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Energy transfer in Carreau Yasuda 
liquid influenced by engine oil 
with Magnetic dipole using 
tri‑hybrid nanoparticles
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The aim of the current analysis is to evaluate the significances of magnetic dipole and heat 
transmission through ternary hybrid Carreau Yasuda nanoliquid flow across a vertical stretching sheet. 
The ternary compositions of Al2O3, SiO2, and TiO2 nanoparticles (nps) in the Carreau Yasuda fluid are 
used to prepare the ternary hybrid nanofluid (Thnf). The heat transfer and velocity are observed in 
context of heat source/sink and Darcy Forchhemier effect. Mathematically, the flow scenario has 
been expressed in form of the nonlinear system of PDEs for fluid velocity and energy propagation. 
The obtained set of PDEs are transform into ODEs through suitable replacements. The obtained 
dimensionless equations are computationally solved with the help of the parametric continuation 
method. It has been observed that the accumulation of Al2O3, SiO2 and TiO2-nps to the engine oil, 
improves the energy and momentum profiles. Furthermore, as compared to nanofluid and hybrid 
nanofluid, ternary hybrid nanofluid have a greater tendency to boost the thermal energy transfer. The 
fluid velocity lowers with the outcome of the ferrohydrodynamic interaction term, while enhances 
with the inclusion of nano particulates (Al2O3, SiO2 and TiO2).

List of symbols
v, u	� Velocity components
µ0	� Magnetic permeability
Cp	� Specific heat
T	� Temperature
π	� Pi
σ	� Electrical conductivity
nps	� Nanoparticles
p	� Pressure
k	� Thermal conductivity
Tw	� Wall temperature
Nu	� Nusselt number
M	� Magnetization
Ht	� Heat source
θ(η)	� Energy field
β	� Ferrohydrodynamic term
We	� Weissenberg number
Al2O3	� Aluminum oxide
Ec	� Eckert number
ρ	� Density
�	� Carreau Yasuda number
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Q0	� Heat source
ue	� Free stream velocity
�	� Viscous dissipation
Re	� Reynolds number
Thnf	� Trihybrid nanofluid
γ	� Strength of the magnetic dipole
S1	� Stretching ratio number
ε	� Ratio parameter
Cf 	� Skin fraction
Pr	� Prandtl number
ϕ	� Nanoparticles volume friction
f ′(η)	� Velocity profile
Fr	� Darcy Forchhemier term
m	� Power-law number
SiO2	� Silicon dioxide
TiO2	� Titanium dioxide

The study of simple or hybrid nanofluid flow across a vertical surface, wither stretching or rigid plate with energy 
allocation characteristics has major commitment in recent developments and industrial uses1. Recently, Shah 
et al.2 documented the upshot of molecular diffusion on the flow characteristics of nanoliquid with concentration 
diffusivity and variable viscosity across a vertical sheet. It was revealed that greater temperature-dependent vis-
cous factors improve velocity curve in both assisting and opposing flows. Chen et al.3 used computation algorithm 
to evaluate the fluid flows across a vertical surface, at Fr = 1.1 and Re = 2.7 105. Singh and Seth4 investigated the 
mass and thermal mobility behavior of MHD fluid flow inside a vertical stream bounded by the highly perme-
able regime using the Hall characteristic and an induced magnetic field. Shafiq et al.5 established a mathematical 
bioconvective model to analyze the thermodynamically thixotropic nanomaterials flow by implementing thermal 
radiation and convective conditions. The conclusions indicated that they can be utilised to improve heating and 
cooling procedures, manufacturing and energy generation among other factors. Fayz-Al-Asad et al.6 evaluated 
the MHD Maxwell fluid flow in conjunction with thermal conductivity and heat dependent viscosity along a 
stratified vertical surface using nth order fusion reaction. Sharma and Gandhi7 reviewed an unsteady MHD fluid 
flow across a vertical elongating surface implanted in a Darcy-Forchheimer permeable material with first-order 
chemical reaction and heat source/sink. Sharma et al.8 investigated an incompressible fluid flow across a variable 
vertical elongating sheet with additional effects of Ohmic heating, viscous dissipation, thermophoresis, thermal 
heat source, Brownian motion, activation energy and exponential heat source. The solar thermal transport fea-
tures of hybrid nanoliquid in the existence of an external electromagnetic effect, radiation and heat source are 
investigated Rizk et al.9. Rooman et al.10 considered the enhancement of transfer of thermal energy in tri-hybrid 
Ellis nanoliquid flow when a magnetic polarization moves across a vertical substrate. It was discovered that the 
energy pattern advances with modification in heat generation and viscous dissipation. A magnetic dipole makes 
a substantial impact to the power generation, and an inverse correlation is indicated versus the flow pattern. 
Some recent analysis may be found in Ref.11–14.

Nanotechnology is an exciting scientific discipline with numerous implementations that range from skin-
care brands, groceries, apparels, and home electronics to fuel catalysts, therapeutic approaches, and alternative 
resources. Construction activities, nanomachining of nanostructures, nanowires, nanosheets, water purifiers, 
and waste management are all examples of how nanotechnology is being used in advanced manufacturing 
and detoxification operations15–17. Their implementations are expanding to include "nanomedicine" by fus-
ing nanostructures with microbial macromolecules or frameworks, "green technology" to improve sustainable 
development, and "renewable energy" to establish new methods of capturing, storing, and transferring energy. 
Nanofiber generation, for example, has been used in applications like energy storage batteries, auto parts, thin-
film telecommunications equipment, varnishes, and many more18–20. But such applications and uses of nanofluid 
in advanced techniques is only possible due to the involvement of hybrid and ternary nanofluid. Therefore, in the 
current analysis, we have used Al2O3, SiO2, and TiO2 in the engine oil. Okumura et al.21 used the Al2O3, TiO2 and 
SiO2, for the oxidation of H2 and CO for chemical vapor deposition of gold. Minea22 calculated the properties 
of oxide-based hybrid nanofluid (Al2O3, TiO2 and SiO2) and their derivatives. All type of nanoliquid’ thermal 
performance changed with the inclusion of nanoparticles, and thermal expansion increased by at least 12%. Said 
et al.23 presented an experimental analysis on the density and stability of Al2O3, TiO2, TiSiO4 and SiO2. Minea24 
Khan worked on a complex mathematical model on the energy transport efficiency and hydrostatic power of 
nanoliquids for a fluid dynamic assessment. The best flow behavior was observed when water was replaced with 
SiO2–Al2O3hybrid nanofluids. Abbasi et al.25 disclosed a correlative thermal evaluation of three sorts of nanopar-
ticles, including aluminum oxide (Al2O3), titanium dioxide (TiO2) and silicon dioxide (SiO2) with the ethylene 
glycol base fluid over a circular cylinder containing the point of stagnation. Dadheech et al.26 reviewed the flow 
of an SiO2-Al2O3-TiO2/C2H6O2-based modified ferrofluid along an extending substrate. It was discovered 
that the thermal transfer capacity of modified nanoliquids is greater than that of simple and hybrid nanoliquids. 
Erkan et al.27 used Al2O3, TiO2, and SiO2 in ethylene glycol for engine radiator applications. As a result, using 
TiO2 particles yielded the highest energy conversion efficiency (35.67%). Alharbi et al.28–30 created a nanofluid 
model with TiO2 in the base fluid within a squeezing/dilating channel, which included nanoparticle accumula-
tion effects and nonlinear thermal radiations. The outcome confirmed that the fluid mobility is substantially 
controlled by the high viscosity variation caused by nanomaterials aggregation. Furthermore, thermal radiations 
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generate significant heat, which can be used to break down the accumulation of the nanomaterials. Some recent 
studies may be found in Ref.31–34.

A magnetic dipole is made up of two magnetic poles isolated by a small distance. A magnetic moment is a unit 
of measurement that signifies the magnetic strength and alignment of a magnet or other component that gener-
ates a magnetic field. The consequences of magnetic dipole on trihybrid nanoliquid flow are evaluated. Magnetic 
dipole fused with trihybrid nanoliquid performs an important function in energy transference35. The effectiveness 
of 2D Oldroyd-B fluid flow across a shrinking sheet with thermal buoyancy was highlighted by Bashir et al.36. The 
findings demonstrated that as the thermal relaxation time factor’s value boosts, the proportion of heat transport 
lowers. Additionally, the rate of thermophoretic accumulation slows down as the thermophoretic index rises. 
To analyse the innovative fluid flow in the existence of magnetic dipoles, Shoaib et al.37 described the artificial 
neural network with Levenberg–Marquardt algorithm that is intelligence-based.

The objective of the current assessment is to evaluate the significances of magnetic dipole and heat trans-
mission through ternary hybrid Carreau Yasuda nanoliquid flow across a vertical stretching sheet. The ternary 
compositions of Al2O3, SiO2, and TiO2-nps in the Carreau Yasuda fluid are used to prepare the ternary hybrid 
nanofluid (Thnf). The heat transfer and velocity are observed in context of heat source/sink and Darcy Forch-
hemier effect. Mathematically, the flow scenario has been expressed in form of the nonlinear system of PDEs 
for fluid velocity and energy propagation. The acquired set of PDEs are transform into ODEs through suitable 
substitutions. The obtained dimensionless equations are computationally solved with the help of the PCM. In 
the coming segment, the flow set-up has been verbalized, solved and discussed.

Mathematical analysis
The 2D Carreau Yasuda fluid with energy transfer is considered across an extending vertical sheet using ternary 
nanocomposites (TiO2, Al2O3 and SiO2). The Carreau Yasuda liquid is engrossed with base fluid (engine oil) 
in the Darcy medium. Three distinct kinds of nanocomposites (TiO2, Al2O3 and SiO2) are scattered in the base 
fluid. Surface of the wall is supposed to be stretchy to cause fluid motion. Hence, the fluid flow is due to the 
stretching of the sheet. Horizontally, the magnetic dipole is assumed to be in center as demonstrated in Fig. 1. 
The x & y-axis are taken in horizontal and vertical side of the sheet. The energy propagation is counted under 
the consequences of heat source. Based on the above suppositions, the modeled equations are formulated as38,39:
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Figure 1.   Fluid flow geometrical illustration.
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The boundary conditions are:

The scalar potential with magnetic force is specified as:

x-axis and y-axis terms magnetic inductions are:

The magnitude of magnetic induction is

The resemblance substitution is:

The obtained dimensionless system of ODEs is:

The transform boundary conditions are:

The non- dimensional parameters are: β = γ
2π
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µ2 , Pr = ν
α
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, � = su
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,
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√

sρc2

µ
,Ht =

Q0

b(ρCp)bf
 . It is observed that Eq. (11), (12) are non-Newtonian fluid model. The non-Newtonian 

model may be simplified to Newtonian case by putting β = 0 and We = 0.
The skin friction is expressed as:

The Nusselt number is expressed as:
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Numerical solution
The core steps, while solving Eqs. (11)–(13) through parametric continuation method are as follow41–43:

Step 1: reducing the system of BVP to 1st order. 

By using Eq. (16) in Eqs. (11)–(13), we get:

with the corresponding boundary conditions

Step 2: presenting the embedding constraint p in Eqs. (17)–(19). 

Results and discussion
The trend physical process and behind each Table and figure are elaborated in this section. This section also 
revealed the velocity f ′(η) and energy θ(η) profiles outlines versus physical constraints.

Figures 2, 3, 4, 5, 6, 7 display the velocity profile f ′(η) outlines versus ferrohydrodynamic interaction number 
β , ternary nanoparticles ϕ(η), Weissenberg number We, power-law number m, Darcy Forchhemier term Fr and 
porosity term kr respectively. The variance in velocity profile versus the significance β is depicted in Fig. 2. It has 
been observed that a magnetic dipole draws fluid molecules at the wall’s surface and that this pulling of fluid 
droplets toward the magnetic dipole causes friction between layers and particles. Hence, the velocity of fluid 
particles slows down. As a result, the fact that velocity curves have a decreasing function against the consequences 
β , is incorporated. The graph is examined in both the absence of a dipole and the presence of a magnetic dipole.
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Figure 2.   Velocity f ′(η) field versus ferrohydrodynamic interaction number β .
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Figure 3 reported that the inclusion of nano particulates in the base fluid augments the momentum profile. 
The density of engine oil as compared to Al2O3, SiO2 and TiO2 is much higher. Therefore, the insertion of these 
nanoparticles into the engine oil reduces its average density, as a result, the velocity contour enhances. Figures 4 
and 5 show that the velocity f ′(η) declines with the upshot of We and power-law number m. A Weissenberg 
number is a physical ratio between elastic and viscous forces. It can be shown that an increase in We leads to an 
upsurge in the viscosity of fluid particles. As a result, the fluid becomes much thicker and reduces the number 
of layers of momentum boundary as elaborated in Fig. 4.

Figure 3.   Velocity f ′(η) field versus ternary nanoparticles ϕ.

Figure 4.   Velocity f ′(η) field versus Weissenberg number We.

Figure 5.   Velocity f ′(η) field versus power law number m.
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The power-law component is designed to evaluate the fluid category’s behavior between layers. It’s worth not-
ing that m is a non-dimensional quantity generated as a result of the Carreau Yasuda fluid. When m is raised, the 
velocity curve shrinkages. Frictional forces are formed between momentum layers, and frictional forces cause 
fluid to thicken as shown in Fig. 5. Figures 6 and 7 revealed that the velocity outlines diminish with the upshot 
of Darcy Forchheimer’s term Fr and porosity term. The rising effect of Darcy and porosity term enhances with 
the porosity of the vertical stretching surface, which resists the fluid flow, as result, the velocity field drops.

Figures 8, 9, 10, 11 exposed the nature of energy θ(η) curve versus the variation of ferrohydrodynamic 
interaction number β , heat source term Ht, Eckert number Ec and ternary nanoparticles ϕ respectively. It can 

Figure 6.   Velocity f ′(η) field versus Fr.

Figure 7.   Velocity f ′(η) field versus porosity term kr.

Figure 8.   The energy θ(η) outlines versus ferrohydrodynamic interaction number β .
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be perceived that the upshot of all parameters β , Ht, Ec and ϕ significantly boosts the energy profile. The mag-
netic dipole draws fluid molecules at the wall’s surface, and this pulling of fluid droplets toward the magnetic 
dipole causes friction between layers and particles. Hence, the energy profile of ternary nanofluid enhances as 
depicted in Fig. 8. The influence of heat source term and Eckert number results in the additional heat inside the 
fluid flow, which causes the inclination of the temperature field as shown in Figs. 9 and 10. Figure 11 reported 
that the inclusion of nano particulates in the base fluid amplifies the energy profile. The density of engine oil as 
compared to Al2O3, SiO2 and TiO2 is much higher. Therefore, the insertion of these nanoparticles into the engine 
oil reduces its average density. On the other hand, the thermal conductivity of trihybrid nanoparticles is greater 

Figure 9.   The energy θ(η) outlines versus Ht.

Figure 10.   The energy θ(η) outlines versus Eckert number Ec.

Figure 11.   The energy profile θ(η) outlines versus ternary nanoparticles ϕ.
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than base fluid, that’s why, the dispersion of the nano particulates, enhances the thermal profile of trihybrid 
nanofluids as shown in Fig. 11.

Tables 1 and 2 demonstrate the experimental values of ternary hybrid nanoparticles and engine oil and the 
basic mathematical model used for the simulation of trihybrid nanofluid flow. The consequences of skin friction 
and Nusselt number on Weissenberg number, viscous dissipation, heat source and power-law term are plotted 
in Table 3. Table 3 shows that greater numeric quantities of the heat source factor result in declination in heat 
transfer and flow rate. When the Weissenberg number is elevated, however, the flow rate improves. The impor-
tance of the power-law number in developing the highest quantity of heat transference rate and the flow rate 
has been noted.

Table 1.   The investigational values of Al2O3, SiO2, TiO2 and engine oil40.

k σ ρ

Engine oil 0.144 0.125 × 10−11 884

Al2O3 32.9 5.96 × 107 6.310

TiO2 8.953 2.4 × 106 4.250

SiO2 1.4013 3.5 × 106 2.270

Table 2.   The thermal properties of trihybrid nanoliquids40.
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Table 3.   The statistical outputs of skin friction −(Re)
1
2Cf  and Nusselt number −(Re)−

1
2Nu as well as its 

comparison with the existing literature.

Parameters Values −(Re)
1

2 Cf
44

−(Re)
1

2 Cf −(Re)−
1

2 Nu44
−(Re)−

1

2 Nu

0.0 0.2620880941 0.2620880862 0.6269013682 0.6269013784

We 0.5 0.2805115031 0.2805115133 0.6150054882 0.6150054981

1.5 0.2983830010 0.2983830212 0.6038359770 0.6038359872

− 1.5 0.4793858421 0.47938585213 0.3524512521 0.3524512623

Ht 0.0 0.3864732265 0.3864732366 0.2572567431 0.2572567533

0.7 0.1464269369 0.1464269465 0.2116717874 0.2116717775

0.1 0.0746743038 0.0746743237 0.3641187594 0.3641187793

m 0.4 0.1547000729 0.1547000828 0.5585378446 0.5585378647

0.7 0.2398563119 0.2398563218 0.7083750632 0.7083750835

0.0 0.2619120138 0.2619120339 0.7417200656 0.7417200755

� 0.4 0.2614988160 0.2614988261 0.6310408286 0.6310408484

0.8 0.2612510196 0.2612510397 0.5406325980 0.5406326871
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Conclusion
We have studied the significances of magnetic dipole and heat transmission through ternary hybrid Carreau 
Yasuda nanoliquid flow across a vertical stretching sheet. The ternary compositions of Al2O3, SiO2, and TiO2-nps 
in the Carreau Yasuda fluid are used to prepare the Thnf. The heat transfer and velocity are observed in context of 
heat source/sink and Darcy Forchhemier effect. Mathematically, the flow scenario has been expressed in form of 
the nonlinear system of PDEs for fluid velocity and energy propagation. The obtained set of PDEs are transform 
into ODEs through suitable substitutions. The obtained dimensionless equations are computationally solved 
with the help of the PCM. The main outcomes are:

•	 The accumulation of Al2O3, SiO2 and TiO2-nps to the engine oil, advances the energy and momentum profiles.
•	 Relative to simple fluid, ternary hybrid nanofluid have a greater tendency to boost the energy transmission 

across a vertical plate.
•	 The fluid velocity f ′(η) lowers with the outcome of the ferrohydrodynamic interaction term, while enhances 

with the inclusion of nano particulates (Al2O3, SiO2 and TiO2) in the base fluid.
•	 The fluid velocity contour declines with the upshot of We and power-law number m.
•	 The escalating influence of Darcy Forchheimer’s term and porosity constant reduces the velocity outlines.
•	 The energy contour θ(η) enhances with the variation of ferrohydrodynamic interaction number, heat source 

term, Eckert number and ternary nanoparticles.
•	 The rising effects of the power-law index remarkably elevate the skin friction and Nusselt number of trihybrids 

nanofluid.
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