity Gradient Tensors (GGT)40. Since it is the second derivative of the gravitational force, it is more sensitive 
in each direction41. This property of the earth can be used to detect very small anomalies in gravitational fields in 
the spatial domain, which can in turn towards detecting some prospective petroleum deposits. Note that, GGT 
components can be measured only for specific locations on earth, i.e., for any specific latitude and longitude 
value. To meet this requirement, we need to divide the earth into a grid system.

To further elaborate this study, we first calculate the gravity gradient tensor (GGT), which has six components. 
Those components are Vxx, Vxy, Vxz, Vyy, Vyz, and Vzz. It is important to keep in mind that GGT components 
cannot be computed generally42. They can be calculated only for specific locations on earth, i.e., for specific val-
ues of latitude and longitude. To meet this requirement, we need to divide the area under our study into a grid 
system. Then, GGT components can be calculated for each point of that grid system.

To calculate the GGT for a specific point on the grid system, we first need the first derivatives of Eq. 1, and 
then the second derivatives of it. Therefore, based on Eq. 1, the first derivatives of V with respect to r, θ , and � 
are calculated first as Vr(r, θ , �) , Vθ (r, θ , �) , and V�(r, θ , �) . Accordingly, the second derivatives of V with respect 
to r, θ , and � are calculated then as Vrr(r, θ , �) , Vrθ (r, θ , �) , Vr�(r, θ , �) , Vθθ (r, θ , �) , Vθ�(r, θ , �) , and V��(r, θ , �) . 
And then, the gravitational gradients full tensor (GGT) in the local North-East-Down (NED)35 frame can be 
further derived as follows.
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r
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(6)Vyz(r, θ , �) = Vzy(r, θ , �) =
1

r sin θ

(

Vr�(r, θ , �)−
1

r
V�(r, θ , �)

)

Figure 1.   Methodology and different steps performed in the study.
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The equations needed to calculate those GGT components are given in the Supplementary Material in more 
detail. From Eq. 1, we can find two terms Cnm and Snm in the calculations. These are spherical harmonic coeffi-
cients of the earth. GRACE satellite provides monthly spherical harmonics of earth, i.e., Cnm and Snm data. Using 
these satellite data and equations, we calculate the GGT components for a specific point on the grid system.

Then, we calculate the GGT for every point on the grid. It is worth mentioning that, calculating GGT compo-
nents is a time-consuming job. Besides, in our study, we need the value of a GGT component for the same point 
many times for the shake of our experiment. To overcome the repetition of the time-consuming calculation of 
GGT on the road to save the total time of our experiment, we first calculate GGT components for all the points 
of the grid system under our study area and save all of them in storage. Then, we take the values from the storage 
during experimentation following the notion of dynamic programming way.

In this way, we calculate all six GGT components for our area of focus which covers Iraq and its surroundings. 
Based on these GGT components, our plan is to learn the properties of the earth from gravitational anomalies in 
the surroundings of Iraq. We want to use the learned model for detecting new prospective petroleum deposits 
over the region of Iraq.

It is worth mentioning that, in comparison to the number of non-petroleum locations, the number of already 
known petroleum deposit locations is substantially lower, Therefore, we cannot use the deep learning method 
here. Besides, we observed that the datasets appear to be imbalanced datasets. Therefore, before performing 
any processing, we need to balance the datasets using standard oversampling techniques. After performing the 
oversampling, we plan to apply several standard machine learning methods and find out which methods perform 
best for our oversampled training datasets. After getting the trained models from the best-performing methods 
for the adjacent and surrounding areas of Iraq, we will apply those models over the region of Iraq and try to 
predict if there is any new prospective petroleum deposit in Iraq.

To focus on our prediction over the region of Iraq and to make our training and testing datasets disjoint, we 
take four 15◦ × 15◦ regions adjacent to Iraq. We take these four adjacent regions having the same size in terms 
of degree and being adjacent to the north, east, south, and west of Iraq. Figure 2a presents these four adjacent 
regions used for training in our experiment. For each of these regions, we take the locations of existing petroleum 
deposits of respective regions and then use them in building our training datasets.

Additionally, we consider the four adjacent regions as a whole. To do this, we take the west-most point of 
the training region at a distance of 15◦ west from the west-most point of Iraq. Consequently, we take the east-
most point of the training region at a distance of 15◦ east from the east-most point of Iraq. Similarly, we take the 
northern-most and southern-most points of the training region at a distance of 15◦ north and 15◦ south from 
the north-most and south-most points of Iraq respectively. We consider this whole surrounding region of Iraq 
as a training region. Note that, in this case, we carefully exclude the middle part of the region, which is the Iraq 
region, to make sure that our training and testing datasets remain disjoint. Figure 2b presents the surrounding 
training region of our experiment. Like the other four adjacent regions shown in Fig. 2a, we also take the loca-
tions of petroleum deposits over this surrounding region to build our training datasets.

It is worth mentioning that, for one single region, the number of petroleum deposits is substantially lower 
than that of available non-petroleum points in that region. This gives us an imbalanced dataset. To overcome 

(7)Vzz(r, θ , �) = Vrr(r, θ , �)

Figure 2.   Regions that are considered in preparing training datasets (the figures are created using Python 3.843 
and Microsoft Power Point44).
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this problem, we apply standard oversampling techniques to our primary imbalanced datasets and get balanced 
training datasets. We use both SMOTE45 and ADASYN46 as oversampling techniques in our study.

Further, we prepare four testing datasets in exactly the same way as the training datasets get prepared. Here, 
while preparing the testing datasets, the region and the testing petroleum deposits remain the same. However, 
as we take data from four different data sources, we end up with four testing datasets. Note that, while applying 
the models on the prepared testing datasets, we always carefully maintain applying the appropriate ML models 
on the testing datasets in such a way that the data source for the training and testing datasets remains the same. 
Otherwise, the result would be invalid. Thus, the main difference in preparing the testing datasets in comparison 
to preparing the training datasets is that, in the case of the testing datasets, the area under consideration is Iraq 
itself. Moreover, oversampling is not needed for the testing datasets, as we do not perform any training using 
these datasets.

Application of Machine Learning Methods.  After preparing the training datasets, we apply different 
machine learning (ML) methods to each of them with various time durations for training. Time durations are 
multiple of 15 minutes, starting from 15 minutes up to 1920 minutes. Among all of them, we take the best-
performing ML methods for each of the training datasets. The best-performing ML methods vary from one 
dataset to another. Therefore, we apply all the models extracted from the best-performing ML methods to the 
respective testing datasets. For each of the models, we find that they can predict different petroleum deposits 
from our testing datasets.

Note that, none of the best-performing models predict all of the petroleum deposits in our testing datasets. 
In fact, each one can predict some of the existing petroleum deposits. However, we notice that the petroleum 
deposits predicted by different resulting models are not unique for each of the resulting models even for the 
models that predict the same number of petroleum deposits. If the number of predicted petroleum deposits is 
not the same, the predicted petroleum deposits obviously vary for different resulting models. To analyze which 
petroleum deposit in a testing set is predicted by which model and which petroleum deposits are predicted most 
of the time, we prepare a matrix. In the matrix, we take the number of columns as the number of petroleum 
deposits in the testing region. Besides, we take all the results on predicting existing deposits in the testing datasets 
by all the models as the rows of the matrix. Then, we row-wise sort the matrix in descending order based on 
the total number of predicted petroleum deposits by the models. We find that some of the petroleum deposits 
cannot be predicted by any of the models. Besides, some of the models predict only a few petroleum deposits. 
Considering all these aspects, we need a threshold on the number of predicted petroleum deposits by a single 
model based on which we can choose a set of models in the process of making the final decision. To determine 
the threshold, we build a table, each row of which contains three things-1) The minimum number of petroleum 
deposits predicted by a single model, 2) Which petroleum deposits can be predicted for how much time by 
combining all the models that can predict at least the minimum number of existing petroleum deposits, and 3) 
The total number of predicted petroleum deposits by combining all these models that can predict the minimum 
number of existing petroleum deposits. From this table, we plot a graph and find the value of saturation in the 
total number of predicted petroleum deposits. We take the minimum number of predicted existing petroleum 
deposits by a single model to achieve this saturated value as the threshold value. We keep only those models that 
can predict at least the threshold number of petroleum deposits in the testing region.

n‑Voting over Results of ML.  After filtering the best-performing model outputs that can predict at least 
a threshold number of petroleum deposits, we can get only top-performing model outputs. Each of the filtered-
out models can predict a number of existing petroleum deposits. These models also output some more points as 
potential petroleum deposits that are yet to be discovered. Now, since each of the best-performing models can 
predict some (not all) of the existing petroleum deposits, the potential petroleum deposits need to be verified by 
other best-performing models. To perform this verification finally, we use an n-voting system. Here, if there are 
n best-performing models, we can get 1 to n votes for each of the potential petroleum deposits. Accordingly, in 
our n-voting system, if any point is selected by at least n votes, then the point is selected as a potential petroleum 
deposit. In this way, we filter out some areas that are highly probable to have petroleum deposits. To do this, we 
keep a count of the number of votes in the n-voting system. Using this count, we get more probable petroleum 
deposits in our study area, which we present using a heatmap. Here, since each point is selected only if the point 
gets predicted by at least n different models, we name the method as nAND-ing.

Graph‑based Analysis for Maximum Coverage with Minimum Number of Resulting Output 
Models.  At the final stage of our study, we attempt to develop a generalized method to cover all petroleum 
deposits with a minimum number of models, i.e., rows in the matrix. To do so, we build a bipartite graph47 con-
sisting of the best-performing models in one part (as “Part A”) and existing petroleum deposits in another part 
(as “Part B”). We put an edge from a vertex in Part A to a vertex in Part B, if the corresponding best-performing 
model in Part A can detect the corresponding petroleum deposit in Part B. Then, we try to find an algorithm 
that will find the minimum vertex set from Part A that has at least one edge to cover all the vertices of Part B, i.e., 
all the petroleum deposits in Part B except those that do not have any edges. This turns into a “vertex cover in 
hypergraphs” problem over the bipartite graph48. We build Algorithm 1 as our heuristic-based greedy algorithm 
to cover all petroleum deposits (Part B) with a minimum number of vertices in Part A. Figure 3 shows an exam-
ple case of our Algorithm 1 portraying steps of the algorithm.
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Figure 3.   Steps of optimal model coverage following our proposed algorithm based on graph-based analysis.
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Experimental Setup
For the purpose of our experimentation, we first need to build our training datasets. To do that, we gather GRACE 
satellite data. As GRACE gets operated jointly by the Jet Propulsion Laboratory (JPL) from NASA, the Center for 
Space Research from the University of Texas, Austin (UTCSR), and the German Space Research Center (GFZ)49, 
each of these three institutions processes the raw data from GRACE and releases them as a different source of the 
data. They also release different versions of the processed data. This data is found from Physical Oceanography 
Distributed Active Archive Center (podaac)50. Note that, in spite of the data being free at this site, one needs to 
open a free account there to download the data. We take the GRACE data from here by opening a free account. 
We have used the release 05 (RL-05) data of GRACE from the site. Accordingly, in our experiments, we consider 
all the different sources of GRACE data of RL-05. These include JPL GSM90, GFZ GSM90, UTCSR GSM60, 
and UTCSR GSM96.

The data sources provide us with the monthly average of the spherical harmonic coefficients of the earth. 
Using these spherical harmonic coefficients, we calculate the GGT components (corresponding calculations are 
given in the Appendix). As discussed earlier, GGT can be calculated only for specific points on earth. Therefore, 
in our study, we divide the earth by a 0.1◦ × 0.1◦ degree grid. Then we calculate GGT for each point on the grid.

In our study area, 0.1◦ degree on earth measures different lengths in kilometers at different locations. For 
example, at the north of our training region, 0.1◦ degree is equivalent to approximately 6.7km along the east-
west direction. On the other hand, at the south of our training region, 0.1◦ degree is equivalent to approximately 
10.7km along the east-west direction. Note that, along the north-south direction, 0.1◦ degree is equivalent to 
approximately 11km for our study area. Besides, as calculating GGT components is a time-consuming job, we 
try to overcome the repetition of the calculations of GGTs by calculating the GGT components of all the points 
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over our area of study in a 0.1◦ × 0.1◦ grid and saving them in computer storage. We take the values from the 
storage during experimentation mimicking the notion of dynamic programming.

As mentioned earlier, we have five training and one testing regions within our area of study. Accordingly, 
we build training datasets for all the training regions and testing datasets for the testing region. To do this, we 
calculate the GGT for each point of these regions. After calculating the GGT components of these regions, we 
need to consider the locations of the giant, supergiant, and mega-giant petroleum deposits within those regions 
to prepare our dataset. We collect the locations of the giant, supergiant, and mega-giant petroleum deposits all 
over the world from the Peace Research Institute Oslo (PRIO)9. From the list, for each of the regions under our 
study, we take the locations of existing petroleum deposits. Table 2 presents the number of petroleum deposits in 
our training and testing regions as well as the whole world. We can see the area in square degrees within which 
one petroleum deposit appears for different regions from the Table. Figure 4 shows the locations of the exist-
ing petroleum deposits in our training and testing regions. Now, for each point of the grid in a single region, 
we take all six GGT components and label them as ‘0’ (false) if there is no petroleum deposit. Besides, we label 
them as ‘1’ (true) if that point has a petroleum deposit. We follow the same procedure for all the training and 
testing regions. Figure 5 shows this procedure based on which we make our training and testing datasets for the 
training and testing regions.

As we take GRACE data from four different data sources, for each training region, we get four sets of data. 
Here, the number of true points inside the data is very less compared to that of false points as the number of 
existing petroleum deposits is much smaller than the number of non-petroleum points. Therefore, we apply 
oversampling techniques to the dataset from each data source to make the dataset a balanced one. We used two 
standard oversampling methods on each dataset. Those methods are SMOTE45 and ADASYN46. Note that, each 

Figure 4.   Existing petroleum deposit locations of our training and testing regions (the figures are created using 
MATLAB 2021a51).

Table 2.   The density of giant, mega-giant, and super-giant petroleum deposits in our training and testing 
regions.

Region
# of Giant, Mega Giant, and Super Giant 
Petroleum Deposits Area (in Sq Degree)

A Petroleum Deposit Appears within an 
Area (in Sq Degree)

Whole World 1273 64800 50.90

Left of Iraq 31 225 7.26

Right of Iraq 50 225 4.50

Top of Iraq 34 225 6.62

Bottom of Iraq 21 225 10.71

Surround of Iraq 196 1461.68 7.46

Iraq itself 26 82.32 3.17
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oversampling method is applied to each data source two times with a KNN - 1) where the value of K is 4, and 2) 
where the value of K is 10. As a result, each data source is oversampled four times. Therefore, for each imbalanced 
dataset from a single data source, we get four oversampled balanced datasets as follows.

•	 Oversampled using SMOTE with KNN where K = 4,
•	 Oversampled using SMOTE with KNN where K = 10,
•	 Oversampled using ADASYN with KNN where K = 4, and
•	 Oversampled using ADASYN with KNN where K = 10.

Since there are four different data sources, we get a total of 16 oversampled training datasets in each region. 
Figure 5 shows the creation process of the 16 datasets from one single region. Finally, as we have five training 
regions, and each one has 16 balanced oversampled training datasets, we get a total of 80 balanced oversampled 
training datasets. The testing dataset is built in the same way as training datasets except performing the over-
sampling part. Note that, initially we explore with KNN where K = 4, 5, 6, 7, 8, 9, and 10. However, we do not 
find any notable performance change between the intermediate values of 4 and 10. Therefore, we continue our 
further study with only the values of 4 and 10.

Results and Findings
We prepare 80 training datasets following the process mentioned in the experimental setup. We apply 28 differ-
ent machine learning (ML) techniques over all the training datasets pertinent to different training regions. To 
do this, we use a well-known machine-learning tool named Auto-WEKA52. While training with the 80 datasets 
using 28 different ML techniques, we used the standard 10-fold cross-validation for our datasets, as 10-fold cross-
validation is a widely used training-validating method nowadays. We find different outcomes from different ML 
techniques for the same dataset. We take the best-performing ML technique for each training dataset separately. 
We find that the best-performing ML techniques perform very well for their respective training regions. We have 
shown the precision, recall, F1 score, and accuracy of the 16 best-performing training datasets for their respec-
tive training regions in Table 3. We save each of the models found from the best-performing methods separately. 
Then, we apply those best-performing models to corresponding testing datasets. This time the performance is 
not as good as we have found during the training. Table 3 also shows the precision, recall, F1 score, and accuracy 
of the best-performing models when we apply them to the corresponding testing datasets.

It is important to keep in mind that we have 26 existing petroleum deposits in each of our testing datasets. 
As the testing region is the same for all the testing datasets, therefore, the 26 existing petroleum deposits are 
the same for all the testing datasets. As per our findings, none of the best-performing models can predict all 
of the 26 deposits. In fact, one of the resulting models can predict a maximum of 12 existing deposits. Besides, 
for different models, the predicted petroleum deposits vary. Similarly, other resulting models from some other 
different training datasets can predict less than 12 (eleven, ten, or fewer) petroleum deposits in the testing 
datasets. In most cases, the predicted petroleum deposits vary for different models. To analyze which petroleum 
deposit in the testing datasets gets predicted by which model and which petroleum deposits are predicted most 
of the time, we prepare a matrix. In the matrix, we take 26 columns for all 26 petroleum deposits in the testing 
region. We take the output of all the best-performing models on the corresponding testing datasets from the 80 
training datasets as the rows of the matrix. Then, we sort rows of the matrix in descending order based on the 
total number of predicted petroleum deposits in the testing region. We find that one of the petroleum deposits 
in the testing region can not be predicted by any of the models. Besides, some models detect only a few (two or 
three) existing deposits. Therefore, we keep only those resulting models, which can predict at least six petroleum 

Figure 5.   The process of building our training dataset.
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deposits in the testing region. Table 4 shows the matrix with the best-performing models that can predict at least 
six of the petroleum deposits in the testing region. We take the threshold value as six, as decreasing the threshold 
value further does not result in any increase in the total number of predicted petroleum deposits. Accordingly, 
we consider six as the value of reaching the saturation point in the process of predicting the maximum number 
of petroleum deposits in the testing region. Therefore, we adopt six as the threshold value. Figure 6 shows how 
the threshold value gets selected through the process of getting the maximum number of predicted petroleum 
deposits saturated.   

n‑Voting over Results of ML Methods.  After filtering the best-performing models that can predict at 
least six petroleum deposits in the testing datasets, we get a total of 16 best-performing models as shown in 
Table 4. Each of these 16 models can predict a number of existing petroleum deposits. On the other hand, these 
models also indicate some more points as probable undiscovered petroleum deposits. Since each of the best-per-
forming models can predict some of the existing petroleum deposits, the indications of probable undiscovered 
petroleum deposits need to be verified by other best-performing models. To enable the verification, we use an 
n-voting mechanism. Here, as there are 16 best-performing models available, we can get 1 to 16 votes for verify-
ing a probable petroleum deposit. Thus, as per the n-voting mechanism, if any point is selected by n votes, then 
the point is considered to be a verified probable undiscovered petroleum deposit. Figure 7 shows the outcome 
of the n-voting mechanism for n = 1 to 16, on our testing datasets. The best case in Fig. 7 (i.e., Fig. 7a or the 
1-vote instance) covers 25 out of the existing 26 deposits. In the case of 2-vote instance (i.e., Fig. 7b), the coverage 
decreases to 22 out of the existing 26 deposits, and so on. Figure 8 presents the scenario. From the subfigures of 
Fig. 7, we can see that a large portion of our study area is probable for petroleum deposits with a small value of 
n. However, as we are interested in areas that are highly probable to have petroleum deposits, we keep a count 
of the number of votes in the n-voting mechanism. Using these increased values of n, we get the more probable 
petroleum deposits in our study area. We build heatmaps using these counts as shown in Fig. 9.

Graph‑based Analysis for Maximum Coverage with Minimum Number of Resulting Model Out‑
puts.  For the purpose of covering the maximum existing deposits in our testing region using a minimum 
number of models, we build a bipartite graph where the set A contains all the best-performing models. Besides, 
we take the set B, which contains all the existing petroleum deposits of the testing region. We put an edge from a 
node in the set A to a node in the set B when a best-performing model from set A predicts a petroleum deposit 
from set B. Algorithm 1 covers the maximum number of elements from set B using the minimum number of 
elements from set A. We get a set of six best-performing modes that cover a total of 25 petroleum deposits. As 
mentioned earlier, out of 26 deposits, one deposit is not predicted by any of the models. The predicted deposits 
are shown in Table 5. Besides, we show performances of the top 16 trained models in Table 3. Among the per-
formance metrics, we consider the ‘Recall’ values to be the most crucial, as this metric denotes the proportion of 
properly identified petroleum deposits among the existing ones.

Table 3.   Evaluation metrics for trained models.

Training 
Region

Data 
Source

Oversampling 
Technique KNN

Training 
Time 
(min)

Training Testing

Precision Recall F-Measure
ROC 
Area Accuracy Precision Recall F-Measure

ROC 
Area Accuracy

RIGHT GFZ SMOTE 10 150 1.000 1.000 1.000 1.000 1.000 0.994 0.672 0.801 0.584 0.672

RIGHT UTCSR 
60 SMOTE 10 15 0.999 0.999 0.999 1.000 0.999 0.994 0.649 0.784 0.507 0.649

RIGHT JPL SMOTE 10 15 0.999 0.999 0.999 1.000 0.999 0.994 0.778 0.872 0.599 0.778

Surround-
ing JPL ADASYN 10 1920 1.000 1.000 1.000 1.000 1.000 0.994 0.689 0.813 0.548 0.689

RIGHT JPL ADASYN 10 15 1.000 1.000 1.000 1.000 1.000 0.994 0.752 0.856 0.569 0.752

TOP JPL SMOTE 10 15 1.000 1.000 1.000 1.000 1.000 0.995 0.829 0.904 0.656 0.829

RIGHT GFZ ADASYN 10 15 1.000 1.000 1.000 1.000 1.000 0.994 0.795 0.883 0.577 0.795

RIGHT GFZ SMOTE 10 15 0.999 0.999 0.999 1.001 0.999 0.994 0.835 0.907 0.580 0.835

RIGHT UTCSR 
60 ADASYN 10 15 0.999 0.999 0.999 1.000 0.999 0.994 0.705 0.824 0.465 0.705

RIGHT UTCSR 
96 SMOTE 10 15 0.999 0.999 0.999 1.000 0.999 0.994 0.816 0.896 0.455 0.816

Surround-
ing JPL SMOTE 10 120 1.000 1.000 1.000 1.000 1.000 0.994 0.856 0.920 0.599 0.856

TOP GFZ ADASYN 10 15 1.000 1.000 1.000 1.000 1.000 0.994 0.818 0.897 0.549 0.818

TOP JPL ADASYN 10 15 1.000 1.000 1.000 1.000 1.000 0.994 0.850 0.916 0.645 0.850

Bottom JPL ADASYN 10 15 0.999 0.999 0.999 1.000 0.999 0.994 0.776 0.871 0.502 0.776

RIGHT UTCSR 
96 ADASYN 10 15 0.999 0.999 0.999 1.000 0.999 0.994 0.822 0.900 0.473 0.822

Surround-
ing GFZ ADASYN 10 1920 1.000 1.000 1.000 1.000 1.000 0.994 0.739 0.847 0.533 0.739
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After completing the graph-based analysis, we find six best-performing models that resulted in the minimum 
number of models needed to predict the maximum possible deposits. On the basis of the found six models, 
Fig. 10 shows binary decision outcomes based on 1-to-6 voting. Besides, Fig. 11 shows corresponding heatmaps 
for the 1-to-6 voting. The n-vote binary decision outcomes are obtained in the following way. From the bipartite 
graph, we apply the n-voting method to the six best-performing models that unitedly identify the 25 petroleum 
deposits. This time, we apply 1 to 6 votes as there are only six best-performing resulting models. We apply the 

Table 4.   Matrix with the best-performing models (among 80 models) and their predicted petroleum deposits 
in the testing region.

Sl Models

Petroleum Field No

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Count

1 RIGHT_GFZ_
SMOTE_10_150min 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 12

2 RIGHT_UTCSR 
60_SMOTE_10 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 11

3 RIGHT_JPL_
SMOTE_10 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 10

4 Surrounding_JPL_
ADASYN_10_1920min 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 10

5 RIGHT_JPL_
ADASYN_10 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 9

6 TOP_JPL_SMOTE_10 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 9

7 RIGHT_GFZ_
ADASYN_10 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 8

8 RIGHT_GFZ_
SMOTE_10 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 7

9 RIGHT_UTCSR 
60_ADASYN_10 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7

10 RIGHT_UTCSR 
96_SMOTE_10 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 7

11 Surrounding_JPL_
SMOTE_10_120min 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 7

12 TOP_GFZ_
ADASYN_10 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 7

13 TOP_JPL_
ADASYN_10 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 7

14 Bottom_JPL_
ADASYN_10 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 6

15 RIGHT_UTCSR 
96_ADASYN_10 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 6

16 Surrounding_GFZ_
ADASYN_10_1920min 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 6

Total number of times 
the field detected 0 1 3 1 2 6 3 5 9 3 10 6 4 3 6 2 11 2 3 4 7 8 2 9 14 10

Figure 6.   The process of finding the threshold.
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Figure 7.   Probable petroleum deposits based on the existence of 1 to 16 votes over our 16 best-performing 
models from the matrix-based analysis (the figures are created using MATLAB 2021a51).

Figure 8.   Change in the number of existing petroleum deposits covered by n-vote instances with an increasing 
value of n.
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best-performing models to our testing datasets and get indications of some probable undiscovered petroleum 
deposits when any point in our testing datasets gets predicted as a probable petroleum deposit at least n times 
in an n-voting system. If a point is not predicted for at least n times, we indicate that point as a non-petroleum 
location.

Figure 10a presents the result obtained from 1-voting. Here, we can see a huge number of points indicated 
as probable petroleum deposits. This happens as any of the best-performing models predicts any point, it gets 
selected as a potential petroleum deposit. In other words, this result is a union of all six best-performing models’ 
outputs.

In the case of 2-voting, the result presents fewer predicted points than 1-voting as shown in Fig. 10b. Here, a 
point is considered a probable petroleum deposit if that point is predicted by at least two of the best-performing 
models. If a point cannot be detected by at least two best-performing models, then we mark that point as 
a non-petroleum location. The results contain a large number of predicted points. Subsequently, we explore 
3-voting. This time we take a point as a probable petroleum deposit if that point is predicted by at least three 
best-performing models. Any point that does not comply with this condition is marked as a non-petroleum 
point. Figure 10c presents the output of the 3-voting. We can see that this figure predicts fewer points as prob-
able petroleum deposits than 2-voting.

Later, we explore 4-voting and 5-voting in a similar way. The results are shown in Fig. 10d,e respectively. 
The 4-voting gives us a concise view of probable petroleum deposits, which are comprised of a few regions in 
addition to having some single discrete points. Besides, the 5-voting gives us a clear view of the locations of 
new probable petroleum deposits. In the outcome of the 5-voting, we can see that the new probable petroleum 
deposits converge towards two locations.

Figure 9.   Probable petroleum deposits based on the frequency of 1 to 16 votes over our 16 best-performing 
models from the matrix-based analysis (the figures are created using MATLAB 2021a51).
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Finally, we explore 6-voting. Here, we take an intersection over the outputs of all the six best-performing 
models. Figure 10f presents the outcome of the 6-voting. This time our system can predict only a few points as 
probable petroleum deposits. As the points are predicted by all the best-performing models, these points are 
highly probable to have some petroleum deposits. Thus, the probability of a new petroleum deposit is very high at 
these predicted locations. However, as this figure shows the outcome of intersection over all the best-performing 
models resulting in only a few predicted locations, we can understand that some other real deposits may remain 
undiscovered due to taking the intersection operation.

We present another type of result, which is comprised of heatmaps. Unlike binary decision results, heatmap 
results focus not only on the presence of the petroleum deposit but also on the frequency of prediction of each 
point. The point that gets predicted more times by the best-performing models is more probable as a new petro-
leum deposit. We represent the result using heatmaps in Fig. 11. Here, Fig. 11a shows the 1-voting heatmap 
results. Similar to the binary decision system, we take a point if any of the six best-performing models can predict 
the point. If any point is predicted by more than one best-performing model, then we increase the frequency of 
that point according to their frequency of prediction. Note that, we can see that approximately the whole image 
is predicted as petroleum deposits for a 1-vote heatmap. However, some points are indicated with dark color 
as these points have high frequencies and are most probable as petroleum deposits. In other words, this is the 
superposition counting for all points found from all the six best-performing models.

Similar to the previous case, we explore 2-voting through a heatmap representation and get Fig. 11b. Here, we 
consider a point as a potential petroleum deposit if at least two best-performing models can predict that point. 
If more than two best-performing models predict any point, we increase the frequency of that point based on 

Figure 10.   Probable petroleum deposits based on the existence of 1 to 6 votes over our 6 best-performing 
models found from the graph-based analysis (the figures are created using MATLAB 2021a51).

Table 5.   Matrix with the minimum number of best-performing models that can detect the maximum number 
of deposits in the testing region using the models that can detect at least six of the existing petroleum deposits.

Models

Petroleum Field No

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Count

RIGHT_GFZ_
SMOTE_10_150min 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 12

RIGHT_UTCSR 60_
SMOTE_10 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 11

Bottom_JPL_ADASYN_10 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 6

TOP_JPL_SMOTE_10 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 9

TOP_GFZ_ADASYN_10 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 7

RIGHT_JPL_SMOTE_10 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 10

Total 0 1 2 1 1 2 2 2 3 1 2 3 2 1 2 2 5 1 3 3 2 3 1 2 4 4
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the number of predicting best-performing models. Here, we can see a smaller number of shaded places in this 
picture than that we have found for 1-voting. Using the same procedure, we further explore the 3-voting heatmap 
as shown in Fig. 11c. Here, similar to the previous case of exploring the 3-voting, the 3-voting heatmap shows 
fewer probable points.

In a similar way, we get heatmaps for 4-voting and 5-voting as shown in Fig. 11d, e. From the 4-voting 
heatmap, we can see that the probable new petroleum deposits are divided into smaller regions. Besides, from 
the 5-voting heatmap, we can see that only two specific regions have new probable petroleum deposits. Finally, 
we get a heatmap from 6-voting as shown in Fig. 11f. This image shows only one location as the new probable 
petroleum deposit. As this point is predicted by all the best-performing models, there is a very high chance 
of having a petroleum deposit here. However, from the 5-voting heatmap, we see one more region is probable 
for a new deposit compared to the outcome found from 6-voting. Note that, as the 6-voting heatmap realizes 
predictions of all the best-performing models altogether, some other probable petroleum deposits might not get 
predicted by the 6-voting prediction.

Experimentation with Different Test Dataset.  In our experimentation presented above, we use a test 
dataset for existing petroleum deposits from PRIO9. Next, to test the generalizability of our proposed method, 
we perform our experimentation over a different test dataset. We collect the new test dataset from Harvard Arc-
GIS WorldMap10. Here, the locations of the existing petroleum deposits matched with a similar dataset we find 
in the experiment done by Ameri et al.53. In the case of the new test dataset from Harvard, the testing region is 
the same as our earlier experiment. Here, only the existing petroleum deposits have got changed from what we 
find in the dataset from PRIO.

We carefully compare these two test datasets. We find that the test dataset from PRIO gives us 26 existing 
petroleum deposits, whereas, the Harvard test dataset gives us 57 existing petroleum deposits in the same region. 
A potential reason behind this happening is the fact that, PRIO generally considers adjacent deposits as a single 
point, whereas, Harvard considered them as separate ones. Accordingly, over the existing petroleum deposits 
found in the dataset from Harvard, we can find many petroleum deposits adjacent to each other.

We apply all the best-performing models to our newly-considered test dataset from Harvard. This time, some 
of the best-performing models can predict at most 25 of existing petroleum deposits. In addition, here, each of 
the 57 existing petroleum deposits is detected by at least one of the best-performing models. Again, this time, 
the predicted petroleum deposits vary for different models mimicking our earlier case.

We prepare a matrix with the outputs of all the 80 best-performing models for the test dataset from Harvard. 
This time, we find that the threshold value is seven for detecting all the existing petroleum deposits in the testing 
field. Therefore, we keep those models that can detect at least seven existing petroleum deposits from our new 
test dataset. Figure 12 shows how the threshold value gets selected through the process of getting the maximum 
number of predicted petroleum deposits saturated.

n‑Voting over Results of ML Methods to the New Testing Dataset.  We get a total of 25 best-performing models 
that can detect seven or more existing petroleum deposits from the new test dataset from Harvard. We apply the 

Figure 11.   Probable petroleum deposits based on the frequency of 1 to 6 votes over our six best-performing 
models found from the graph-based analysis (the figures are created using MATLAB 2021a51).
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n-voting mechanism to these 25 best-performing models. We find that, among the 25 best-performing mod-
els, 22 are enough to detect all the existing petroleum deposits. Each of the remaining three models detects 
seven existing petroleum deposits. Therefore, we remove them from our solution list and apply n-Voting to the 
remaining 22 models.

Table 6 shows the matrix with the best-performing 22 models that can detect at least seven existing petroleum 
deposits from the new testing dataset from Harvard individually. The 22 models, in combination, can detect 
all of the petroleum deposits using our proposed method. Over these models, we apply 1-voting, 2-voting, 
3-voting, etc., up to 22-voting. We find that, up to 18-voting, we get prospective results. However, in the cases 
of 19-, 20-, 21-, and 22-voting, we get no coverage over the existing deposits. Hence, from 19 votes, not a single 
existing field can be detected by all the methods. This is justified, because, from the last row of Table 6, we can 
see that an existing field is detected a maximum of 18 times by all the models. Therefore, it is enough to apply 
up to 18-voting to cover the deposits. Figure 13 shows the outcomes of the n-voting mechanism to our new test 
dataset. The best case in Fig. 13 (i.e., Fig. 13a or the 1-vote instance) covers 57 out of the existing 57 deposits. 
In the case of 2-vote instance (i.e., Fig. 13b), the coverage decreases to 54 out of the existing 57 deposits, and so 
on. Figure 14 presents the scenario. On the other hand, Fig. 15 shows the heatmaps of the n-Voting mechanism.

Graph‑based Analysis for Maximum Coverage with Minimum Number of Resulting Model Outputs for the New 
Test Dataset.  Similar to our earlier experiment, we perform the graph-based analysis using Algorithm 1. This 
time, we get a total of eight best-performing models to cover all the existing petroleum deposits in our new test-
ing dataset. Table 7 shows the matrix of detecting the existing petroleum deposits by these eight models. Again, 
we perform n-voting over these eight best-performing models. Here, we find similar results as already obtained 
in the earlier case. Figure 16 shows the results we find from n-voting over these eight models as well as the graph-
based analysis. Additionally, Fig. 17 shows the heatmaps of the n-voting mechanism when applied to these eight 
models found from the graph-based analysis.

Discussion
We perform our study using publicly available satellite data over the region of Iraq. As this data is available for 
the whole earth, therefore, we can extend the study area anytime. In this regard, a further implication of our 
study is discussed next in this section. And the comparison with other studies is presented.

Further Implications of Our Study.  We have used GGT anomaly as the main fuel of our working tech-
nique for the purpose of our study. We combined the GGT value with the location of the existing petroleum 
deposits in our area of focus, and thus, created new labeled datasets. We use Auto-WEKA for the shake of run-
ning the 28 standard ML methods. Auto-WEKA is one of the leading tools for modeling and testing ML meth-
ods. The followings are some different alterations that could be possible in the processes of our study:

Use of GGT Instead of Gravity Information Due to Sensitivity.  We took spherical harmonic from the GRACE 
satellite and calculate the GGT from that data. Gravity information can also be calculated from the GRACE satel-
lite data. However, since GGT is the 2nd derivative of gravitational force, therefore it is a more sensitive property 
than the gravity property of the earth and can sense a very small anomaly in gravitational field39.

Change of Study Region.  In this study, we focus on the region of Iraq and its surrounding areas. Note that, we 
took the region because there are a number of existing petroleum deposits in our study area. This helped our 
method to learn the property of the earth at the location of existing petroleum deposits and predict a new one 
using the learning. Since our method is a generalized one, therefore, anyone can use this method anywhere in 
the world. In that case, he needs to calculate the GGT for that new region. Then, he also needs to combine the 
GGT with the existing petroleum deposits of that region and label them. Moreover, he also needs to oversample 
the training data he would make. If the existing petroleum deposits in that area are much less than in Iraq and 
its surroundings, then the oversampling percentage will get high, which will create the chance of more false 
predictions. We would like to test our method for some other areas of the earth as a future work of this study.

Comparison with Other Existing Related Studies.  We compare our proposed method with other 
existing recent related studies. Table 8 presents an overview of the comparison. Here, we perform the compari-
son based on the region under study, covered area, grid size, the number of data points under consideration, data 
source(s), the basis of prediction, the basis of mathematical expansion, and finding(s).

As shown in the table, both the studies by Zeng et al.8 and Aghajani et al.7 explored gravity data using Normal-
ized Full Gradient (NFG) of gravity to locate wells in already-known oil reservoirs. Besides, Perry et al.31 studied 
satellite images from the United States Geological Survey (USGS) to locate the evidence of hydrocarbon seepage. 
They used Landsat images with the enhanced thematic mapper and advanced spaceborne thermal emission. Their 
basis of the prediction is Landsat Visible and Near-IR (VNIR) Band 1, 2, and 3. Similarly, Behadili et al.30 studied 
Landsat-7 images from USGS to locate the unexplored oil and gas fields in the AL Nasiriya city of Southern Iraq. 
Both of these studies used ENVI as image processing software to study satellite images.
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On the other hand, in our proposed method, we use Gravity Gradient Tensor as a new basis of prediction 
and try to find a new petroleum reservoir. Besides, the first two studies7,8 used locally collected gravity data in 
their prediction tasks. On the contrary, we use gravity data collected by the GRACE satellite, which is processed 
by three different highly-reputed organizations. Besides, gravity data is universally available for the whole earth, 
as they are collected through the satellite. Due to the widespread availability of satellite data, we can apply our 
proposed method anywhere in the world. Nonetheless, all the mentioned existing studies covered very small 
areas in their explorations, whereas, our study covers a large area for its exploration. With all these comparisons, 

Table 8.   Comparison between our proposed method with other existing related research studies.

Method
Regions Under 
Study

Covered Area 
( km2) Grid Size

Number of 
Points Data Source(s)

Basis of 
Prediction

Basis of 
Mathematical 
Expansion Finding(s)

Zeng et al. 20028 Shengli oil field, 
East China 800 0.5km × 0.25km Not Mentioned

Shengli Petroleum 
Administration 
Bureau, China 
- local

Normalized Full 
Gradient Fourier Series

Identification 
of the center of 
existing petroleum 
deposits

Dabeil Area, East 
China 30 0.09km × 0.09km 3275

Aghajani et al. 
20117

Tabas Basin in 
Yazd province, 
Eastern Iran

4,545 1.5km × 3km 1,115

Geophysics 
department of 
National Iranian 
Oil Company 
(NIOC) - local

Normalized Full 
Gradient Fourier Series

Identification of 
the center of an 
existing petroleum 
deposit

Perry et al. 201131 Kurdistan, North-
ern Iraq 32000 N/A N/A

Landsat Enhanced 
Thematic Map-
per, Advanced 
Spaceborne 
Thermal Emission 
and Reflection 
Radiometer

Landsat vis-
ible and near-IR 
(VNIR) bands 1, 
2, and 3

ENVI Image Pro-
cessing Software

Evidence of 
Hydrocarbon 
Seepage

Behadili et al. 
201930

AL Nasiriya, 
Southern Iraq 19200 N/A N/A

Landsat-7 
Enhanced The-
matic Mapper

Stefan - Boltz-
mann law

Environment 
for Visualizing 
Images (ENVI 
5.3)

Uncovers, and 
estimates several 
unexplored oil and 
gas fields

Our proposed 
method

Iraq and its sur-
rounding regions

14,889,269 as 
training, 851,131 
as testing

0.1◦ x 0.1◦ , or 
((6.7 - 10.7km) × 
11km)

146,772 as 
training, 8,415 as 
testing

UTCSR, JPL, and 
GFZ - global

Gravity Gradient 
Tensor

Legendre Poly-
nomial

Prediction of new 
prospective petro-
leum deposits

Figure 12.   The process of finding the threshold for the new test dataset from Harvard.
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Figure 13.   Probable petroleum deposits based on the existence of 1 to 18 votes over our 22 best-performing 
models from the matrix-based analysis over the new test dataset from Harvard (the figures are created using 
MATLAB 2021a51).
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we find our study presents a more comprehensive approach, which will advance the knowledge in literature and 
open the door to a pervasive mechanism for predicting new underground petroleum deposits.

Future Work
We have different types of plans for our future work. In this study, we have used GRACE satellite data as the 
primary data source. We plan to collect data from other satellites or GIS, i.e., GOCE (Gravity field and steady-
state Ocean Circulation Explorer), Landsat-8, etc., and combine them with GRACE satellite data. Besides, in 
this study, we focus on the region of Iraq and its surroundings. We plan to study other regions in the future. 
Moreover, we plan to include some different environmental aspects in this study, i.e., the earth’s magnetic field.

Conclusion
Existing exploratory techniques of detecting petroleum deposits demand a long process and incur a high budget. 
Many potential areas can not be investigated due to these constraints. As a remedy to this situation, we propose a 
new method of predicting the location of a petroleum deposit based on publicly available data sensed by an open 
satellite named Gravity Recovery and Climate Experiment (GRACE). Leveraging the GRACE data, we propose 
to calculate the gravity gradient tensor of the earth over the region under focus. To demonstrate the efficacy 
of our proposed method, we choose Iraq as an experimental area considering the existence of a good number 
of petroleum deposits within it. Here, through incremental improvement over our proposed methodologies 
(combining machine learning, graph-based analysis, and the newly-proposed OR-nAND method altogether), we 
can predict 25 out of 26 existing petroleum deposits reported by a dataset from PRIO within the area under our 
study. We demonstrate the generalizability of our proposed methodologies through exploring another dataset 
from Harvard ArcGIS WorldMap resulting in similar outcomes as already obtained for the dataset from PRIO.

It is worth mentioning that our proposed method does not replace the existing technology. Rather, our 
method can narrow down and spot out the search area with a higher chance of success. Therefore, if we can nar-
row our search area with a greater chance of success, then more potential places can be explored with seismic 
technology and other advanced technologies reducing the budget required for the purpose of searching while 
uplifting the chance of getting petroleum deposits with less number of physical explorations.

Figure 14.   Change in the number of existing petroleum deposits covered by n-vote instances with an 
increasing value of n for the new test dataset from Harvard.
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Figure 15.   Probable petroleum deposits based on the frequency of 1 to 18 votes over our 22 best-performing 
models from the matrix-based analysis over the new test dataset from Harvard (the figures are created using 
MATLAB 2021a51).
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 Data availibility
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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