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Critical temperature shift 
modeling of confined fluids using 
pore‑size‑dependent energy 
parameter of potential function
Mohammad Humand  & Mohammad Reza Khorsand Movaghar *

The behavior and critical properties of fluids confined in nanoscale porous media differ from those of 
bulk fluids. This is well known as critical shift phenomenon or pore proximity effect among researchers. 
Fundamentals of critical shift modeling commenced with developing equations of state (EOS) based on 
the Lennard–Jones (L–J) potential function. Although these methods have provided somewhat passable 
predictions of pore critical properties, none represented a breakthrough in basic modeling. In this 
study, a cubic EOS is derived in the presence of adsorption for Kihara fluids, whose attractive term is a 
function of temperature. Accordingly, the critical temperature shift is modeled, and a new adjustment 
method is established in which, despite previous works, the bulk critical conditions of fluids are reliably 
met with a thermodynamic basis and not based on simplistic manipulations. Then, based on the fact 
that the macroscopic and microscopic theories of corresponding states are related, an innovative idea 
is developed in which the energy parameter of the potential function varies with regard to changes in 
pore size, and is not taken as a constant. Based on 94 available data points of critical shift reports, it 
is observed that despite L–J, the Kihara potential has sufficient flexibility to properly fit the variable 
energy parameters, and provide valid predictions of phase behavior and critical properties of fluids. 
Finally, the application of the proposed model is examined by predicting the vapor–liquid equilibrium 
properties of a ternary system that reduced the error of the L–J model by more than 6%.

Abbreviations

List of  symbols
ak  Kihara spherical core radius
a∗k  Reduced Kihara size parameter
aPR  Peng-Robinson constant
avdW  Van der Waals constant
A  Transverse pore reduced area
B(T)  Second virial coefficient
bPR  Peng-Robinson constant
bvdW  Van der Waals constant
C  Coefficient
E  Internal energy
f (T)  Free energy of ideal gas
F  Helmholtz free energy
H  Hermite function
I  Integral numerical solution
k  Boltzmann constant
L  Length
m  Coefficient
MW  Molecular weight
n  Coefficient
N  System particles number
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NA  Avogadro constant
pii  Component of pressure tensor
P  System pressure−→
P   Pressure tensor
Pc  Bulk critical pressure
r  Distance between molecular centers
rp  Pore size
S  Entropy
T  System temperature
T∗  Reduced temperature
Tc  Bulk critical temperature
Tcc  Capillary critical temperature
Tcp  Pore critical temperature
Tr  Bulk reduced temperature
U  Internal energy
U(r12)  Potential function
v  Molar volume
V  System volume

Greek symbols
α  Coefficient β : 1/kT
Ŵ  Gamma function
γ  Coefficient
δp  Adsorption thickness
ε  Kihara energy parameter εk : ε/k
εkb  Bulk εk
εkp  εk In pores
ǫii  Tensor of volume deformation
�  Coefficient
µ  Viscosity
σ  Size parameter
ω  Acentric factor

Subscripts
c  Critical
ii  Direction of a tensor’s components
k  Kihara
LJ  Lennard–Jones
p  Pore
PR  Peng-Robinson
vdW  Van der Waals

In recent years, countless research works have been conducted in order to understand and evaluate the phase 
behavior of fluids confined in molecular scale pores, especially hydrocarbons, due to the growing demand for 
production from unconventional oil and gas reserves. Phase behavior and thermodynamics of confined fluids 
have a notable deviation from their corresponding bulk behavior. Experimental  measurements1–4 have revealed 
that the thermodynamic and physicochemical properties of fluids, such as their critical properties, consider-
ably shift when they are confined in a porous medium with pore radius of molecular scale. This phenomenon 
is originally named and known in the literature as Critical Shift or Pore Proximity Effect. Even its applicability 
has been investigated in several other research areas, such as nanofluidic chipset  technologies5. Because of the 
occurrence of critical shift in confined media, applying the bulk properties of matters undoubtedly leads to poor 
results when calculating vapor–liquid equilibrium (VLE) properties of their confined state.

Various analytical and numerical methods have been examined to predict and model the above theory for 
pure normal fluids, e.g., developed microscopic van der Waals (vdW) equation of state (EOS) in a similar previous 
 study6, molecular dynamics simulation (MD)7, density functional  theory8, lattice Boltzmann method (LBM)9, 
scaled particle theory (SPT or RFL)10, and different classes of Monte Carlo  simulations11–19.

Numerical approaches are frequently inconvenient to be applied to a different scope since they are accom-
panied by numerous limitations and great complexity. Having a theoretical and thermodynamic basis, the men-
tioned modified vdW EOS has been widely used because of its compatibility with experimental values on the 
one hand, and its ease of use on the other. Such a convenience would be much preferable to implementing time-
consuming and inconvenient huge numerical simulation for every research case. The EOS method has been 
developed using the Lennard–Jones (L–J) potential function with two adjustable parameters ( σLJ , ε/k ) whose 
values can be determined via least-square fitting of thermodynamic  properties20. A three-parameter potential 
function (like Kihara), nevertheless, is supposed to perform much better due to possessing the ability to provide 
more flexible modeling and accurate  predictions21.

In addition, fluid adsorptions and their huge impacts on phase behavior cannot be  ignored22,23. A multi-layer 
film of fluid is always absorbed by pore walls and its contribution to fluid characteristics is great enough to be 
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considered, because, in nanoscale (confined) porous media, the wall-molecule interactions are not insignificant 
anymore as they are in bulk state. In this regard,  analytical22–24 and  numerical25–28 research works have been 
conducted to include the adsorption phenomenon. Although experimental measurements are always highly 
reliable and give direct understanding of fluid properties, they are greatly time-consuming and require highly 
expensive setups to study confined porous media. Moreover, it is quite difficult to establish an apparatus that 
could last under extreme conditions of high pressure and  temperature23.

Over the last few years, various measures have been taken to enhance the confinement modeling of fluids; yet, 
no fundamental and analytical development was presented except for the previous original model of L–J6. Other 
fellow researchers have merely manipulated numbers and coefficients through curve  fittings29–32. In several works, 
furthermore, the mentioned L-J approach has been repeated with corrections of the theory’s  coefficients33–35. 
These numerical enhancements strongly depend on the available data sets of one specific compound, and are 
probably inappropriate for comprehensive applications. Such uncertainty even led to developing exclusively 
curve-fitted correlations for substances like  CH4,  C2H6, and  CO2

4,31.
Despite Lennard–Jones (previous works), the Kihara potential function has three adjustable parameters 

and incorporates the hard-impenetrable core of a molecule into the modeling via its third potential parameter, 
ak 36. However, there is no limitation for two approaching molecules in the L-J model and they can completely 
penetrate. Kihara successfully fits thermodynamic data, specifically the second virial coefficient for different 
types of fluids. The L-J potential, in contrast, performs weaker in lower temperatures, whilst the flexibility of the 
Kihara potential makes it much easier to have a perfect  fitting20.

In the current study, first the theory is presented where the vdW EOS is derived for Kihara fluids as a general-
ized format of the Lennard–Jones. Despite previous works, the energy integral is solved exactly and without any 
approximations, leading to an exclusive solution for each fluid at any specific temperature. Second, an innovative 
idea is developed for the very first time in which the energy parameter of the potential is taken as a function 
of pore radius and is not constant. Third, this notion is supported by a collection of 94 critical shift data points 
available in the literature–80% for model development (training) and 20% for model verification (testing)–so as 
to make the phase behavior calculations much more reliable. Forth, the occurrence of capillary condensation is 
investigated for the van der Waals and Peng-Robinson equations of state when coupled with the Lennard–Jones 
and Kihara potential functions. Finally, the application of our study is investigated by phase behavior calculations 
in the last section where the performance of the proposed model is examined by calculating the vapor–liquid 
equilibrium (VLE) properties of a ternary mixture, and its results are compared to those of the L–J model and 
the experimental values. Figure 1 presents the general sketch of the studied problem in this work.

1

• Developing the vdW EOS for Kihara Fluids: Eq. 21.

2

• Obtaining the Critical Temperature Shift formula from EOS: Eq. 23.

3

• Adjusting the derived model with a new thermodynamic-based adjustment method.

4

• Incorporating the wall-molecule interactions as adsorption thickness into the model.

5

• Developing the pore-size-dependent energy parameter (εkp) model: Eq. 45 inserting in Eq. 44

6

• Developing the εkp model based on 94 data points of critical shift reports: Eqs. 45, 46, and 
47.

7

• Investigating the occurance of cappilary condensation in phase diagrams.

8

• Model validation: predicting the equlibrium conditions of a ternary system.

Figure 1.  The general sketch of this study.
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Theory
How to better model the critical temperature of confined fluids? At the first step, the conventional 
vdW EOS must be modified in order to describe the confinement phenomenon. Although a simple cubic EOS, 
the vdW model is properly able to predict the vapor–liquid equilibrium (VLE) conditions and phase behavior 
properties of either pure or mixing fluids. As shown in Fig. 2, we consider a Cartesian pore model ( Lx = Ly 
and Lz = ∞ ) consisting of confined fluids for which the pressure −→P  is a diagonal tensor with components 
pii ,

(
i = x, y, z

)
 . The internal energy is given  by37,

where the term −
∑

ipiidǫiiV  shows how much work the internal tension has done under a specific deformation 
dǫii of volume V  . From the Helmholtz free energy F = E − TS we  have37

Therefore the Helmholtz free energy of a system including N particles interacting by a pair potential U(r12) 
can be derived from the perturbation theory  as6

where f (T) is the free energy of ideal gas; k is the Boltzmann constant; and β is 1/kT . The term e−βU(r12) − 1 
is often called the Mayer function. Here, we utilize the Kihara potential with three adjustable parameters for 
the interaction between particles. But why Kihara? Its formulation (Eq. 4) is the generalized format of the Len-
nard–Jones; hence, L-J would be a special case of Kihara and its corresponding properties will be readily in hand 
when the Kihara hard core is ignored.

Despite the Lennard–Jones theory in which two molecules can fully interpenetrate provided that they have 
enough  energy20, in the Kihara model, the repulsion interaction in the rigid spherical core is split into two parts; 
a rigid core and an outer soft spherical repulsion  region38. We suppose soft-penetrable electron clouds surround 
a hard-impenetrable core. Given that, the model’s mathematical expression would  be20,

where ak is the radius of the spherical core; ε is the depth of the energy well (herein we employ εk = ε/k instead 
of ε ); and σk is the collision diameter, i.e., the distance r between molecular centers when U(r12) = 0 . The inter-
molecular distance can go from r12 = 2ak (where the repulsion force is infinity) to r12 = ∞.

Given Eq. (3), the standard vdW equation can be derived by integrating over an infinite volume. For a finite 
volume, the same procedure could be applied by splitting the integral into two regions, 2ak < r12 < σk and 
r12 > σk:

(1)dE = TdS −
∑

i
piidǫiiV

(2)dF = −SdT −
∑

i
piidǫiiV

(3)F = f (T)−
kTN2

2V2

∫∫ (

e−βU(r12) − 1

)

dV1dV2

(4)U(r12) =







∞
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σk−2ak
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�12
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Figure 2.  Schematic of a nano-scale pore in the Cartesian coordinates.
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When the intermolecular distance is less than σk , the value of U(r12) increases drastically to infinity; hence, 
we can utilize the assumption e−βU(r12) ∼= 0 . Then the energy is given by,

where b = 2π
3

(
σ 3
k − (2ak)

3
)
 and V = LxLyLz in which Lx = Ly = L and Lz = Lz for a pore model in the Cartesian 

coordinates. In spite of what has been done for the L–J6, here the latter integral will be solved exactly, without 
any simplifying assumption (henceforth referred to as “exact solution” for simplification). The reason is that the 
approximation term in the region r12 > σk , i.e., e−βU(r12) ∼= 1− βU(r12) , is in fact a good and close approxima-
tion for the L–J model, while such a substitution could not necessarily be made for the Kihara. Considering  CO2 
at 300 K an example, this assertion is well supported for both potentials in Fig. 3 where the light-colored region 
of L–J is insubstantial compared to that of Kihara. This difference is even more intense at lower temperatures, 
leaving no other alternatives except for the exact solution.

The semi-analytical solution of the latter integral is as follows,

where A = LxLy/σ
2
k  is the reduced area of the square cross section of the pore, a∗k = 2ak/σk is the reduced Kihara 

parameter, T∗ = T/εk is the reduced temperature, I(A, a∗k ,T
∗) is the numerical solution to the integral, and  C0 

to  C2 are component- and temperature-dependent coefficients. In the L-J model, there is just one set of coef-
ficients (C constants) used for all matters, whereas in this study, the numerical solution differs for any specific 
component represented by its a∗k . Figure 4 shows the 3D diagram of I

(
A, a∗k ,T

∗) versus A and T∗ for three different 
values of a∗k . For larger molecules, or heavier substances, a∗k is greater in magnitude and the changes in the value 
of numerical solution will be more dramatic with respect to T∗ or A . Note that Fig. 4 is the result of super time-
consuming computational processes of numerical solution to the integration in Eq. (7), and is achieved with the 
help of Gauss–Legendre quadrature method to obtain the most possible exact outcomes.

For a bulk fluid, A goes to infinity and I(A, a∗k ,T
∗) must be subsequently equal to  C0. Therefore, if we take 

the integration of Eq. (7) from σk to ∞ , the analytical expression of  C0 will be obtained. In this case,  C0 and the 
second virial coefficient will share similar definitions and we can derive a formula for  C0 as a function of B(T).

Based on the partition function theory, the second viral coefficient of a bulk fluid is defined  as39

For the very first time, we present the exact analytical solution of Eq. (9) for Kihara fluids,

(6)F = f (T)+
kTN2

V
b−

kTN2

2V2

∫∫

r12>σ

(

1− e−βU(r12)
)

dV1dV2

(7)
1

V

∫∫

r12>σ

(

1− e−βU(r12)
)

dV1dV2 = σ 3
k × I(A, a∗k ,T

∗)

(8)I
(
A, a∗k ,T

∗) = C0(a
∗
k ,T

∗)+
C1(a

∗
k ,T

∗)
√
A

+
C2(a

∗
k ,T

∗)

A

(9)B(T) = 2πNA

∫ ∞

0

(

1− e−βU(r12)
)

r2dr.

Figure 3.  Comparison of the approximation terms between the Kihara and L-J models.
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in which Hn is the Hermite function of degree n and Ŵ is the Gamma function. Setting a∗k = 0 , the last two terms 
in the parenthesis will be removed and we are given by the analytical formula of the second virial coefficient 
for the Lennard–Jones fluids. This equation is obtained with the aid of Wolfram Mathematica version 12.140.

After series of manipulation (more details in Supporting Information 1), the analytical equation of  C0 is

where b∗ = (2π/3)

(

1− a∗k
3
)

.
The coefficients  C1 and  C2 can be written as a function of  C0 with  R2 of 0.9997, as follows,

in which

The constants γ and � for each coefficients m and n are presented in Table 1.
The Helmholtz free energy of a confined fluid is formulated by Eq. (15) obtained by applying the ideal gas 

free energy and considering the limited compressibility of matters via substituting lnV −
(
N
V

)
b = ln(V − Nb).

In the vdW theory, a molecule’s volume (the volume excluded from the system) is designated by the variable 
b which represents the available space to molecules for overlap. With this definition, other molecules will have 
an accessible volume of V − Nb to move in. This is the backbone of the idea laying behind the substitution used 
in Eq. (15), which is obviously independent of the applied potential function.

(10)

B
�
a∗k ,T

∗� = 2πNAσ
3
k

�
1− a∗k

�3 ×
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Ŵ
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(11)C0

(
a∗k ,T

∗) =
2B

(
a∗k ,T

∗)

σ 3
k × NA

− 2b∗

(12)Ci

(
a∗k ,T

∗) = miC0

(
a∗k ,T

∗)+ nii = 1, 2

(13)mi =
(γ1)i + (γ2)i × a∗k

1+ (γ3)i × a∗k + (γ4)i × a∗k
2

(14)ni = (�1)i + (�2)i × a∗k + (�3)i × a∗k
2
.

(15)F = f (T)− NkTln(V − Nb)+
kTN2

2V
σ 3
k × I(A, a∗k ,T

∗)

Figure 4.  3D diagram of I(A, a∗k ,T
∗) versus the reduced area and temperature for different values of the 

reduced Kihara parameter.
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As Fig. 2 shows, a cross-section confinement occurs in an axially infinite pore for which the axial ( Pzz ) and 
transverse ( Pxx and Pyy ) components of the pressure tensor are as follows,

Using Eqs. (17), and applying (15(, the axial and transverse components are given by Eqs. (18) and (19).

Clearly, when A → ∞ , the bulk vdW equation is derived and Pxx = Pyy = Pzz . In reduced coordinates, 
Eqs. (18 and 19) can be written as,

where P∗ = Pσ 3
k /ε

[
Pa.m3.J−1

]
 ; T∗ = kT/ε

[
J .K−1.K .J−1

]
 ; v∗ = (V/N)σ−3

k

[
m3.m−3

]
 ; and b∗ = bσ−3

k

[
m3.m−3

]
 . 

Equations (20 and 21) have a format akin to the standard vdW cubic EOS, but we exclusively observe that the 
attractive term is a function of temperature, and this would not be possible except with the exact solution of 
Eq. (6).

From the theory of corresponding states and the continuity principle of gaseous and liquid phases, the fol-
lowing conditions are required for vdW type EOSs at the critical  point41:

Applying the requirements on Eq. (21), we can establish the following relations with which the critical prop-
erties of a Kihara fluid can be obtained:

(16)pii = −
1

V

∂F

∂ǫii

(17)Pxx = Pyy = −
σ 2
k

L

∂F

∂A
, Pzz = −

σ 2
k

A

∂F

∂L

(18)Pxx = Pyy =
NkT

V − Nb
−

kTN2

2V2
σ 3
k

[

−C0

(
a∗k ,T

∗)−
3

2

C1

(
a∗k ,T

∗)

√
A

−
2C2

(
a∗k ,T

∗)

A

]

(19)Pzz =
NkT

V − Nb
−

kTN2

2V2
σ 3
k

[

−C0

(
a∗k ,T

∗)−
C1

(
a∗k ,T

∗)

√
A

−
C2

(
a∗k ,T

∗)

A

]

(20)P∗xx = P∗yy =
T∗

v∗ − b∗
−

T∗

v∗2

[

−
C0

(
a∗k ,T

∗)

2
−

3

4

C1

(
a∗k ,T

∗)

√
A

−
C2

(
a∗k ,T

∗)

A

]

(21)P∗zz =
T∗

v∗ − b∗
−

T∗

v∗2










−
C0

�
a∗k ,T

∗�

2
−

1

2

�

C1

�
a∗k ,T

∗�

√
A

+
C2

�
a∗k ,T

∗�

A

�

� �� �

−I(A,a∗k ,T
∗)/2










(22)
(
∂P∗zz
∂v∗

)

T∗=T∗
c

=
(
∂2P∗zz
∂v∗2

)

T∗=T∗
c

= 0

(23)I(A, a∗
k
,T∗

c ) = C0

(
a∗k ,T

∗
c

)
+

C1(a
∗
k ,T

∗
c )√

A
+

C2(a
∗
k ,T

∗
c )

A
= −

27

4
b
∗

(24)P∗c =
T∗
c

8b∗

(25)v∗c = 3b∗

Table 1.  Values of constants γ and � for m and n coefficients.

γ1 γ2 γ3 γ4

m1  − 1.24981 1.757866  − 1.41068 0.193374

m2 0.390334  − 0.63274  − 1.67588 0.534595

�1 �2 �3

n1 6.559926  − 19.3229 17.89491

n2  − 5.89906 17.97434  − 17.1227
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Not only Eqs. (23 and 24) reveal a shift in critical temperature and pressure of fluids, but they imply that in 
spite of the L-J critical shift  equations6, it is not feasible to directly calculate the critical temperature. Herein the 
focus is on the critical temperature shift of substances.

At the critical point and based on Eq. (21), the EOS will possess the following format:

Rearranging the relation and replacing v∗c = ZcT
∗
c /P

∗
c  , we get the below cubic relation,

which is the original vdW EOS provided we substitute b∗ = T∗
c /8P

∗
c  and I

(
A,T∗

c , a
∗
k

)
= (−27/4)b∗ . Therefore, 

regardless of pore size and the critical shift effect or the presence of temperature in the attractive term, Eq. (27) 
has always the exact single root of vdW, i.e., 3/8.

Being the focal point of this study, Eq. (23) hints that the numerical solution to Eq. (7) at the critical point 
– I(A, a∗k ,T

∗
c ) – always owns a constant value of −27/4× b∗ , which is independent of the critical temperature 

or pore area ( A ), and is only a function of fluid type ( a∗k ). For a detailed inspection, Fig. 5 provides a representa-
tion of the essence of Eq. (23) where Fig. 4 and the term −27/4× b∗ come together, as identified by the black 
dashed line. Their intersections represents the values of T∗

c  at various pore radii which levels out sooner for larger 
molecules (Fig. 5b) than the lighter ones (Fig. 5a).

As discussed earlier, Eq. (23) must be solved numerically to find the critical temperature at the desired pore 
radius using the Kihara parameters gained from fluid’s  properties42. Figure 6 demonstrates the dimensionless 
diagram of numerically calculated values of T∗

c  for a limited range of dimensionless parameters A and a∗k . Yet, in 
the L-J model, T∗

c  merely depends on A (or pore size) and the effect of fluid type is not  included43.
To calculate the critical temperature of a confined fluid, whether of Kihara or L–J type, one should have σk , 

ak , rp , and εk known. Then a∗k and A are given to Eq. (23) as inputs and T∗
c  will be obtained after rooting find. 

Alternatively, Fig. 6 is available as a dimensionless chart and can be employed for light and semi-heavy molecules 
as well as the L–J type fluids within the nanometric pore sizes. Note that, in this figure, the a∗k = 0 curve repre-
sents the L–J fluid type, if the exact solution procedure is followed with the Lennard–Jones potential function.

It should be noted that all the aforementioned calculations can correspondingly be applied to nano-scale pores 
in cylindrical coordinates (Fig. 7) where pores are infinite over the Z direction and A = π

(
rp/σk

)2.
The molecule-wall interactions cannot be ignored in molecular-scale studies; such interactions lead to a layer 

of fluid’s molecules stuck on the surface of pore walls, known as adsorption thickness (Fig. 7). In this regard, 
there will be a slight change to the definition of dimensionless area (A) as follows:

where δp is the adsorption thickness for which here we employ the values Zhang et al.23 have reported in their 
work. In this study, instead of a logarithmic function proposed in their paper, a rational model as Eq. (29) is used 
for least square fitting that results in less deviation:

in which rp and δp are both in nm. Moreover, a, b, c, and d are coefficients whose values are listed in Table 2 for 
N2, CO2, and normal hydrocarbons from C1 to C10. Figure 8 shows the  measured23 and fitted values of δp . Fur-
thermore, the following expressions may be used for normal alkanes based on the values presented in Table 2:

Considering the wall-molecule interactions, the critical shift phenomena is now modeled better and more 
realistic than the previous  work6 which was developed for neutral pore walls.

Adjustment: the bulk critical conditions must be met in A = ∞. As we discussed earlier, Eq. (23) 
is the key formula of this research. For any given values of Kihara parameters, this formula provides the critical 
temperature of a fluid under confinement at any desired pore radius. The problem is, however, that potential 
function parameters are derived through thermodynamic data fitting of different sources. Therefore, a calculated 
set of parameters from one data set, e.g. B(T) , may (and will) differ from those of another (e.g. µ ). This occurs 
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(28)A = π

(
rp − δp

σk

)2

(29)δp =
a+ b×rp

1+ c × rp + d × r2p

(30)a = 0.12 lnω + 1.0495R2 = 0.9235

(31)b = 0.0225 lnω + 0.1332R2 = 0.8675

(32)c = −1.0654ω2 + 0.1643ω + 0.6555R2 = 0.7315

(33)d = 6.3464× 10−6 lnω − 5.9508× 10−6R2 = 0.8454
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because potential functions are merely a representative and approximation of the real potential behavior of two 
interactive molecules. Only for a true potential there is one unique set of parameters obtained from different 
properties of the same  fluid20.

Inserting any precalculated Kihara (or L–J)  parameters21,42,44,45 in Eq. (23), the bulk critical temperature ( Tc ) 
(and subsequently the bulk critical pressure ( Pc ) from Eq. (24)) is expected to be achieved when A approaches 
infinity: I

(
A, a∗k ,T

∗
c

)
= C0

(
a∗k ,T

∗
c

)
 . Nevertheless, there is a remarkable deviation for both Kihara and L-J poten-

tial functions when calculating bulk Tc , as listed in Table 3.
Hence, the model must be somehow adjusted in that regard. An adjustment method for the Lennard–Jones 

potential function was presented by Zarragoicoechea and  Kuz43 applying a rough approximation to Eq. (6). While 
broadly drawing the attention of researchers, that adjustment method seems to be a numerical correlation and 
lacks a thermodynamic basis. Here we propose a new adjustment procedure with which the mentioned bulk 
state conditions will be satisfied with a thermodynamic basis, and there will be no need for auxiliary equations. 
To this end, the potential function’s parameters will be manipulated until Eqs. (23 and 24) result in the critical 
properties of a fluid in the macroscopic state.
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Figure 5.  Diagram of the integral numerical solution, I(A,T∗, a∗k ), versus T∗ for two types of fluids; (a) a∗k = 0.1 
representing light-weight molecules, and (b) a∗k = 0.5 representing mid-weight molecules. Dashed line denotes 
the value of the numerical integration at the critical point, I(A,T∗

c , a
∗
k ), and its intersections with diagram curves 

determine the value of T∗
c  at each pore size.
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Approaching the cross section to infinity and rewriting Eqs. (23 and 24), we have (more details in Support-
ing Information 2):

(34)
2

NA
B
(
a∗k ,T/εk

)∣
∣
T=TC

= −
19

32
×

kTc
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Figure 6.  Value of T∗
c  versus pore size for different values of a∗k (different fluids).
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Figure 7.  Schematic of a nano-scale pore in cylindrical coordinates including the adsorption thickness effect.

Table 2.  Values of coefficients in the adsorption thickness equation (Eq. 29).

N2 CO2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

a 0.4441 0.8646 0.4848 0.7678 0.8601 0.9029 0.9543 0.8985 0.9178 0.9136 0.9139 0.9218

b 0.0239 0.1009 0.0288 0.0748 0.0949 0.1051 0.1257 0.1033 0.1080 0.1062 0.1071 0.1096

c 0.6594 0.7955 0.6520 0.6465 0.6687 0.6338 0.7231 0.5655 0.5526 0.5209 0.5203 0.5048

d(×10−5)  − 3.849  − 0.435  − 3.695  − 1.809  − 1.462  − 1.620  − 0.867  − 1.535  − 1.422  − 1.371  − 1.143  − 1.393

R2 0.9997 0.9999 0.9996 0.9997 0.9998 0.9997 0.9999 0.9996 0.9996 0.9996 0.9995 0.9995



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4842  | https://doi.org/10.1038/s41598-023-31998-7

www.nature.com/scientificreports/

where Tc and Pc are in K and Pa, respectively.

Adjustment for Lennard–Jones potential function. For a two-parameter potential like Lennard–Jones, Eqs. (34 
and 35) suffice and must be solved to compute σLJ and (εk)LJ . Table 4 lists the values of adjusted L–J parameters 
for nitrogen, carbon dioxide, and a wide range of common hydrocarbons used in the literature. Equations 36 and 
37 declare that T∗

c  and P∗c  are constant for all components in Table 4 providing we substitute the values.
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Figure 8.  Measured 23 and fitted values of adsorption thickness.

Table 3.  Values of calculate bulk critical temperatures from Eq. (23) based on different literature reports of 
Kihara and L-J parameters for some fluids.

Kihara Lennard–Jones

Set  142 Set  245 Set  121 Set  244

Tc[K] Error % Tc[K] Error % Tc[K] Error % Tc[K] Error %

CH4 178.30 6.43 171.56 9.97 148.40 22.12 153.93 19.22

C2H6 369.76 21.11 – – 201.65 33.95 252.40 17.33

n-C4H10 446.84 5.11 – – 232.40 45.33 308.45 27.44

n-C5H12 504.52 7.41 504.58 7.43 226.11 51.86 – –

CO2 275.54 9.42 – – 199.69 34.35 196.31 35.46

Ar 132.56 12.04 132.63 11.99 122.70 18.58 124.43 17.43
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On the other hand, v∗c  was constant in the first place ( v∗c = 3b∗ ) and is equal to 2π for L–J fluids. Accordingly, 
we have,

which strongly supports the calculations of parameters and the hypotheses behind the approach. With this for-
mat, the macroscopic and microscopic theories of corresponding states are neatly related to each other, aligned 
with the literature established  correlations20.

Adjustment for Kihara potential function. A three-parameter potential function such as Kihara, however, 
requires another relation (for ak ). This third equation will be the definition of the reduced Kihara size parameter 
as follows:

Although Kihara parameters have different values regarding the property they have been fitted with, the ratio 
of the two size parameters ak and σk as a∗k appears to be almost constant 42. Thus, we need the value of a∗k as the 
final step. In this study, we will exclusively obtain a∗k through fitting the Kihara parameters with the DIPPR reports 
of B(T) , using Eq. (10). Values of a∗k determined in this work are brought in Table 5, and Eq. (40) can be used for 
n-alkanes with  R2 of 0.98. Complete details are presented in Supporting Information 1 and 2.

With a∗k in hand, we can use the adjustment method (Eqs. 34, 35, and 39) to calculate the adjusted Kihara 
parameters by which the critical conditions of a bulk fluid will be met. Their values are listed for different 
substances in Table 6, and Eqs. (41 and 42) are the fitted relations for εk and σk with  R2 of 0.990 and 0.999, 
respectively.

(37)
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(39)a∗k =
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(40)a∗k = 0.219(ω ×MW)0.3013

(41)
(

1

T∗
c
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= 1.69024a∗k + 0.925

Table 4.  Adjusted L-J parameters of nitrogen, carbon dioxide, and light to semi-heavy normal alkanes.

Component σLJ [Å] (εk)LJ [K]

N2 3.128 121.40

CO2 3.238 292.86

CH4 3.244 183.46

C2H6 3.724 293.95

C3H8 4.155 356.06

C4H10 4.519 409.29

C5H12 4.861 452.21

C6H14 5.171 488.70

C7H16 5.456 520.08

C8H18 5.731 547.52

C9H20 5.980 572.17

C10H22 6.225 594.69

C11H24 6.465 615.20

C12H26 6.679 633.49

Table 5.  Value of a∗k obtained from the second virial coefficient data fitting.

Component N2 CO2 CH4 C2H6 C3H8 C4H10 C5H12

a∗k = 2ak/σk 0.1666 0.4837 0.1456 0.2389 0.3678 0.4872 0.5718

Component C6H14 C7H16 C8H18 C9H20 C10H22 C11H24 C12H26

a∗k = 2ak/σk 0.6000 0.6980 0.6678 0.7389 0.7772 0.8147 0.8767
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Even though T∗
c  and P∗c  are component-dependent in the Kihara model, the critical molar volume has the 

same behavior – v∗c = 2π

(

1− a∗k
3
)

 – to reflect the fact that Zc is constant (and equal to 3/8) for all vdW fluids 
regardless of the potential function. This can be simply checked through assuming an arbitrary value for a∗k and 
calculating Zc , as we did for L–J in Eq. (38).

As we perceived, T∗
c  and P∗c  was constant for all matters following the L–J model. Since the Kihara potential 

somehow encompasses the L–J function in its formula, the intercepts of Eqs. (41 and 42) are expected to be equal 
to their corresponding values in Eqs. (36 and 37). Although they are not exactly the same, they are sufficiently 
close and the deviation can be attributed to the uncertainties in data employed for Tc and Pc 41, fitting issues, or 
imperfect root finding. Thus, the corresponding states principle of Kihara fluids is indeed the generalized form 
of that of the Lennard–Jones model.

Variable energy parameter (ε). Thus far, (1) the exact solution of the free energy integral was presented 
using the Kihara potential function and the critical temperature shift equation was derived (Section "How to 
better model the critical temperature of confined fluids?"), (2) a new thermodynamic-based adjustment method 
was employed, (3) the Kihara parameters were fitted using the DIPPR database of B(T) , and (4) the adjusted 
Kihara and L–J parameters were listed for nitrogen, carbon dioxide, and normal alkanes from C1 to C12 (Section 
"Adjustment: the bulk critical conditions must be met in ").

The adjustment satisfied the critical point requirements of macroscopic fluids, but it does not necessarily 
enable the model to provide better predictions of pore critical temperature  (Tcp). As shown for  CO2 and  C2H6 in 
Fig. 9, for both Kihara and L–J potentials, Tcp values predicted by the adjustment method deviate noticeably from 
the experimental values 4. This implicitly implies that the confinement effect is witnessed in larger pore sizes in 

(42)
(

1

P∗c

)

kihara

= −25.095a∗k
4 − 32.278a∗k

3 + 22.037a∗k
2 + 19.008a∗k + 16.248

Table 6.  Adjusted Kihara parameters of nitrogen, carbon dioxide, and light to semi-heavy normal alkanes.

Component ak [Å] σk [Å] εk[K]

N2 0.2610 3.1332 150.16

CO2 0.8152 3.3705 523.47

CH4 0.2364 3.2475 220.96

C2H6 0.4469 3.7409 397.73

C3H8 0.7772 4.2264 560.99

C4H10 1.1468 4.7079 734.18

C5H12 1.4889 5.2079 882.85

C6H14 1.6823 5.6079 980.08

C7H16 2.1871 6.2671 1139.2

C8H18 2.1529 6.4475 1168.2

C9H20 2.6244 7.1036 1297.4

C10H22 2.9881 7.6895 1391.1

C11H24 3.4135 8.3795 1482.1

C12H26 4.2524 9.7014 1598.5
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Figure 9.  Comparison among the  Tcp values from experimental reports 4 as well as the predictions of adjusted 
Kihara and adjusted L-J methods for (a) carbon dioxide and (b) ethane.
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the Lennard–Jones model, sooner than that of the Kihara, and both earlier than the empirical observations. Such 
imperfection in the calculations, however, is happening while the free energy integral is solved exactly (making 
the EOS entirely exclusive for each component) and the adjustment is implemented to fulfill the bulk conditions. 
Therefore, the theory needs a moderator to alleviate the pore-scale problem.

Let us tackle the issue from a new and different perspective. The critical point is known as the characteristic 
state, where the liquid and gaseous phases of a substance become identical. At this point, the critical tempera-
ture is a measure of kinetic energy, therefore a relation between εk and Tc is quite expectable and  reasonable20:

where A1 is a universal constant obtained by quantum mechanics studies. It is experimentally proved and meas-
ured for simple fluids (with spherical molecules) obeying the L–J potential function that A1 is approximately 
equal to 0.7744. Please refer to Supporting Information – Molecular Theory of Corresponding States for more 
explanations.

From the foregoing explanations, knowing that Tc and εk are of one type, and based on the shift of critical 
temperature of confined fluids, we can infer that the energy parameter of the potential function would accord-
ingly shift. In other words, as a component has different critical temperature values at different pore radii, there 
might be also a possibility for εk to vary in pore size–which is designated herein as εkp . In fact, since tuning has 
always been prevalent among PVT researchers to accomplish their desired outcomes, we are considering εk a 
tuning parameter that decreases as pore size shrinks.

So why manipulating εk rather than σk or ak ? Along the lines of εk and Tc , there is a relation between the size 
parameters ak or σk and the critical molar volume ( vc) , because the latter represents the molecular size. The point 
is, however, that vc of a bulk fluid does not really differ from the confined one. Not only this claim is theoretically 
conspicuous from Eq. (25) where there is no confinement term (no sign of A ), but experiments have also made 
the same assertion as  well43. Even if there were any shift of vc regarding pore shrinking, it would be irrelevant to 
choose a distance parameter for calibrating an energy parameter ( Tc ). Thus, εk (or in fact ε ) seems to be the only 
choice for manipulation. Meanwhile, ak and σk must be involved in the calculations as they have been determined 
from the adjustment process.

To be more specific, such an inference can be conceptually paraphrased as if the parameter εk in the original 
integral (Eq. 7) is a function of the pore area (A) over which the integration is taken, i.e., Eq. (44). However, the 
solution to the integral, written as Eq. (45), does not fundamentally differ from the original solution (Eq. 8), 
except εk must be replaced by εkp.

We deliberately write εk[A] instead of εk[rp] to avoid ambiguity. Indeed, r (intermolecular distance) is totally 
different from rp which is the maximum distance that two molecules can be placed far from each other, and almost 
equates the pore diameter ( rmax

∼= 2rp ). Substituting εk[A] for εk , we still should refer to Eq. (23) to calculate 
the pore critical temperature, because, the variable energy parameter has no effect on the procedure with which 
Eq. (23) is obtained, nor on the dimensionless diagrams.

How to determine the value of εkp ? Presume that universally unique and reliable experimental measurements 
of critical temperature of confined pure fluids are available. In other words, the present (rp,Tcp ) data points are 
real, certain, and precise. In this case, the corresponding εkp will be obtained if we substitute the known properties 
of the component ( σk , a∗k , rp , Tcp ) into Eq. (23). With a reverse rooting find try, εkp will be accurately determined 
as the unknown of the equation. Nonetheless, literature reports of Tcp , whether empirically measured or numeri-
cally simulated, are highly uncertain and scattered. Therefore, we resort to calculating εkp for each available pair 
of (rp , Tcp ) from any reference, and will propose a model that fits best, if possible. We state “if possible”, because 
on occasion, the model is not able to give an εkp less than the bulk εk ( εkb ) for some matters such as  CO2, or there 
is too small number of data points to fit a model, like  C3H8.

Similar to the fact that Tcp equates Tc when rp increases and approaches infinity, εkp must behave the same 
towards εkb (i.e. εk from adjustment). Thus, the fitting model would possess a format as below,

where A = π
((
rp − δp

)
/σk

)2 , α and β are component-dependent fitting constants.
Figure 10 summarizes the notion of pore-size-dependent energy parameter and depicts how the potential 

curve changes as a result. Although changing εk appears to be merely a tuning attitude that we have adopted, we 
deeply look forward to knowing whether the confinement phenomenon truly affects the ultimate and real inter-
molecular interactions. Yet, molecular-scale experimental measurements are extremely challenging to perform 
and are accompanied by uncertainties.
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Results and discussion
Calculating the values of εkp (Training Section). For the very first time, we have gathered 76 data 
points of pore critical temperature reported in the literature, the largest collection ever employed. This collection 
covers 9 components including methane, ethane, propane, n-butane, n-pentane, n-octane, n-decane, nitrogen, 
and carbon dioxide, from 13 different references  overall1–4,9,11,13–17. Values of εkp (Kihara) are calculated and cat-
egorized with respect to components and references, and are listed in Table 7. This classification helps readers to 
conveniently select their desired εkp based on their and the reference’s hypotheses.

Methane and ethane had the greatest number of available Tcp reports for training, i.e. 19, though the scatter-
ing of ethane points is much more than that of methane, which is readily notable from their  R2. As discussed 
earlier, the obtained εkp from our theory had a greater value than εkb for a few numbers of ( rp,Tcp ) points. On the 
one hand, this is because the points would need a flexibility beyond what the model is capable of. On the other 
hand, there is always an amount of uncertainty in both numerical simulations and empirical measurements to 
which such an imperfection could be assigned. That is why it was impossible to fit a model for  CO2 whose two 
εkp values out of the three, were bigger than its bulk εk.

Equations (47 and 48) can be respectively used for the values of α and β of Table 7, with  R2 of 0.99 and 0.96.

The Lennard–Jones potential function is not an appropriate choice of changing εkp . Although it is feasible to 
determine 

(
εkp

)

LJ
 for each ( rp,Tcp ) point, the insufficient flexibility of this potential forbids having valid values; 

for the Kihara model, only 12 data points (16% out of 76) had an εkp greater than εkb . In opposite, L-J suffers more 
from this problem for which there were 37 (almost 50%) theoretically-false results (See Supporting Information.
xlsx). It is directly related to the curvature of U(r12) and the fact that mostly the predictions provided by the L–J 
model are underestimated. Therefore, the Kihara potential function is, again, a more decent choice to go for.

Solid verification of the proposed model (testing section). In this section, we assess the perfor-
mance of our model with another 18 data points of recently published critical shift reports. These would include 
measured  Tcp and  Pcp values of  methane46, and Tcp reports of carbon dioxide and normal  heptane47, all within the 
range of 3–20 nm. Not only they include light and heavy components, but they also represent both hydrocarbon 
and non-hydrocarbon families of commonly investigated fluids, especially  CO2. These 18 points are regarded as 
the test points of our work, constituting 20% of the whole 94 evaluated data points.

Two critical shift models presented by Zhang et al.23 (Eq. 49) and Yang et al.31 (Eq. 50) are employed herein 
for comparison. Both models incorporate the effect of adsorption thickness and are developed for the Len-
nard–Jones fluids.

As plotted in Fig. 11, the model developed in this study with its pore-size-dependent energy parameter has 
performed much better than other models in predicting the effect of confinement on fluids critical properties. 
This was more outstanding for critical pressure in particular, because no training data of  Pcp has been included 

(47)α = (−50.8878+ 459.659× a∗k)/(−15.8293+MW + ω2)

(48)β = 1.76384− 2.11073/
√
α + 0.74907/α
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Figure 10.  Depiction of pore-dependent energy parameter.
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during model development in the previous section. The average deviation of our model was just below 2%, 
whereas the models of Zhang 2019 and Yang 2019 had the average errors of 4.4% and 4.5%, respectively.

Phase diagrams and discussion on capillary condensation occurrence. Pressure–Volume iso-
therm diagrams of the van der Waals and Peng-Robinson (PR)48 EOSs were evaluated in the literature where 
they were associated with the Lennard–Jones potential function (LJ-vdW and LJ-PR). In spite of the LJ +  vdW6, 
as it is controversially reported by Islam et al.33, the P–V axial isotherms of LJ + PR do not show capillary con-
densation at a same reduced temperature ( Tr = T/Tc ) and the confined fluid’s phase appears to be constantly 
supercritical. To scrutinize this issue for the Kihara potential function, we will first draw a comparison between 
the PV isotherm diagrams of Kihara + vdW and Kihara + PR models at different Tr values. Then, the effect of 
potential type and employing pore-size-dependent εk on maxwell construction will be investigated.

P–V isotherms diagrams of Peng‑Robinson vs. van der Waals. In order to incorporate the critical shift phenom-
ena into EOS calculations, we replace the Tc and Pc parameters in the attractive ( a ) and repulsive ( b ) terms of 

Table 7.  Calculated values of εkp for each component based on different sources of Tcp reports along with their 
fitting coefficients.

Ref

CH4 C2H6 C4H10 C5H12 C8H18 C10H22 N2 CO2

rp Tcp εkp rp Tcp εkp rp Tcp εkp rp Tcp εkp rp Tcp εkp rp Tcp εkp rp Tcp εkp rp Tcp εkp

nm K K nm K K nm K K nm K K nm K K nm K K nm K K nm K K

4 4.57 297.5 406.3 4.57 294.5 522.5

6.08 304.1 410.5 6.08 301.3 530.6

8.15 304.6 407.5 8.15 303.0 530.5

13

Mica 4.22 182.3 222.2 4.28 397.5 718.3 5.54 530.4 1116

3.21 176.6 218.6 3.26 382.7 701.5 4.41 516.0 1093

2.69 171.3 214.7 2.71 374.6 694.9 3.30 503.8 1079

2.15 164.7 210.4 2.17 359.3 678.3 2.20 466.9 1022

1.63 152.4 200.6 1.64 331.2 643.9 1.66 429.4 960.9

13

Graphite 4.14 183.4 223.7 4.17 402.1 727.5 5.28 540.6 1139

3.15 177.9 220.5 3.19 389.8 715.4 4.25 531.7 1128

2.61 174.3 219.0 2.68 379.0 703.7 3.22 513.9 1101

2.11 169.0 216.3 2.15 361.6 683.4 2.17 470.7 1031

1.62 152.2 200.7 1.63 324.2 630.5 1.65 416.6 932.8

17 2 155.2 199.8 2 248.7 360.7 2 337.3 693.7 2 475.9 749.1

3 172.7 214.8 3 273.7 383.1 3 375.7 749.9 3 542.4 928.6

5 179.8 217.5 5 282.4 384.1 5 396.4 772.4 5 575.6 1076

7 286.8 385.4 6 399.7 774.1

1,2,3 1.2 87 121.8

1.9 98.12 129.5

2.2 103 134.1

3.0 105 133.5

3.2 105 133.0

3.9 112 140.3

9 2 158.1 203.4

3 175.8 218.5

5 183.4 221.8

14 7 183.3 219.0 7 292 392.3

10 186.0 220.3 10 296.3 394.4

15 3 258 361.1

4 281.5 387.0

5 292 397.2

6 298 402.4

7 300 403.1

8 302 404.2

9 304 405.6 C3H8

16 5 285.1 387.7 rp Tcp εkp

6 292.5 395.0 nm K K

11 2.03 169.7 218.0 2.03 269.5 390.2 2.03 372.0 706.8 2.03 320.7 538.4

α 74.963 5.8639 7.0572 0.8501 1.7739 1.5252 0.6989
Not Avail-
able

β 1.5236 0.9898 1.1075 0.2694 0.7408 0.3919 0.3443
Not Avail-
able

R2 0.75 0.40 0.86 0.93 0.96 0.99 0.87
Not Avail-
able
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EOSs with the shifted version derived from this study ( Tcp, Pcp ). In this section, the εkp concept is employed and 
its value is computed by Eq. (46), using the α and β presented in Table 7.

We slightly reduce the temperature from the critical point region for methane, as an example. Figure 12 
shows how the confinement influences the isotherm curves and the prediction of fluid’s state. Both vdW and PR 
equations of state perfectly expose the presence of Maxwell construction for the bulk fluid (black dashed line), 
and also the tendency of its confined case at rp = 5nm (purple dashed line) to act the same. However, the criti-
cal temperature at rp = 2nm is less than that of the current system, therefore the fluid must be homogenous but 
supercritical. This is well supported by the solid green and orange lines for the axial and transverse pressures, 
respectively, where Pzz < Pxx . It is well worthy to mention that the vdW EOS generates a smaller two-phase 
region, or in fact, less vg . Consequently, isotherm lines of this EOS are more inclined towards showing capillary 
condensation sooner than their correspondents of PR.

Decreasing the temperature and maintaining the transverse A constant, we observe a loop appearing for 
the axial pressure Pzz when T  is less than Tcp at 2 nm (Fig. 13). If we take the temperature even lower, the 
transverse pressure Pxx also commences to presents a loop as well as the axial part (Fig. 14), which indicates 
both Kihara + vdW and Kihara + PR models reveal capillary condensation in the axial part at the same reduced 
temperature. A Video file is  provided as supplementary material (which completely embeds the motion of P–V 
isotherms of Kihara-PR for methane through Figs. 12, 13, 14), so that the occurrence of capillary condensation 
of both bulk and confined fluids will be readily understandable.

The effect of U(r12) and εkp. The effect of potential function type and its variable energy parameter on Maxwell 
construction in P–V diagram is thoroughly explored in Supporting Information 3. Overall, it is interesting that 
the isotherm curves of Peng-Robinson equation of state when coupled with the Lennard–Jones potential func-
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Figure 11.  Cross plots of critical shift estimations from this study along with two other models in the literature 
23,31 for (a, b) methane 46, (c) carbon dioxide, and (d) normal heptane 47.
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tion, perfectly shows capillary condensation for both axial and transverse components of the pressure tensor 
when the temperature is decreased. This is properly in contrast to what has been reported and explained in the 
literature by Islam et al.33. Moreover, at each Tr , the Kihara-PR model with εkb results in widest two-phase regions 
compared to those of the Lennard–Jones since the use of constant energy parameter leads to greater Tcp predic-
tions. By applying εkp , the diagrams seem more rational and reliable in terms of the involved Tcp , and of course, 
they do not readily fail in the demonstration of capillary condensation unless at relatively low temperatures.

Model validation (Application in mixtures equilibrium). After we gained a better understanding of 
intermolecular forces and fluids’ molecular behavior by the proposed model, the best practice to predict and 
interpret the properties of mixtures would be applying the thermodynamic methods to phase equilibrium prob-
lems 20. In this section the validation of the proposed theory will be examined. Zhang et al.34 have modified the 
Peng-Robinson equation of state through involving the L-J critical shift  model6, and employed their model to 

Figure 12.  Volume dependence of the axial and transverse pressure tensor components of methane at 
Tr = 0.94 for different rp values obtained from (a) Peng-Robinson and (b) van der Waals equations of state 
associated with the Kihara potential function.

Figure 13.  Capillary condensation of axial pressure for methane at Tr = 0.82 obtained from (a) Peng-Robinson 
and (b) van der Waals equations of state associated with the Kihara potential function. Dashed line evidence the 
Maxwell construction for two-phase equilibrium.
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predict the equilibrium properties of a confined ternary system comprising i-C4, n-C4, and n-C8 in micro/nano-
scale channels of 10µm and 100 nm 49.

Similarly, we implement the flash calculations on this system using the analytical model we have derived for 
the critical shift along with the proposed approach of pore-size-dependent energy parameter.

The details of the vapor–liquid equilibrium (VLE) calculations we have utilized in our approach are presented 
in Supporting Information 3. The results are listed and compared to the experimental  reports49 and the results 
of Zhang et al., in Table 834. As the table presents, our calculations are more agreeable with the true values, and 
our model have reduced the error of Lennard–Jones model by more than 6%.

Summary and conclusion
Critical shift and phase transition of confined fluids have continually been a focal point of interest in a multitude 
of studies conducted with the help of molecular thermodynamics science. Yet, the lack of a better and more 
precise fundamental approach has always been noticed.

Overall, the following points can be concluded from the breakthroughs achieved in the fundamentals from 
this study:

• In spite of the Lennard–Jones (L–J) model, the energy integral should be calculated exclusively for each fluid 
when using the Kihara potential function, thereby leading to more accurate predictions. In this regard, each 
component has its specific integration constants  (C0,  C1, and  C2), whereas the study for L–J proposes one 
unique set of constants for all fluids.

• The exact analytical solution to the second virial coefficient formula of Kihara fluids is presented for the 
very first time and the Kihara parameters are determined based on B(T) data fitting with which the value of 
reduced Kihara parameter is obtained.

• The model must be able to render the bulk fluid’s critical properties when the pore radius approaches infinity, 
whereas it is not. The treatment of addressing this issue is called ‘Adjustment’. In the previous work of L-J, the 
adjustment was merely a correlation-based enhancement and lacked a thermodynamic basis. In our model, 
however, the values of Kihara parameters are determined in a way that the critical shift equation leads to the 
bulk critical properties of matters.

• In comparison to the experimental measurements, the exact solution of both models (Kihara and L-J) does 
not lead to acceptable predictions of Tcp . Hence, a novel idea is proposed and justified in which the energy 
parameter of Kihara fluids ( εk ) varies with respect to pore size reduction ( εkp ) and equated the bulk state 
(εkb ) at rp → ∞.

Finally, the proposed idea is supported by a collection of 94 critical shift data points and its performance is 
validated by evaluating the VLE properties of a ternary mixture, where our error was almost half of the L-J’s.

The followings are the advantages, disadvantages/limitations of this work along with suggestions for prob-
able future works:

Figure 14.  Capillary condensation of axial pressure and the tendency of the transverse pressure to construct the 
two-phase region for methane at Tr = 0.80 obtained from (a) Peng-Robinson and (b) van der Waals equations 
of state associated with the Kihara potential function. Dashed line evidence the Maxwell construction for two-
phase equilibrium.
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• Advantages The critical shift modeling is done exactly without any simplifying assumptions or approxima-
tions. This work benefits from a better adjustment method than the previous works of L-J. The notion of 
pore-size-dependent energy parameter is presented for the very first time that enables researchers to achieve 
the most precise predictions of confined fluid’s behavior providing enough experimental values are available. 
Employing the Kihara potential function gives more accurate results and better flexibility rather than the 
Lennard–Jones.

• Disadvantages/Limitations The pore critical temperature cannot be directly calculated since its formula is 
a little complex, and a root finding process should be followed. However, a precalculated type-curve was 
presented for convenience and ease of use. For similar works, sufficient number of experimental data points 
will be needed to calibrate the energy parameter of potential function.

• Suggestions for future works It is recommended to calibrate the energy parameter with pore critical pressure 
data, providing sufficient number of data points are accessible, to determine whether the results are far from 
those calibrated by pore critical temperature in this work.

Data availability
The data of this study will be available upon request via contacting the corresponding author (m.khorsand@
aut.ac.ir).
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