
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports

An improved hyperparameter
optimization framework
for AutoML systems using
evolutionary algorithms
Amala Mary Vincent * & P. Jidesh

For any machine learning model, finding the optimal hyperparameter setting has a direct
and significant impact on the model’s performance. In this paper, we discuss different types
of hyperparameter optimization techniques. We compare the performance of some of the
hyperparameter optimization techniques on image classification datasets with the help of AutoML
models. In particular, the paper studies Bayesian optimization in depth and proposes the use of
genetic algorithm, differential evolution and covariance matrix adaptation—evolutionary strategy
for acquisition function optimization. Moreover, we compare these variants of Bayesian optimization
with conventional Bayesian optimization and observe that the use of covariance matrix adaptation—
evolutionary strategy and differential evolution improves the performance of standard Bayesian
optimization. We also notice that Bayesian optimization tends to perform poorly when genetic
algorithm is used for acquisition function optimization.

Machine learning strategy has changed the face of automated models by integrating themselves into many appli-
cation domains. The spectrum of applications ranges over various domains, from atmospheric analysis to medical
diagnosis. All these applications are design-sensitive, implying that the model’s performance depends highly on
the selected machine learning algorithm, training procedures, regularization methods, and most importantly,
on selecting the optimal set of hyperparameters.

Every machine learning model has two types of parameters, a set that is trained by the model and another that
controls the learning process. The former set of parameters is determined using the training dataset and is called
the model parameters. The latter are values that can be tuned and adjusted by the user before running the model.
They have a major role in determining the performance of the model and are called hyperparameters. The weights
of a neural network are model parameters that are derived and fitted by training, whereas the learning rate of
a neural network, the regularization parameter, and the kernel parameter are all examples of hyperparameters.
Different machine learning algorithms require various sets of hyperparameters. Other than a few simple models
like least square regression, most machine learning models have hyperparameters.

Different hyperparameter configurations are required for different datasets. It is important to find a hyperpa-
rameter setting that performs optimally for a given algorithm trained over a particular dataset. This is done by
tuning the hyperparameters and the technique is called Hyperparameter Optimization (HPO)1. Once we have
the hyperparameters, the algorithm learns the model parameters from the data.

Every machine learning algorithm aims to identify a function that optimizes the loss. Let M be the given
machine learning algorithm with {�1, �2, . . . �n} the parameters to be tuned. Each hyperparameter �i can have a
value within the interval [ai , bi] in a hyperparameter configuration space � = [a1, b1] × · · · × [an, bn] . Here F is
a function that determines the performance or loss value. Further, F maps each possible configuration � ∈ � to
a numerical value F : � → R∗ . The objective of hyperparameter optimization is to find the best configuration
�
∗ that minimizes F(�).

The objective function F is a black-box function, meaning the actual function is unknown, but one can
observe its output based on specific given inputs. Since the function cannot be accessed, we do not have any

(1)�
∗ = argmin

�∈�
F(�)

OPEN

Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka,
Mangalore 575025, India. *email: amalamaryvincent@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-32027-3&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

information about its derivative. The function evaluation is pretty time-consuming, implying that each iteration
takes a considerable amount of time. This can be minutes for a small-scale dataset, while it can be hours and days
for larger ones. As a result, solving the optimization problem is difficult, and obtaining the ideal configuration
in a few trials necessitates a specific approach.

Some of the popular HPO methods are grid search and random search, Bayesian optimization (BO), gradient
descent, evolution-based techniques and multi-fidelity methods like hyperband and successive halving.

An extensive analysis of existing HPO techniques is presented in the paper. Considering various advantages
of Bayesian optimization in solving black-box optimization problems, we look into ways to improve the conven-
tional BO with the help of evolutionary algorithms. We have used evolutionary algorithms, taking into account
their success in solving optimization problems and major advantages like ease of implementation, robustness and
parallelizability. The paper also delivers an empirical comparison of the application of evolutionary algorithms
for acquisition function optimization.

This paper is organized as follows. First, we discuss previous works on HPO and the existing AutoML models
in detail. Then, we highlight the motivation for a new model. In the subsequent section, we compare evolution-
ary algorithms for acquisition function optimization. Finally, we examine the results and conclude the paper.

A comprehensive analysis of previous works
Hyperparameter optimization. The first and basic approach put forward for performing HPO was grid
search. Grid search performs an exhaustive search through the Cartesian product of manually specified, finite
sets of hyperparameters2,3. It is time-consuming and endures the problem of dimensionality. Random search
proves to be more efficient than grid search in high-dimensional spaces4. It selects the combination of hyperpa-
rameters from the search space randomly.

Sequential Model-Based Optimization (SMBO) is a formalization of Bayesian Optimization (BO)5–11. The BO
approach treats the black-box objective function as a random function and assumes a prior distribution over the
loss function which is updated from new observations to a posterior distribution. In other words, it constructs
a probabilistic model that maps the hyperparameters to a probability score, denoted as p(x|y). This model is a
surrogate for the expensive-to-evaluate objective function. SMBO is a sequential model that runs multiple trials
one after another, finding a more promising set of hyperparameters each time12,13. The criterion used for selecting
the next best hyperparameter values is called an acquisition function, which uses the surrogate function informa-
tion to obtain the next point to be evaluated. These hyperparameter values are then used to evaluate the objec-
tive function and the (probability score, hyperparameter) pairs are finally used to update the surrogate model.

Mostly used surrogate models are Gaussian Process (GP), Random Forest Regressions, and Tree Parzen
Estimator (TPE) while the most preferred choice for acquisition function is Expected Improvement. Unlike grid
search and random search, SMBO keeps track of past evaluation results. Even though the method is inherently
serial and difficult to parallelize, it runs faster than random search14.

One of the major limitations of SMBO is the uncertainty regarding the choice of acquisition function. Since
it is a sequential model, achieving parallelization is almost futile. Another issue is that the expense for different
data varies significantly as the function evaluation step is a laborious procedure.

Further, there is another class of algorithms that are population-based, nature-inspired metaheuristic
approaches. The term metaheuristics come from two words, meta meaning “beyond” and heuristics meaning
“to find”. Metaheuristics are an algorithmic framework that efficiently modifies domain-specific knowledge into
heuristics to produce better solutions15,16. This modification generally involves two procedures: exploration
(diversification) and exploitation (intensification) and is done with the help of heuristic operators. These heuristic
operators are usually inspired by nature and are different in different evolutionary algorithms. Diversification
aims to cover as much of the search area as feasible, whereas intensification aims to fully exploit the search space
in order to arrive at better solutions as rapidly as possible.

Like all other optimization algorithms, this family of algorithms also try to optimize the objective function
in an iterative fashion, by updating the parameter (solution) values. This can be represented by the equation,
yi = yi−1 +�yi−1 where i indicates the number of iterations, then yi−1 is the solution vector in the previous
iteration, yi is the new vector of solutions, and �yi−1 signifies the change in the solution vector after one iteration.
Based on how �yi−1 is determined, there are two general categories of algorithms: “Evolutionary Algorithms
(EA)” and “Swarm Intelligence (SI)”. The former includes algorithms like Genetic Algorithms (GA), Genetic Pro-
gramming, Evolutionary Strategies (ES), Evolutionary Programming etc., that are based on biological evolution,
with selection, crossover (recombination), and mutation phases. EAs have been proven effective in finding good
hyperparameter settings for a wide range of ML problems and are particularly useful when the search space is
large and complex or when the objective function is noisy or expensive to evaluate17. SI includes Particle Swarm
Optimization and Ant Colony Optimization and is influenced by the social conduct of natural organisms like
birds, fish and ants18,19.

GA are a class of evolutionary algorithms, hence both iterative and population-based20. On each iteration,
they work with several solutions collectively called a population rather than a single solution. A GA initialises
a random population as the solution and updates this solution with the help of three operators, namely, selec-
tion, crossover and mutation (variation operators). This is continued until the stopping criteria is met. A single
iteration is designated as one generation of GA. The term genetic algorithm comes from the similarity of the
representation of solutions to chromosomes and that of GA operators to genetic operators. GA has been used
to find optimal hyperparameter settings for many ML problems21,22.

Particle Swarm Optimization (PSO) is an algorithm inspired by the behaviour of fish and birds moving in
a group23,24. Ant Colony Optimization (ACO) is another category of swarm intelligence algorithms which is

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

influenced by the nature of ant colonies searching for food25,26. Both of these algorithms have been used for
hyperparameter optimization of different ML models27,28.

Grid search, random search and population-based methods like the Covariance Matrix Adaptation—
Evolutionary Strategy29 (CMA-ES) are the common model-free paradigms used for hyperparameter tuning
in AutoML systems. Apart from these model-free black-box optimization techniques, Bayesian optimization,
HPO in AutoML focuses on multi-fidelity methods that are cheaper compared to the pure black-box methods.
This includes an early stopping algorithm, a simple selection algorithm and other adaptive choices of fidelity.

A major hurdle in the optimization procedure is the exhaustive runtime of the algorithms which increases
with the amount of dataset and number of hyperparameters. Multi-fidelity methods focus on finding a solution
to the time and resource constraints in HPO. Reducing the data set for training and bringing down the number
of features, iterations, and cross-validation folds are a few manual approaches used to accelerate the tuning
process. These ideas are used by low fidelity methods to find an approximation of the actual objective function
to minimise.

Learning curve-based prediction is one such method that gets rid of configurations that are anticipated to
perform badly30. It’s an early stopping algorithm that examines the learning curve during HPO and stops the
training operation for a certain hyperparameter setting if the curve isn’t expected to meet the performance level
of the best model produced up until that point in the optimization process. Implementation of these models
combined with the Bayesian optimization technique called the Freeze–Thaw Bayesian optimization is mentioned
in Swersky et al.31. The algorithm maintains a set of frozen configurations and uses an information-theoretic
decision framework to either thaw (defreeze) a setting chosen by the Bayesian optimization and continue training
or train a new configuration to find the best hyperparameter settings.

Selection algorithms like Successive Halving (SH) and Hyperbands are bandit-based strategies that are
pure-exploration focused resource allocation problems32. Pure exploration problems are also called best-arm
identification problems. The goal is to choose the best arm (here, the best settings with the maximum expected
performance) with maximum confidence. Successive halving is one such non-stochastic best-arm identification
problem proposed by Jamieson et al.33. The algorithm can be summarized in 3 steps. (1) At first, it uniformly
allocates resources to each set of hyperparameter configurations. (2) And then assess how they perform. (3)
Lastly, the algorithm removes half of the worst-performing group. The process is iterated till a single configuration
remains. Through the sequential elimination step, the algorithm guarantees more resources for more reliable
 configurations34.

Hyperband is an extension of the successive halving algorithm put forward by Li et al.35. In successive halving,
the fixed budget of resources is uniformly distributed to all configurations initially. If there are n configurations
and a total budget B of resources, then SH allocates B/n resources for each setting. Whereas hyperband takes
into consideration the fact that a large number of the configurations (large n) will require only a small amount
of resource (small B/n) or vice versa. This is called the n versus B/n issue. Hyperband addresses this by letting
different possible values of n for a fixed B and allocating a minimum resource r for all the configurations before
the elimination step. And then calls SH on random samples of configurations as a subroutine36.

The multi-task Bayesian optimization technique is an adaptive fidelity technique that learns from previously
trained models or a trained subset of a large dataset37. They use multi-task Gaussian process models for fastening
the Bayesian optimization by studying the correlation among tasks. Other adaptive choices of fidelity include
algorithms like Bayesian Optimization with Hyperband (BOHB)38, Multi-Fidelity Gaussian Process Upper
Confidence Bound (MFGP-UCB)39 and Bayesian optimization with Continuous Approximations (BOCA)40.
BOCA employs an Upper Confidence Bound (UCB) acquisition function to aid the optimization process. Apart
from the above mentioned methods, there are many more recent works on HPO on different applications41–47.
Direct search class of black-box optimization methods have also been adapted to HPO of deep ML models48,49.

AutoML systems. Different ML models are appropriate for different applications. In order to find the most
suitable algorithm, the simple method of applying and optimizing all known learning algorithms is not practical
in most cases. This process of finding the best ML algorithm and creating the optimal architecture by setting the
best hyperparameters is a complex and time-consuming process. Here comes the importance of an Automated
Machine Learning (AutoML) system that determines the optimal configurations for a particular application
with the best performance within the time constraints. For a deep learning network, AutoML not only performs
Hyperparameter Optimization (HPO) to automatically set the optimal hyperparameters but also selects the
right neural architecture for each layer. It also provides tools and approaches for enabling ML to be accessible to
non-experts, increasing performance, and speeding up ML research.

AutoML systems automate the end-to-end process of machine learning involving automating 4 phases—data
preparation, feature processing, model generation and estimation. The user only needs to submit data, and the
AutoML system will automatically decide which strategy is optimal for a particular application. The primary
goal of AutoML systems is to optimise the performance by automatically setting the best hyperparameters, i.e.,
automating the hyperparameter optimization part. It also has several other use cases. It decreases the amount of
human labour required to apply machine learning, increases the effectiveness of machine learning algorithms,
and makes scientific investigations more reproducible. Some of the popular AutoML frameworks and the
optimizers they use are listed below:

1. ML models-based frameworks

(a) Auto-WEKA Auto-WEKA is a fully automated Automl system that includes feature selection. It uses
a Bayesian optimization framework for HPO50.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

(b) Auto-sklearn Auto-sklearn has feature processing and pre-processing units. It considers 15 classifiers
and 110 hyperparameters and considers previous performances on similar datasets. Auto-sklearn can
also construct ensemble models using a TPE-based BO for HPO51.

(c) Tree-based Pipeline Optimization Tool (TPOT) It is a genetic programming-based AutoML.
TPOT optimizes a sequence of feature preprocessors and machine learning models to enhance the
classification accuracy by making use of GA for hyperparameter tuning52.

2. DL models-based frameworks

(a) AutoKeras AutoKeras focuses on deep learning tasks and uses BO to guide neural architecture search.
It also employs a neural network kernel and a tree-structured acquisition function optimization
technique to effectively evaluate the search space53.

(b) Auto-PyTorch Auto-PyTorch is a Neural Architecture Search (NAS) library based on the same
principles as AutoKeras, but with a PyTorch backend. It employs BO combined with hyperband for
 HPO54.

(c) AutoGluon AutoGluon uses multi-layer ensemble models and performs complex data processing and
deep learning55.

(d) H2O AutoML Make use of one layer of ensemble stacking combined with bagging and a strong base
model—XGBoost tree ensemble56. H2O uses random search for hyperparameter tuning.

3. Hyperparameter tuners Packages that use Bayesian optimization include SMAC57,58, Spearmint, Hyperopt59,
Scikit-optimize, BoTorch etc. Packages like DEHB60, DEAP61 and Nevergrad make use of evolutionary
algorithms, whereas Optuna62, Orion and RayTune implement both Bayesian optimization and evolutionary
algorithms.

Motivation for a new model
Hyperparameter optimization is an important and ubiquitous problem in machine learning that can drastically
affect the performance of a model. Despite multi-fidelity optimization’s popularity and success, there are
machine learning challenges that have not been directly addressed by existing HPOs and may require unique
methodologies. Because it is so expensive to train even a small neural network on massive datasets, no work on
HPO for deep neural networks on datasets, like ImageNet, has been done yet. Therefore, it is beneficial to study
and analyse prevailing techniques to determine effective ways to improve them and to discover novel approaches
that outperform existing ones.

In order to achieve this, we analysed the contemporary models used for HPO with the help of AutoML tools.
Then we focused on Bayesian optimization and examined ways to improve a conventional Bayesian optimization
framework. With the purpose of achieving this objective, evolutionary algorithms are employed to maximize the
acquisition function. We compared the combination of three evolutionary algorithms with Bayesian optimization
to determine which of them could outperform traditional Bayesian optimization.

The class of evolutionary algorithms is commonly used as global optimizers. They are known for their
robustness in evaluating noisy objective functions and are easy to be parallelized. EAs are conceptually simple
algorithms that are powerful in capturing the global optimum for complex optimization problems. They are easy
to implement and do not require many constraints. Unlike gradient descent, they do not require any gradient
information. EAs are not influenced by the continuity or differentiability of the objective function. Though most
of the EAs require longer runtime for convergence, they tend to improve traditional optimization techniques
when combined as hybrid models63–65.

Methodology
The study compares HPO models that combine evolutionary algorithms with Bayesian optimization. The concept
of combining BO and EA has been explored in earlier studies. STEADE is such a hybrid model, which is an
evolutionary algorithm with surrogate assistance for HPO of ML models66. STEADE uses a mix of surrogate
models (Radial Basis Function (RBF) and GP). The RBF model is used for the initial parameter space exploration,
and the knowledge is then transferred to a GP-based Bayesian optimization framework that is additionally
enhanced by a Differential Evolution (DE) method. Cho et al. present a hybrid method for NAS which
combines evolutionary algorithms with Bayesian optimization67. The method, called B2EA , uses two Bayesian
optimization surrogate models within an EA to guide the search process: one to optimize the architecture-level
hyperparameters and one to optimize the weight-level hyperparameters.

Another hybrid approach that merges BO with a genetic algorithm called GA-PARSIMONY to search for
parsimony models was introduced by Martinez-de-Pison et al.68. Parsimony models are machine learning models
that are simple and interpretable, and this method aims to find such models by combining hyperparameter
optimization and feature selection. The method starts by using BO to optimize the hyperparameters of the model.
Then it uses the GA-PARSIMONY algorithm to perform feature selection by searching for a subset of features
that results in the best performance.

Lan et al. proposed a method that combines Bayesian optimization with evolutionary algorithms to improve
the time efficiency of optimization69. The Bayesian optimization algorithm is used to optimize the parameters
of the evolutionary algorithm, such as the population size or the mutation rate. This way, the method aims to
balance the global search capability of evolutionary algorithms with the local search capability of Bayesian
optimization. Our work focuses on a single surrogate model (GP) and explores the use of EAs for acquisition

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

function optimization. The working of Bayesian optimization and details of each evolutionary algorithm used
in this paper are described briefly in the following paragraphs. The pseudo-codes for each algorithm are also
provided in this section.

Bayesian optimization is an optimization technique that uses a probabilistic method based on the Bayes
theorem for identifying the global optimum of a black-box function. It has two major parts. The first component
is a surrogate model that is probabilistic and comprises a prior distribution which represents the unknown
objective function. The acquisition function is the second component, and it is optimised for selecting the next
point to sample.

A surrogate model is the probability representation of the objective function, F. It generates a posterior
probability distribution using the Bayes rule, which represents possible F(�) values in a candidate configuration
� . Whenever F is observed at a new � , this posterior distribution is updated. The Gaussian Process (GP), which
gives a mean function µ : � → R and a definite positive covariance function k(�, �′) : �2 → R , also known as
the kernel, is the most commonly employed surrogate model. The equation for GP is given below:

The covariance function k or the Gaussian RBF kernel (also known as the squared exponential or
exponentiated quadratic kernel) is defined as:

where l is the length scale. � and �i are l distance apart. The bigger the kernel function’s value, the nearer two
input space points are.

We use the following equation to determine the next query point � :

where AF is the acquisition function to maximize and D is the data observed so far. The popularly employed
acquisition function is called Expected Improvement, EI. Expected Improvement of a single point for a Gaussian
posterior is given by:

where f ∗ is the best function value observed so far. y is a random variable ∼ N(µ(�), σ 2(�)) where N is normal
distribution function. µ(�) is the posterior mean and σ(�) is the posterior variance of f at �.

where z = µ(�)−fmax

σ(�)
 . � and ω are the normal cdf and pdf respectively.

Expected improvement comprises two parts: the first part of the sum can be improved by lowering the mean,
while the other part can be improved by raising the variance. These phrases strike a compromise between exploi-
tation and exploration. The illustration of BO is shown in Fig. 1.

In this paper, we use evolutionary algorithms like Differential Evolution, Genetic Algorithm and Evolutionary
Strategy for maximizing EI. The foundation of every evolutionary algorithm is biological evolution, which
is natural selection and continual blending of variation via recombination and mutation. New individuals
(candidate solutions) are produced in each iteration (generation) by variation, typically in a stochastic way,
from the existing parental individuals. Then, based on their fitness score, some individuals are chosen to become
the parents of the following generation. After each generation, individuals with greater and better fitness values
are generated in this manner.

A GA is a search strategy that is based on Charles Darwin’s idea of natural selection. Initialising the
population, Calculating the fitness function, Selection, Crossover and Mutation are the five phases in GA. The
process begins with a group of people known as the population. Each individual is denoted by a finite-length
vector of components, similar to a chromosome and represents a solution in search space for a given problem.
Genes are equivalent to these variable components. Thus, each chromosome (individual) is made up of multiple
genes (variable components). The fitness function determines an individual’s ability to compete against others.
It specifies each individual a score. This fitness score determines the likelihood of an individual being selected
for the next generation.

The goal of the selection phase is to find the fittest individuals and enable them to carry on their traits to the
coming generation. This is done by calculating the fitness score for each individual and selecting the highest
scored pair. Physically fit individuals have a higher possibility of being selected for generating offspring. The
most crucial part of the genetic algorithm is the crossover phase. A crossover site within the DNA is picked at
random for each pair of parents to be mated. The genes at this point are then swapped, resulting in the creation
of a totally new individual called the offspring. These new children are then included in the population. Some
genes in new offspring are vulnerable to mutation, meaning that some of the bits in the DNA can be swapped. The
benefits of mutation include maintaining population diversity and avoiding premature population convergence.
If the population has converged, it will not generate children who are distinct from the previous generation,
causing the algorithm to cease.

(2)G(�|µ, σ 2) =
1

√
2πσ 2

e
(�−µ)2

2σ2

(3)k(�, �i) = σ 2e
− 1

2l2
||�−�i ||2

(4)� = argmax
�∈�

AF(�;D)

(5)EI(�) = E[max(y − f ∗, 0)|y]

(6)EI(�) = σ(�)(zφ(z)+ ω(z))

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

Figure 1. Illustration of Bayesian optimization on a 1D function. The graph depicts a Gaussian process
approximation of the objective function and an acquisition function in the lower portion. The mean of the
objective function is represented by the solid line and the dashed line represents the actual objective function.
The blue region shows the predictive uncertainty. The acquisition function is represented by the orange curve.
The acquisition function is maximum where the Gaussian process gives a low objective value with high
uncertainty. Note. Adapted from Feurer and Hutter1.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

DE is an evolutionary algorithm proposed by Storn et al.70. DE makes minimal, if any, assumptions about the
underlying optimization issue and can rapidly explore enormous design spaces. Unlike standard evolutionary
algorithms, it can deal with multi-dimensional real-parameter optimization problems.

DE is also a population-based stochastic approach. Like other evolutionary algorithms, genome/chromosome
is the term given to each solution. Each chromosome goes through mutation followed by recombination. Unlike
the genetic algorithm that represents candidate solutions using sequences of bits, DE keeps a population of
candidate solutions in the form of real-valued vectors, also called target vectors. The target vector is made of
a certain number of decision variables. In each loop of the algorithm, a new donor vector is generated after
mutation and a trial vector is formed out of recombination. Once the trial vectors have been generated, the best
solution is selected by a greedy approach conducted among all target and trial vectors.

During mutation, DE creates new vectors called donor vectors by multiplying a third vector to the weighted
difference between two population vectors. Donor vector (V) of a chromosome �i is created as:

where f is the scaling factor (0, 1 or 2), x1, x2, x3 are random solutions ∈ {1, 2, 3, . . . , n} and x1 = x2 = x3 = i .
Four vectors are involved in the generation of the target vector via mutation. Therefore the size of the population
n should be greater than or equal to 4. The target vector is not involved in mutation.

Recombination is performed by binomial crossover. This step increases the diversity in the population. The
trial vector is created out of recombination as follows:

where pc is the crossover probability, r is a random number (0 or 1), δ is a randomly selected variable location
{1, 2, ...D} (D is the number of decision variables in target vector), uj is the jth variable of trial vector, vj is the
jth variable of donor vector and �j is the jth variable of target vector. δ assures that at least one variable from
the donor vector is selected. The value of pc is generally set high, indicating more crossover, i.e., more variables
from the donor.

During selection, a fitness function is evaluated for each offspring. The population is updated using greedy
selection. If trial vector gives a better fitness score, then they are selected to the next generation. Else target vectors
are added to the next generation. The selection procedure is carried out only after all solutions generate offspring.

(7)V = �x1 + f (�x2 − �x3)

(8)uj =
{

vj if r ≤ pc OR j = δ

�
j if r > pc AND j �= δ

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

Another algorithm we use is a variant of ES. ES is a kind of evolutionary algorithm that is based on the
scientific idea of natural selection in evolution. It does not use crossover like other evolutionary algorithms,
instead, candidate solution modification is limited to mutation operators. The algorithm uses a population
of potential solutions that are created at random. Each iteration of the method begins with an evaluation of
the population of solutions, followed by truncation selection, which entails removing all but a subset of the
best solutions. The remaining solutions (parents) are each utilised to generate a set of new candidate solutions
(mutation) that replace or compete with the parents for a place.

This approach has several variations. The number of parents chosen per iteration is measured in p and the
number of offspring is o. One of the variations is represented as (p, o)-ES, a version where children take the place
of parents. Another variation is represented as (p + o)-ES where children and parents are added to the population.

CMA-ES is the most powerful variation of ES71. For an initial population P = {�1, �2, . . . �n} of size n, the
major differences between CMA-ES and classic ES are:

1. Offsprings are not generated by mutation of a single individual but by the weighted mean of the current
population:

 where σ (> 0) is step-size, y is a random vector for j = 1, 2, . . . , n and

µ gives the weighted mean, wj is the set of positive weight coefficients for recombination and �j is the set of
m best individuals out of the current population.

2. Unlike standard ES, y is not chosen to be independent of j, but chosen such that:

3. C is updated at each iteration (t + 1) using a rank-1 update:

 where Q is the cumulative path parameter, initialised as 0 and updated using the equation:

α,β are learning rates ∈ (0, 1].
4. Step size control is integrated into CMA-ES. That is, σ in Eq. (9) is chosen in a way that prevents the

population from converging prematurely.

The major advantage of CMA-ES over other evolutionary algorithms is that the population size can be freely
chosen. There is no inherent need to use large population sizes.

(9)�j = µ+ σyj

(10)µ =
1

∑m
j=1 wj

m
∑

j=1

wj�j , wj > 0

(11)y ∼ N(0,C)

(12)C(t+1) = (1− α)C(t) + αQQT

(13)Q(t+1) = (1− β)Q(t) + β
√

β(2− β)m
(µ(t+1) − µ(t)

σ (t)

)

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

The time complexity of BO algorithm with a Gaussian process surrogate model is O(n3) , where n is the
number of hyperparameter values72. GA has an asymptotic run time of O(n2) . For DE and CMA-ES, it is O(n3)
73. The computational complexity of BO-GA, BO-DE and BO-ES are O(n3).

Results and discussion
As part of the study, we have conducted three sets of experiments, all of which uses the same sets of data and are
run on the same configuration. We use an Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz with 1 NVIDIA Tesla
V100 GPU. The datasets used include CIFAR-10, MNIST, SVHN and CALTECH-101.

CIFAR-10 comprises 6000 images belonging to 10 different classes. It includes images of aeroplanes, birds,
frogs, cats, deer, horses, cars, ships, dogs and trucks. MNIST consists of 60,000 grayscale square images (28× 28
pixels) of handwritten single digits from 0 to 9. Street View House Number dataset contains 6,00,000 RGB images
(32× 32 pixels) of printed digits from 0 to 9 clipped from photographs of house number plates. CALTECH
dataset has 101 object categories, with about 40 to 800 images belonging to each category (300× 200 pixels).

Setup 1. Experiment setup 1 aims to analyse four HPO methods—Random Search (RS), BO, Hyperband and
GA with the help of AutoML systems. AutoML systems with different optimizers are evaluated based on their
performance in image classification problems. AutoKeras and TPOT are used in this experiment.

AutoKeras is an open-source software library for AutoML. It is built on top of the Keras deep learning
library and can be used to automatically search for the best model for a given dataset. AutoKeras includes a
preprocessing step that automatically detects the type of problem and the format of the input data and then
selects the appropriate ML models to try. It also uses a technique called NAS to search for the best neural network
architecture for a given dataset. It starts by generating a large number of randomly initialized neural network
architectures and then trains and evaluates each one on the dataset. The best-performing architectures are then
selected and used to generate new architectures through mutations and crossovers. This process is repeated until
a satisfactory architecture is found or a pre-defined stopping criterion is met. AutoKeras also supports transfer
learning, which allows the user to fine-tune a pre-trained model on a new dataset. This can significantly speed
up the training process and improve performance on small datasets. AutoKeras includes a feature for HPO. By
default, AutoKeras uses random search, but it also supports other HPO methods like Bayesian optimization and
Hyperband. Users can specify which method to use. Finally, it outputs the best architecture or ML model with
the best set of hyperparameters for a given dataset.

TPOT (Tree-based Pipeline Optimization Tool) is another open-source software library for AutoML, built on
top of the scikit-learn library. It can be used to automatically search for the best pipeline of preprocessing steps
and ML models for a given dataset. TPOT uses genetic programming to search for the best pipeline. It starts by
generating a population of randomly initialized pipelines and then trains and evaluates each one on the dataset.
The best-performing pipelines are then selected and used to generate new pipelines through mutations and

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

crossovers. This process is repeated until a satisfactory pipeline is found or a pre-defined stopping criterion is
met. TPOT includes a wide range of preprocessing steps, such as feature scaling and feature selection, as well as
ML models, such as linear regression, decision trees, and neural networks. The HPO in TPOT is performed using
GA. Last, it returns the best ML model for the specified dataset with the best combination of hyperparameters.

The comparison of test error rates and wallclock time for experiment setup 1 are shown in Figs. 2 and 3.
Figure 2 represents a line graph showing the error rates obtained for the classification of CIFAR, MNIST, SVHN
and CALTECH data using BO, RS, Hyperband and GA for hyperparameter optimization. Overall, random
search gives better results than the other three HPO techniques in terms of test error rate for all four datasets.

The green line in the graph represents genetic algorithm. It is observed that genetic algorithm has the highest
error rates implying low classification accuracy for three of the datasets. The blue line depicting the performance
of Bayesian optimization shows that it produces a better outcome compared to GA in all four cases. Hyperband
performs better than GA in most cases, but for CALTECH data, it gives an error rate of 0.7, indicating a very
low accuracy. Random search, presented by the red line, has the lowest error rates for all classification problems.

Bayesian optimization is not the best optimizer for the image classification datasets we chose. So we looked
for ways to enhance BO. We tried to use other optimization algorithms for acquisition function maximization.
We concentrated on Evolutionary Algorithms for this purpose. Since we already observed the performance of
GA, we will compare the performance of DE with BO in setup 2. And finally, in setup 3, we will examine if the
combinations could enhance the efficiency of conventional BO.

Figure 3 shows datasets used on the x-axis and the time taken by AutoKeras (with BO, RS and Hyperband
used for HPO) and TPOT (uses GA for HPO) on the y-axis. The graph is a semi-logarithmic plot that uses a
logarithmic scale on the y-axis to indicate the variation in wallclock time from seconds to hours.

Figure 2. Test set classification error plot of AutoKeras and TPOT. The figure shows the average test error rate
across the datasets—CIFAR, MNIST, SVHN and CALTECH. The HPO techniques compared in the graph are
BO, RS, Hyperband and GA. AutoKeras is run 3 times—using BO, RS and Hyperband for HPO for each dataset.
TPOT is run once for each dataset and it uses GA for HPO.

Figure 3. Wallclock time comparison plot of AutoKeras and TPOT across the datasets—CIFAR, MNIST,
SVHN and CALTECH. The HPO techniques compared in the graph are BO, RS, Hyperband and GA. AutoKeras
is run 3 times—using BO, RS and Hyperband for HPO for each dataset. TPOT is run once for each dataset and
it uses GA for HPO.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

It is observed from the graph that TPOT requires hours-to-days to complete the image classification tasks.
Random search takes rather less time compared to BO for all datasets. Hyperband is not included in the
comparison because it uses early stopping criteria and requires very less time in contrast to other optimization
techniques. TPOT is recommended only in the case where time is not considered a constraint.

Setup 2. To focus on BO and look for possibilities to improve its performance, we carried out the second
experiment that compared optimizer packages that use BO and EA. Since the first experiment included GA, we
used a package that employed a different evolutionary algorithm. So we selected DEHB that used differential
evolution, and analysed its performance in contrast to BO. The datasets used for this analysis are also the same.
The packages are used to optimize the hyperparameters of an AlexNet, a deep learning architecture with 8 lay-
ers. It consists of 5 convolution layers and a mix of max-pooling layers. There are three layers that are fully con-
nected. AlexNet introduced the use of non-saturating ReLU function as activation function, which resulted in
improved training accuracy over tanh function and sigmoid. Two dropout layers are used. The output layer uses
a Softmax activation function.

AlexNet is a fast GPU execution of a convolutional neural network. AlexNet won the ImageNet Large Scale
Visual Recognition Challenge in 2012. The main conclusion of the original research on AlexNet was that the
model’s depth was critical for its high performance, which was computationally costly but made possible by the
use of GPUs during training74.

The experiment considers an AlexNet model and 4 of its hyperparameters. Table 1 gives the list of
hyperparameters and the range of values used for tuning. The optimizers used in the experiment are Sequential
Model-based Algorithm Configuration (SMAC) and Differential Evolution Hyperband (DEHB). The main core of
SMAC combines Bayesian optimization with a mechanism to quickly determine which of the two configurations
is the better performer. It uses a Random Forest (RF) surrogate model. On the other hand, DEHB combines
the advantages of the popular bandit-based HPO method Hyperband and the evolutionary search approach of
Differential Evolution. Figure 4 illustrates the comparison of the two HPO packages based on error rates obtained
using the Wilcoxon Rank-Sum test on samples from 20 iterations with a statistical significance of p-value < 0.05 .
From Fig. 4, it is clearly noticeable that the green line representing DEHB has lower error rates for all four datasets
compared to the pink depicting SMAC. DEHB with the advantages of both Hyperband and Differential Evolution
proves to be more promising than SMAC. This outcome gave us the notion that combining DE and BO might
improve the performance of BO.

Figure 5 shows the wall clock time comparison of the AlexNet model on CIFAR, MNIST, SVHN and
CALTECH. The model uses SMAC and DEHB for HPO. The x-axis represents the datasets and y-axis represents

Table 1. Hyperparameter values for tuning.

Sl. no. Hyperparameter Range

1 Learning rate [0.0001–1.0]

2 Batch size [32–1024]

3 Epochs [10–100]

4 Momentum [0.9–0.999]

Figure 4. Test set classification error plot of an AlexNet model that uses the HPO packages—SMAC and
DEHB. The figure represents the average test error rate across the datasets—CIFAR, MNIST, SVHN and
CALTECH (based on 20 iterations). SMAC is a BO package and DEHB combines DE and Hyperband.
The results are obtained using the Wilcoxon Rank-Sum test on samples from 20 iterations with a statistical
significance of p < 0.05.

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

the time taken by SMAC and DEHB. It is observed from the graph that DEHB takes lesser time compared to
SMAC for all four classification problems.

Setup 3. Setup 3 attempts to compare various combinations of Bayesian optimization with evolutionary
algorithm models with traditional BO, random search and genetic algorithm. The HPO models we compare here
are RS, GA, BO, BO-DE, BO-CMAES and BO-GA in terms of error rate and time efficiency. The test considers
an AlexNet model and four of its hyperparameters for optimization.

The experiment is executed by implementing the BO variants on the same set of data. We compare the three
HPO models that employ DE, GA and CMA-ES for acquisition function maximization against traditional BO,
RS and GA. The results are analysed in terms of the error rate obtained using the Friedman test on samples from
20 iterations with a statistical significance of p-value < 0.05 and is shown in Fig. 6.

All variants of BO used here are compared to the standard Bayesian optimization. Conventional BO usually
uses random optimizers for maximizing EI. Here we use a combination of random sampling (cheap) and
the ‘L-BFGS-B’ (Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm with bound constraints)
optimization method. L-BFGS-B is a variant of L-BFGS that uses a limited amount of computer memory to
approximate the L-BFGS algorithm. It is a second-order quasi-Netwon method and has a faster convergence rate.

Figure 6 shows that the overall efficiency of BO combined with CMA-ES has better classification accuracy
compared to combinations of BO with other evolutionary algorithms in most cases. BO combined with DE
produces better results than GA. The graph also proves that the performance of standard BO can be improved by
using DE and CMA-ES for acquisition function maximization. RS gives the best accuracy for most datasets. This
is because RS performs well in small hyperparameter spaces. Since we have considered only 4 hyperparameters

Figure 5. Wallclock time comparison plot of AlexNet model across the datasets—CIFAR, MNIST, SVHN and
CALTECH. The HPO packages used here are SMAC and DEHB. SMAC is a BO package and DEHB combines
DE and Hyperband.

Figure 6. Test set classification error plot of an AlexNet model that uses RS, GA, a BO framework for HPO
with L-BFGS, BO-DE, BO-GA and BO-ES. The figure depicts the average test error rate across the datasets—
CIFAR, MNIST, SVHN and CALTECH (based on 20 iterations). The results are obtained using the Friedman
test with a statistical significance of p < 0.05.

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

(low-dimension search space), RS delivers good performance. But this cannot be guaranteed for higher
dimensional hyperparameter search spaces.

Figure 7 shows the wall clock time comparison of the AlexNet model on CIFAR, MNIST, SVHN and
CALTECH. The model uses a BO framework for HPO with L-BFGS, DE, GA and ES for acquisition function
optimization. BO-DE and BO perform better than BO-ES and BO-GA in terms of run-time. RS and GA took
less time compared to other HPO models. RS may not be time-efficient in high-dimensional hyperparameter
search space. In a high-dimensional space, the chance of finding the optimal hyperparameters by chance becomes
very small, and the search process can become extremely inefficient and time-consuming. In such cases, RS may
require a large number of trials to cover the entire search space, which can be computationally expensive and
time-consuming. This is because RS generates random combinations of hyperparameters without considering
any prior information or structure in the search space, leading to a lot of redundant trials and a low probability
of finding the optimal hyperparameters. GA performs poorly in all cases.

The error rate versus number of blackbox evaluation graphs are given in Figs. 8, 9, 10 and 11 corresponding
to CIFAR, MNIST, SVHN and CALTECH respectively. We have compared the best performing three models:
RS, BO-DE and BO-ES. Only successful error rate reductions are depicted in the graph. The downward trend in
the graphs mean that over time, more promising regions are being examined more frequently. A flat trend indi-
cates very little learning from prior experiences. BO-DE and BO-ES finds more number of better configuration
than RS in all figures. We have considered average of the test error rates from 20 iterations when plotting Fig. 6.

Setup 4. Similar to setup 3, setup 4 compares RS, GA, BO, BO-DE, BO-CMAES and BO-GA. But the experi-
ment is carried out on a Densenet model considering four of its hyperparameters. The list and range of the
hyperparameters are in Table 1.

Figure 7. Wallclock time comparison plot of AlexNet model across the datasets—CIFAR, MNIST, SVHN and
CALTECH. The model uses RS, GA, a BO framework for HPO with L-BFGS, BO-DE, BO-GA and BO-ES.

Figure 8. Comparison of how error rates of AlexNet evolve with the number of function evaluations for RS,
BO-ES and BO-ES on CIFAR data.

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

Figure 9. Comparison of the error rates of AlexNet against the number of function evaluations for BO-ES,
BO-ES, and RS using MNIST data.

Figure 10. Comparison of the error rates of AlexNet against the number of function evaluations for BO-ES,
BO-ES, and RS using SVHN data.

Figure 11. Comparison of how error rates of AlexNet evolve with the number of function evaluations for RS,
BO-ES and BO-ES on CALTECH data.

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

DenseNet-121 is a convolutional neural network (CNN) architecture for image classification. It consists of
the following components: (1) Initial Convolution: The network starts with a standard convolutional layer to
extract low-level features. (2) Dense Blocks: The core of DenseNet121 is made up of dense blocks, which contain
multiple layers with different numbers of filters and each layer is connected to all preceding layers. This allows
the network to learn more robust and diverse features, and improve feature reuse. (3) Transition Layers: Between
each dense block, a transition layer is used to reduce the number of filters, and also to perform dimensionality
reduction by using pooling to reduce the spatial dimensions. (4) Final Classification: The network ends with a
standard fully connected layer and a softmax activation function to produce the final class probabilities. In total,
DenseNet-121 has 120 convolution layers, 4 average pooling layers and 1 fully connected layer. In this architec-
ture, features from previous layers are concatenated with the features of the current layer, leading to increased
feature reuse and reduced risk of overfitting. The architecture is well suited for tasks involving large amounts of
image data and has achieved state-of-the-art results on benchmarks such as ImageNet75.

Figure 12 illustrates the results in terms of the error rate determined by the Friedman test on samples from 20
iterations with a statistical significance of p-value < 0.01 . RS gives the best accuracies for CIFAR and CALTECH
data while BO-ES gives better results for MNIST and SVHN datasets. As for AlexNet, BO-ES and BO-DE perform
better than standard BO. GA and BO-GA deliver the lowest accuracies for most datasets.

The wall clock time comparison of the DenseNet model on CIFAR, MNIST, SVHN, and CALTECH is
presented in Fig. 13. RS takes the least time for all datasets. As mentioned earlier, the time efficiency of RS
depends on the dimensionality of hyperparameter space. BO-GA and BO-ES take more time than standard BO
and BO-DE.

Figures 14, 15, 16 and 17 depicts the development of optimization techniques on CIFAR, MNIST, SVHN
and CALTECH datasets. The three models RS, BO-DE, and BO-ES that perform the best have been compared.

Figure 12. Test set classification error plot of DenseNet model that uses RS, GA, a BO framework for HPO with
L-BFGS, BO-DE, BO-GA and BO-ES. The figure depicts the average test error rate across the datasets—CIFAR,
MNIST, SVHN and CALTECH (based on 20 iterations). The results are obtained using the Friedman test with a
statistical significance of p < 0.01.

Figure 13. Wallclock time comparison plot of DenseNet model across the datasets—CIFAR, MNIST, SVHN
and CALTECH. The model uses RS, GA, a BO framework for HPO with L-BFGS, BO-DE, BO-GA and BO-ES.

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

Figure 14. Comparison of how error rates of DenseNet evolve with the number of function evaluations for RS,
BO-ES and BO-ES on CIFAR data.

Figure 15. Comparison of the error rates of DenseNet against the number of function evaluations for BO-ES,
BO-ES, and RS using MNIST data.

Figure 16. Comparison of the error rates of DenseNet against the number of function evaluations for BO-ES,
BO-ES, and RS using SVHN data.

17

Vol.:(0123456789)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

The graph only shows successful error rate reductions. The steady decline in graphs indicate that more promis-
ing configurations are being looked at more often over time. In all figures, BO-DE and BO-ES discover more
instances of better configuration than RS. When plotting Fig. 12, we took into account the mean test error rate
of 20 iterations.

Conclusion
Hyperparameters of ML models must be tuned to fit particular datasets before being deployed to practical
problems. However, the volume of created data has substantially grown in practice. And manually setting
all hyperparameters is tremendously resource-intensive. Therefore, it has become critical to optimise
hyperparameters automatically. We have seen the efficacy of AutoML systems in handling large-scale image
classification datasets. We have also observed the performance of SMAC and DEHB packages for hyperparameter
optimization. In particular, we compared different HPO models on AlexNet and DenseNet architectures. Out
of the HPO frameworks compared in this study, it is examined that the efficiency of BO-CMAES and BO-DE
proves it to be worth adopting in AutoML systems. The results from the paper can be extended to other models
and datasets. The number of hyperparameters can also be scaled along with the range of values considered for
tuning. The above experiments are carried out for 20 iterations. For better results, the number of iterations can
be increased. As future work, we plan to apply this comparison of algorithms to a different application. We also
plan to conduct similar experiments for real-time image classification problems.

Data availability
Data underlying the results presented in this paper are publicly available and can be downloaded from Kaggle.

Received: 21 June 2022; Accepted: 21 March 2023

References
 1. Feurer, M. & Hutter, F. Hyperparameter optimization. In Automated Machine Learning, The Springer Series on Challenges in Machine

Learning 3–33. https:// doi. org/ 10. 1007/ 978-3- 030- 05318-5 (2018).
 2. Belete, D. M. & Huchaiah, M. D. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/

AIDS test results. Int. J. Comput. Appl. 44, 875–886. https:// doi. org/ 10. 1080/ 12062 12X. 2021. 19746 63 (2022).
 3. Fuadah, Y. N., Pramudito, M. A. & Lim, K. M. An optimal approach for heart sound classification using grid search in hyperpa-

rameter optimization of machine learning. Bioengineering 10. https:// doi. org/ 10. 3390/ bioen ginee ring1 00100 45 (2023).
 4. Bergstra, J. & Bengio, Y. Random search for hyperparameter optimization. J. Mach. Learn. Res. 13, 281–305. https:// doi. org/ 10.

5555/ 21883 85. 21883 95 (2012).
 5. Hutter, F., Lucke, J. & Schmidt-Thieme, L. Beyond manual tuning of hyperparameters. KI Kunstliche Intelligenz 29, 329–337. https://

doi. org/ 10. 1007/ s13218- 015- 0381-0 (2015).
 6. Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for hyper-parameter optimization. In Advances in Neural Information

Processing Systems, 2546–2554. https:// doi. org/ 10. 5555/ 29864 59. 29867 43 (ACM, 2011).
 7. Victoria, A. H. & Maragatham, G. Automatic tuning of hyperparameters using Bayesian optimization. Evol. Syst. 12, 217–223.

https:// doi. org/ 10. 1007/ s12530- 020- 09345-2 (2021).
 8. Dewancker, I. et al. Bayesian optimization primer. SigOpt. 1–2 (2015).
 9. Hazan, E., Klivans, A. & Yuan, Y. Hyperparameter optimization: A spectral approach. Int. Conf. Learn. Represent. 17, 2 (2018).
 10. Eggensperger, K. et al. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS Workshop

on Bayesian Optimization in Theory and Practice, Vol. 10, 3 (2013).
 11. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & Freitas, N. D. Taking the human out of the loop: A review of Bayesian optimiza-

tion. Proc. IEEE 104(1), 148–175 (2015).
 12. Zulfiqar, M., Gamage, K. A. A., Kamran, M. & Rasheed, M. B. Hyperparameter optimization of Bayesian neural network using

Bayesian optimization and intelligent feature engineering for load forecasting. Sensors 22 (2022).

Figure 17. Comparison of how error rates of DenseNet evolve with the number of function evaluations for RS,
BO-ES and BO-ES on CALTECH data.

http://www.kaggle.com
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1080/1206212X.2021.1974663
https://doi.org/10.3390/bioengineering10010045
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.5555/2188385.2188395
https://doi.org/10.1007/s13218-015-0381-0
https://doi.org/10.1007/s13218-015-0381-0
https://doi.org/10.5555/2986459.2986743
https://doi.org/10.1007/s12530-020-09345-2

18

Vol:.(1234567890)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

 13. ALGorain, F. T. & Clark, J. A. Bayesian hyper-parameter optimisation for malware detection. Electronics 11. https:// doi. org/ 10.
3390/ elect ronic s1110 1640 (2022).

 14. Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms. In Advances on Neural
Information Processing Systems, 2–8. https:// doi. org/ 10. 5555/ 29993 25. 29994 64 (2012).

 15. Blum, C. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 35, 268–308.
https:// doi. org/ 10. 1145/ 937503. 937505 (2003).

 16. Maier, H. R. et al. Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. Environ. Model.
Softw. 114, 195–213. https:// doi. org/ 10. 1016/j. envso ft. 2018. 11. 018 (2019).

 17. Tani, L., Rand, D., Veelken, C. & Kadastik, M. Evolutionary algorithms for hyperparameter optimization in machine learning for
application in high energy physics. Eur. Phys. J. 81, 1–9. https:// doi. org/ 10. 1140/ epjc/ s10052- 021- 08950-y (2021).

 18. Deb, K. Practical optimization using evolutionary methods Kangal report (2005).
 19. Orive, D., Sorrosal, G., Borges, C. E., Martin, C. & Alonso-Vicario, A. Evolutionary algorithms for hyperparameter tuning on

neural network models. In Proceedings of the 26th European Modelling and Simulation Symposium, 402–409 (2014).
 20. Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley Longman Publishing Co.,

1989).
 21. Ahmadlou, M., Ghajari, Y. E. & Karimi, M. Enhanced classification and regression tree (CART) by genetic algorithm (GA) and

grid search (GS) for flood susceptibility mapping and assessment. Geocarto Int., 1–20. https:// doi. org/ 10. 1080/ 10106 049. 2022.
20825 50 (2022).

 22. Demir, S. & Åžahin, E. K. Liquefaction prediction with robust machine learning algorithms (SVM, RF, and XGBoost) supported
by genetic algorithm-based feature selection and parameter optimization from the perspective of data processing. Environ. Earth
Sci. 81, 459. https:// doi. org/ 10. 1007/ s12665- 022- 10578-4 (2022).

 23. Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95—International Conference on Neural Networks,
1942–1948. https:// doi. org/ 10. 1109/ ICNN. 1995. 488968 (IEEE, 1995).

 24. Lorenzo, P. R., Nalepa, J., Kawulok, M., Ramos, L. S. & Pastor, J. R. Particle swarm optimization for hyper-parameter selection in
deep neural networks. In GECCO ’17: Proceedings of the Genetic and Evolutionary Computation Conference, 481–488. https:// doi.
org/ 10. 1145/ 30711 78. 30712 08 (2017).

 25. Dorigo, M., Maniezzo, V. & Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.
Part B (Cybern.), 29–41. https:// doi. org/ 10. 1109/ 3477. 484436 (1996).

 26. Costa, V. O. & Rodrigues, C. R. Hierarchical ant colony for simultaneous classifier selection and hyperparameter optimization. In
IEEE Congress on Evolutionary Computation (CEC), 1–8. https:// doi. org/ 10. 1109/ CEC. 2018. 84778 34 (IEEE, 2018).

 27. Lakra, A. V. & Jena, S. Optimization of random forest hyperparameter using improved PSO for handwritten digits classification.
In Computing, Communication and Learning (eds Panda, S. K. et al.) 266–276 (Springer Nature, 2022).

 28. Xiong, Y. et al. Landslide susceptibility mapping using ant colony optimization strategy and deep belief network in Jiuzhaigou
region. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 11042–11057. https:// doi. org/ 10. 1109/ JSTARS. 2021. 31228 25
(2021).

 29. Loshchilov, I. & Hutter, F. CMA-ES for hyperparameter optimization of deep neural networks. https:// doi. org/ 10. 48550/ ARXIV.
1604. 07269 (2016).

 30. Domhan, T., Springenberg, J. T. & Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by
extrapolation of learning curves. In IJCAI’15: Proceedings of the 24th International Conference on Artificial Intelligence, 3460–3468.
https:// doi. org/ 10. 5555/ 28325 81. 28327 31 (2015).

 31. Swersky, K., Snoek, J. & Adams, R. P. Freeze-thaw Bayesian optimization (2014).
 32. Jamieson, K. & Talwalkar, A. Non-stochastic best arm identification and hyperparameter optimization. In International Conference

on Artificial Intelligence and Statistics (AISTATS), 240–248 (2015).
 33. Soper, D. S. Hyperparameter optimization using successive halving with greedy cross validation. Algorithms 16 (2023).
 34. Karnin, Z., Koren, T. & Somekh, O. Almost optimal exploration in multi-armed bandits. Dasgupta and McAllester, 1238–1246

(2013).
 35. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A. Hyperband a novel bandit based approach to hyperparameter

optimization. J. Mach. Learn. Res. 18, 1–52 (2018).
 36. Dores, S. C. N. D., Soares, C. & Ruiz, D. Bandit-based automated machine learning. In 7th Brazilian Conference on Intelligent

Systems (BRACIS), 121–126. https:// doi. org/ 10. 1109/ BRACIS. 2018. 00029 (2018).
 37. Swersky, K., Snoek, J. & Adams, R. P. Multi-task Bayesian optimization. Advances in Neural Information Processing Systems, 121–126

(2013).
 38. Falkner, S., Klein, A. & Hutter, F. Bohb: Robust and efficient hyperparameter optimization at scale. In Proceedings of the 35th

International Conference on Machine Learning (PMLR 80, 2018).
 39. Kandasamy, K., Dasarathy, G., Oliva, J., Schneider, J. & Póczos, B. Gaussian process bandit optimisation with multi-fidelity evalu-

ations. In 30th Conference on Neural Information Processing Systems, 992–1000 (2016).
 40. Kandasamy, K., Dasarathy, G., Oliva, J., Schneider, J. & Póczos, B. Multi-fidelity Bayesian optimisation with continuous approxima-

tions. In Precup and Teh, 1799–1808 (2015).
 41. Cui, H. & Bai, J. A new hyperparameters optimization method for convolutional neural networks. Pattern Recognit. Lett. 125,

828–834 (2019).
 42. Baldib, P. & Gillen, L. D. Reproducible hyperparameter optimization. J. Comput. Graph. Stat. 31, 84–99 (2022).
 43. Mohan, B. & Badrah, J. A novel automated superlearner using a genetic algorithm-based hyperparameter optimization. Adv. Eng.

Softw. 175, 103358 (2022).
 44. Osama Ahmed, M., Vaswani, S. & Schmidt, M. Combining Bayesian optimization and Lipschitz optimization. Mach. Learn. 109,

79–102 (2020).
 45. Guo, B., Hu, J., Wu, W., Peng, Q. & Wu, F. The Tabu genetic algorithm: A novel method for hyper-parameter optimization of learn-

ing algorithms. Electronics 8, 579–598 (2019).
 46. Zahedi, L., Mohammadi, F. G. & Amini, M. H. Hyp-abc: A novel automated hyper-parameter tuning algorithm using evolutionary

optimization. arXiv: 1810. 13306 (2021).
 47. Amirabadi, M., Kahaei, M. & Nezamalhosseini, S. Novel suboptimal approaches for hyperparameter tuning of deep neural network

[under the shelf of optical communication]. Phys. Commun. 41 (2020).
 48. Lakhmiri, D., Digabel, S. L. & Tribes, C. Hypernomad: Hyperparameter optimization of deep neural networks using mesh adaptive

direct search. ACM Trans. Math. Softw. 47. https:// doi. org/ 10. 1145/ 34509 75 (2021).
 49. Lakhmiri, D. & Digabel, S. Use of static surrogates in hyperparameter optimization. SN Oper. Res. Forum 3, 1–18. https:// doi. org/

10. 1007/ s43069- 022- 00128- (2022).
 50. Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F. & Leyton-Brown, K. Auto-WEKA: Automatic model selection and hyperparam-

eter optimization in WEKA. Automated Machine Learning, 81–95. https:// doi. org/ 10. 1007/ 978-3- 030- 05318-5_4 (2018).
 51. Feurer, M. et al. Auto-sklearn: Efficient and robust automated machine learning. Automated Machine Learning, 113–134. https://

doi. org/ 10. 1007/ 978-3- 030- 05318-5_6 (2018).
 52. Olson, R. S. & Moore, J. H. TPOT: A tree-based pipeline optimization tool for automating machine learning. Automated Machine

Learning, 151–160. https:// doi. org/ 10. 1007/ 978-3- 030- 05318-5_8 (2018).

https://doi.org/10.3390/electronics11101640
https://doi.org/10.3390/electronics11101640
https://doi.org/10.5555/2999325.2999464
https://doi.org/10.1145/937503.937505
https://doi.org/10.1016/j.envsoft.2018.11.018
https://doi.org/10.1140/epjc/s10052-021-08950-y
https://doi.org/10.1080/10106049.2022.2082550
https://doi.org/10.1080/10106049.2022.2082550
https://doi.org/10.1007/s12665-022-10578-4
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1145/3071178.3071208
https://doi.org/10.1145/3071178.3071208
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/CEC.2018.8477834
https://doi.org/10.1109/JSTARS.2021.3122825
https://doi.org/10.48550/ARXIV.1604.07269
https://doi.org/10.48550/ARXIV.1604.07269
https://doi.org/10.5555/2832581.2832731
https://doi.org/10.1109/BRACIS.2018.00029
http://arxiv.org/abs/1810.13306
https://doi.org/10.1145/3450975
https://doi.org/10.1007/s43069-022-00128-
https://doi.org/10.1007/s43069-022-00128-
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1007/978-3-030-05318-5_8

19

Vol.:(0123456789)

Scientific Reports | (2023) 13:4737 | https://doi.org/10.1038/s41598-023-32027-3

www.nature.com/scientificreports/

 53. Jin, H., Song, Q. & Hu, X. Auto-keras: An efficient neural architecture search system. In KDD ’19: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 1946–1956. https:// doi. org/ 10. 1145/ 32925 00. 33306
48 (2019).

 54. Zimmer, L., Lindauer, M. & Hutter, F. AutoPyTorch tabular: Multi-fidelity metalearning for efficient and robust AutoDLL. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2020).

 55. Erickson, N. et al. AutoGluon-Tabular: Robust and accurate AutoML for structured data. arXiv: 2003. 06505 (2020).
 56. LeDell, E. & Poirier, S. H2o automl: Scalable automatic machine learning. In 7th ICML Workshop on Automated Machine Learning,

Vol. 2020 (2020).
 57. Hutter, F., Hoos, H. H. & Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Learning

and Intelligent Optimization, 507–523. https:// doi. org/ 10. 1007/ 978-3- 642- 25566-3_ 40 (Springer, 2011).
 58. Lindauer, M. et al. Smac3: A versatile Bayesian optimization package for hyperparameter optimization. J. Mach. Learn. Res. 23,

1–9 (2022).
 59. Komer, B., Bergstra, J. & Eliasmith, C. Hyperopt-sklearn. Automated Machine Learning, 97–111. https:// doi. org/ 10. 1007/ 978-3-

030- 05318-5_5 (2018).
 60. Awad, N., Mallik, N. & Hutter, F. Dehb: Evolutionary hyperband for scalable, robust and efficient hyperparameter optimization.

In Proceedings of IJCIA, 2147–2153 (2021).
 61. Fortin, F., De Rainville, F., Gardner, M., Parizeau, M. & Gagné, C. Deap: Evolutionary algorithms made easy. J. Mach. Learn. Res.

13, 2171–2175 (2012).
 62. Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In

Proceedings of the 25th International Conference on Knowledge Discovery and Data Mining, 2623–2631 (2019).
 63. Srinivasan, D. & Seow, T. Particle swarm inspired evolutionary algorithm (PS-EA) for multiobjective optimization problems. In

The 2003 Congress on Evolutionary Computation, 2003. CEC ’03, Vol. 4, 2292–2297. https:// doi. org/ 10. 1109/ CEC. 2003. 12993 74
(2003).

 64. Pant, M., Thangaraj, R., Grosan, C. & Abraham, A. Hybrid differential evolution—particle swarm optimization algorithm for
solving global optimization problems. In 2008 Third International Conference on Digital Information Management, 18–24. https://
doi. org/ 10. 1109/ ICDIM. 2008. 47467 66 (2008).

 65. Mashwani, W. K. Comprehensive survey of the hybrid evolutionary algorithms. Int. J. Appl. Evol. Comput. (IJAEC) 4, 1–19. https://
doi. org/ 10. 4018/ jaec. 20130 40101 (2008).

 66. Biswas, S., Cobb, A. D., Sistrunk, A., Ramakrishnan, N. & Jalaian, B. Better call surrogates: A hybrid evolutionary algorithm for
hyperparameter optimization. https:// doi. org/ 10. 48550/ ARXIV. 2012. 06453 (2020).

 67. Cho, H., Shin, J. & Rhee, W. B2EA: An evolutionary algorithm assisted by two Bayesian optimization modules for neural archi-
tecture search. https:// doi. org/ 10. 48550/ ARXIV. 2202. 03005 (2022).

 68. de Pison, F. M., Gonzalez-Sendino, R., Aldama, A., Ferreiro-Cabello, J. & Fraile-Garcia, E. Hybrid methodology based on Bayes-
ian optimization and GA-parsimony to search for parsimony models by combining hyperparameter optimization and feature
selection. Neurocomputing 354, 20–26. https:// doi. org/ 10. 1016/j. neucom. 2018. 05. 136 (2019). Recent Advancements in Hybrid
Artificial Intelligence Systems.

 69. Lan, G., Tomczak, J. M., Roijers, D. M. & Eiben, A. Time efficiency in optimization with a Bayesian-evolutionary algorithm. Swarm
Evol. Comput. 69, 100970. https:// doi. org/ 10. 1016/j. swevo. 2021. 100970 (2022).

 70. Storn, R. & Price, K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 11, 341–359 (1997).

 71. Hansen, N. & Ostermeier, A. Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001).
 72. Yang, L. & Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415,

295–316. https:// doi. org/ 10. 1016/j. neucom. 2020. 07. 061 (2020).
 73. N. Knight, J. & Lunacek, M. Reducing the space-time complexity of the CMA-ES. In Genetic and Evolutionary Computation Con-

ference, GECCO, 658–665 (ACM, 2007).
 74. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in

Neural Information Processing Systems Vol. 25 (eds Pereira, F. et al.) 1097–1105 (Curran Associates Inc, 2012).
 75. Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. https:// doi. org/ 10. 48550/

ARXIV. 1608. 06993 (2016).

Author contributions
A.M.V. carried out experiments and wrote the manuscript. P.J. reviewed the manuscript and supervised the
research.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.M.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1145/3292500.3330648
http://arxiv.org/abs/2003.06505
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-030-05318-5_5
https://doi.org/10.1007/978-3-030-05318-5_5
https://doi.org/10.1109/CEC.2003.1299374
https://doi.org/10.1109/ICDIM.2008.4746766
https://doi.org/10.1109/ICDIM.2008.4746766
https://doi.org/10.4018/jaec.2013040101
https://doi.org/10.4018/jaec.2013040101
https://doi.org/10.48550/ARXIV.2012.06453
https://doi.org/10.48550/ARXIV.2202.03005
https://doi.org/10.1016/j.neucom.2018.05.136
https://doi.org/10.1016/j.swevo.2021.100970
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.48550/ARXIV.1608.06993
https://doi.org/10.48550/ARXIV.1608.06993
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	An improved hyperparameter optimization framework for AutoML systems using evolutionary algorithms
	A comprehensive analysis of previous works
	Hyperparameter optimization.
	AutoML systems.

	Motivation for a new model
	Methodology
	Results and discussion
	Setup 1.
	Setup 2.
	Setup 3.
	Setup 4.

	Conclusion
	References

