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Application of image processing 
and transfer learning 
for the detection of rust disease
Fereshteh Shahoveisi 1,2*, Hamed Taheri Gorji 3,6, Seyedmojtaba Shahabi 4, 
Seyedali Hosseinirad 2,5, Samuel Markell 1 & Fartash Vasefi 6

Plant diseases introduce significant yield and quality losses to the food production industry, 
worldwide. Early identification of an epidemic could lead to more effective management of the disease 
and potentially reduce yield loss and limit excessive input costs. Image processing and deep learning 
techniques have shown promising results in distinguishing healthy and infected plants at early 
stages. In this paper, the potential of four convolutional neural network models, including Xception, 
Residual Networks (ResNet)50, EfficientNetB4, and MobileNet, in the detection of rust disease on 
three commercially important field crops was evaluated. A dataset of 857 positive and 907 negative 
samples captured in the field and greenhouse environments were used. Training and testing of the 
algorithms were conducted using 70% and 30% of the data, respectively where the performance of 
different optimizers and learning rates were tested. Results indicated that EfficientNetB4 model was 
the most accurate model (average accuracy = 94.29%) in the disease detection followed by ResNet50 
(average accuracy = 93.52%). Adaptive moment estimation (Adam) optimizer and learning rate of 
0.001 outperformed all other corresponding hyperparameters. The findings from this study provide 
insights into the development of tools and gadgets useful in the automated detection of rust disease 
required for precision spraying.

‘Rust’ fungi (order Pucciniales, division Basidiomycota) are a major group of fungal plant pathogens that can 
affect the yield and quality of many field crops, including sunflower, soybean, field pea, dry bean, wheat, and 
barley. The level of yield loss caused by rust fungi varies among the host species. For instance, wheat leaf rust (Puc-
cinia triticina Eriks.) can cause yield losses ranging between 3 to 50% depending on the geographical  location1. 
Soybean rust (Phakopsora pachyrhizi Syd. & P. Syd) usually cause sporadic yield losses in the United States; how-
ever, according to risk analyses, the pathogen can result in yield losses greater than 10% in any soybean growing 
region in the US while the losses can reach up to 50% in southeastern  states2. Sunflower rust (Puccinia helian-
thi Schwein) is one of the important diseases that limit sunflower yield. A comprehensive study conducted by 
Friskop et al. indicated that every 1% of disease severity could result in 6.6% yield reduction; however, yield 
losses up to 80% have been reported under a high disease  severity3.

Three important rust diseases of field crops grown in the US Northern Great Plains include; sunflower rust, 
common bean rust (Uromyces appendiculatus F. Strauss), and field pea rust (Uromyces viciae-fabae (Pers.) de Bary) 
that affect sunflower (Helianthus annuus L.), dry bean (Phaseolus vulgaris L.), and field pea (Pisum sativum L.), 
respectively. These three rust pathogens have five spore stages (macrocyclic rust); while some of the spore stages 
are morphologically similar among the hosts, there are differences in signs of each pathogen and symptoms of 
the disease on hosts. In the first stage, basidiospores infect the plant and produce pycnia; these spores are not 
visible with the unaided eye; the earliest visible stage is the pycnial stage. On sunflower, pycnia appear as small 
yellow-orange spots on the top side of lower leaves and cotyledons. In the next stage, aecia will form in clusters 
of orange cups (approximately 0.5 cm in size) on the underside of the leaf. The most common and repeating 
stage of rust is uredinia which occurs after aecia. Uredinia are small pustules (approximately 0.15 cm) filled 
with cinnamon-brown spores (urediniospores) and appear on the upper or undersides of leaves. On sunflower, 
Urediniospores can infect stems, bracts, leaves, and petioles. These pustules can be rubbed off easily and may be 
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surrounded by a chlorotic halo. Lastly, uredinia turn black and form black structures (telia) that could survive 
under unfavorable environmental  conditions4. On dry bean, yellow to yellow–brown pycnia form on the upper 
surface of leaves and white aecia appear on the underside of leaves. Similar to sunflower rust, pycnia and aecia 
are difficult to detect and last only a few days. The visible symptoms start with small white or yellow raised 
spots on the upper or/and undersides of leaves. These spots enlarge and form reddish-brown uredinia that are 
about < 0.1–0.3 cm in diameter that are filled with dusty cinnamon-brown spores. Pustules may form on green 
pods, and occasionally on branches and stems and they may be surrounded by chlorotic halos. Premature leaf 
drop may be observed under high disease  pressure5. On field pea, small whitish aecia (0.3–0.4 mm diameter) may 
be scattered on tissue or in groups surrounding the pycnia. Aecia enlarge and rupture the epidermis to produce 
uredinia (0.5–1 + mm diameter) filled with cinnamon-brown which could form on leaves, petioles, stems, and 
 pods6. Details about the morphology of each rust pathogen and its specific host play a significant role in the early 
detection and management of the epidemic, which could prevent yield losses on several host species.

An integrated pest management (IPM) approach is commonly recommended for managing rust diseases. 
This includes planting a cultivar with genetics conferring resistance to the rust pathogen(s), timely application 
of an efficacious fungicide, crop rotation, excellent control of volunteer and or wild host  species7,8. Accurate 
identification and on-time detection of the disease could increase the efficiency of the management practices. 
Growers need to have ample tools and knowledge to identify a disease, which is not always possible. Further, 
detection of the all the infested areas in the field is not practical; therefore, growers consider spraying the whole 
field, regardless of the distribution and spread of the disease in the field “(personal communication with grow-
ers)”. Considering this challenge, tools that make disease identification and detection easier would be valuable 
for plant disease management. Automatic detection of diseases through machine learning could provide timely 
and accurate detection of plant diseases and could be used to spot the infected areas in the field and apply pes-
ticides only on those  areas9. Precise spraying could significantly minimize unnecessary pesticide applications.

Numerous studies have verified the efficiency of machine learning analyses in plant pathology. These studies 
are either focused on training disease prediction models using environmental factors (i.e., temperature, humidity, 
and wetness duration)9–12 or the detection of plant diseases using image processing and machine  learning13. The 
high accuracy of conventional machine learning algorithms such as artificial neural network (ANN), random 
forest (RF), support vector regression (SVR), multi-layer perceptron (MLP), extreme learning machine (ELM), 
and logistic regression (LR) in distinguishing healthy and infected samples has been reported  repeatedly9. For 
example, Zhu et al.14 assessed the accuracy of different machine learning algorithms, including back-propagation 
neural network (BPNN), ELM, and least squares support vector machine (LS-SVM) in the detection of Tobacco 
mosaic virus using hyperspectral imaging. The majority of these models showed prediction accuracies over 85%.

In an earlier study conducted by Rumpf et al.15 the accuracy of ANN, support vector machine (SVM), and 
decision trees (DT) in the classification of healthy and inoculated sugar beet leaves with three diseases (Cer-
cospora leaf spot, rust, and powdery mildew) was evaluated. Results of this work revealed that SVM accuracy 
in the detection of Cercospora leaf spot disease increased from 65% at 1–2% disease severity to 100% at 10% 
disease severity. The range of accuracy was similarly high for the other two tested diseases. While the classifica-
tion accuracy of the conventional machine learning methods is promising, they require extracting meaningful 
information (feature extraction) from the input data. Feature extraction is an extra computational step, and the 
performance of the machine learning models depends on the type of extracted information. Convolutional neural 
network (CNN) models developed in recent years are capable of processing raw data directly and extracting the 
efficient features  automatically16,17. Further, CNNs could result in higher classification accuracies in comparison 
with traditional machine learning  algorithms18.

Efficiency of CNN models has been reported in different fields such as medical  sciences19–21, food  industry22, 
construction  industry23, weather  prediction24,  advertisement25, and  hydrology26. Application of CNN models 
in the detection of plant diseases has been studied to some extent. A review paper published by Boulent et al.27 
reported the results of several studies where the accuracy of CNN and traditional image processing methods in 
the prediction of plant diseases were compared. As a general trend, CNN outperformed models such as SVM 
and radial basis function (RBF) with differences in accuracy ranging between 3 and 29%28,29. Another significant 
strength of CNNs is their high generalization capacity (how accurate a model can classify or predict previously 
unseen data) which results in increased robustness even when the data is heterogeneous, the image capturing 
conditions are different, and there are variabilities among classes. However, acquiring this robustness requires 
a large-scale training  dataset27 which is not always available when researchers tend to use their own dataset. 
Transfer learning models have become a reliable alternative to CNNs regardless of the training dataset size.

Pre-trained models such as EfficientNet and MobileNet, with varying depth layers, have been used in the 
classification of plant  diseases30–37. Wang et al.36 compared the accuracy of shallow networks and three deep 
models in the classification of apple black rot images extracted from the PlantVillage dataset. Results of this 
study indicated that VGG16 (VGGNet with 16 weight layers) from the deep models outperformed other tested 
models, where the overall accuracy was 90.4% on the test dataset. In another study conducted by Zhang et al.37, 
the accuracy of three models, including AlexNet, GoogLeNet, and ResNet, with different optimization methods 
(i.e., Stochastic Gradient Descent (SGD) and Adam) were evaluated. Most of the tested models showed accura-
cies greater than 94%, with ResNet_SGD resulting in the highest accuracy of 97.28%. These studies and several 
other reports have verified the efficiency of transfer learning in the detection of plant diseases. However, only 
limited studies have been conducted on the rust disease(s) using images from larger datasets such as PlantVillage. 
These images are commonly captured under controlled environments including homogeneous backgrounds, 
fixed light intensity and tissue/camera  positions38,39. In other studies models were developed to detect rust using 
only one host  crop40,41; this could limit the model generalization when is used for the disease detection in other 
crops. The present study was designed to fill the aforementioned gaps and indicate the application of transfer 
learning in the detection of rust disease using real-life images taken under field conditions. Supplementary 
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Table S1 provides comparisons between the methodologies and results of our work and those of previously 
published studies reporting top classifiers and CNN models in the classification of binary (healthy vs infected) 
and multiple-class (several diseases) datasets. The objectives were (i) to evaluate the accuracy of four deep CNN 
models, including Xception, ResNet50, EfficientNet, and MobileNet, in the classification of images taken under 
field and greenhouse conditions into healthy and infected leaves (that displayed uredinia pustules of Puccinia. 
sp or Uromyces. Spp.; hereafter, “detection of rust disease” will refer to “detection of uredinia pustules”) of three 
economically important field crops (i.e., sunflower, dry bean, and field pea). (ii) to assess the role of different 
optimizers and learning rates in the performance of the models.

Results and discussion
The results of the transfer learning analyses conducted with different hyperparameters using images captured in 
greenhouse and field conditions are presented and discussed in this section.

The performance of four pre-trained models including ResNet, Xception, EfficientNetB4, and MobileNetV2 
in the detection of rust disease on three hosts was evaluated using four commonly used optimizers and three dif-
ferent learning rates. In general, EfficientNetB4 with an average accuracy of 94.29% across all learning rates and 
optimizers was the most efficient model in distinguishing healthy and infected leaf tissues in all three hosts. The 
average accuracy of the ResNet50 model across all hyperparameters was only 0.77% less than EfficientNetB4 and 
was the second-best model (average accuracy = 93.52%). The average accuracies of MobileNet-V2 and Xception 
were 87.67 and 83.20% using different hyperparameters (Tables 1 and 2). The higher accuracy of the Efficient-
NetB4 model could be due to its architecture that not only balances the network dimension in terms of depth, 
width, and resolution of the input image but uses squeeze-and-excitation that enhance the representational 
power of the  network42. The application and high efficiency of the EfficientNet model in the detection of other 
plant diseases have been reported  previously31,38,43.

In a study conducted by Atila et al.38, the performance of several EfficientNet models, ResNet50, AlexNet, 
VCG16, and InceptionV3 using the PlantVillage dataset was assessed. The learning rate was set to 0.001 and 
0.01 for Adam and SGD optimizers, respectively. The results indicated that the EfficientNetB4 model was the 
most accurate model in the detection of disease using the augmented data with an accuracy of 99.97% and 
EfficientNetB5 outperformed all other models (average accuracy = 99.91%) where the original dataset was used. 
However, the accuracy of other models in their study was very close to the top models; ranging from 99.45% 
for AlexNet in the original data set to 99.88% for ResNet50 in the augmented dataset. The previous studies that 
have reported the high efficiency of the EfficientNet model in the detection of plant diseases have mostly used 
PlantVillage which is a large publicly available dataset with edited images that have similar backgrounds and 
magnitudes. The result of the present study indicated that EfficientNet could be a good choice even for small 
datasets where a variety of images with different backgrounds, ambient light intensities, angles, and ages (for 
sunflower). Identifying models that perform well with these types of images is essential since scientists normally 
encounter such datasets in a real-life situation where acquired photos have complex background noise that makes 
the data analysis more  challenging18.

Perusing literature indicated that ResNet50 models are among the most accurate and frequently used mod-
els in the detection of plant diseases. Several studies have reported the high efficiency of ResNet models where 
EfficientNet was not among the tested  models34,37,44–46. Our results indicated that ResNet50 was the second best 

Table 1.  Statistical fitness metrics of the residual network (ResNet), Xception, EfficientNetB4, and 
MobileNetV2 pre-trained conventional neural network (CNN) models in the detection of rust disease on 
sunflower, dry bean, and field pea using Adaptive Moment Estimation (Adam), Follow The Regularized Leader 
(Ftrl), Stochastic Gradient Descent (SGD), and Root Mean Square Propagation (RMSprop) optimizers. AUC-
ROC = area under the receiver operating characteristic curve. All units are in percentage.

Model Optimizer Accuracy Precision True positive rate True negative rate F-score AUC-ROC

ResNet50

Adam 94.54 96.25 92.70 96.39 94.44 96.00

SGD 93.94 95.44 91.73 95.97 93.54 94.52

RMSprop 92.81 94.82 89.51 95.67 92.04 93.70

Ftrl 92.22 94.45 89.75 94.68 92.01 92.97

EfficientNetB4

Adam 95.56 96.86 93.65 97.25 95.18 96.92

SGD 94.49 95.45 92.53 96.19 93.96 95.56

RMSprop 92.95 94.04 90.63 94.95 92.25 94.20

Ftrl 92.96 95.26 89.74 95.91 92.39 93.67

Xception

Adam 84.84 86.97 82.34 87.35 84.45 86.00

SGD 84.07 82.79 83.64 84.44 82.98 84.30

RMSprop 82.44 82.16 80.62 84.02 80.81 83.91

Ftrl 83.54 83.13 82.41 84.58 82.69 84.32

MobileNet-V2

Adam 88.71 90.09 87.04 90.39 88.52 89.92

SGD 87.59 89.75 82.99 91.56 86.09 88.66

RMSprop 86.35 88.41 82.47 89.71 84.72 86.71

Ftrl 87.29 88.95 83.52 90.55 85.90 88.19
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model in the detection of rust disease, with slightly lower accuracy than EfficientNet. Therefore, it could be con-
cluded that EfficientNet and ResNet are two of the strongest pre-trained CNN models in the detection of plant 
diseases and pests. However, as previously  reported37,38,43, model hyperparameters such as optimizers, learning 
rates, and batch size are highly determinant components in the performance of the models where the appropriate 
selection of these components in the training of a model warrants the highest accuracy.

Considering the significant role of the optimizer in training the deep learning  models47, the effect of four 
optimizers on the performance of models was evaluated. Fitness metrics of ResNet, Xception, EfficientNetB4, 
and MobileNetV2 models were tested using the four most widely used optimizers including  Adam48, Follow 
The Regularized Leader (Ftrl)49, SGD, and Root Mean Square Propagation (RMSprop)50. The results indicated 
that in general, the accuracy of models was higher with Adam optimizer, ranging between 84.84 and 95.56%. 
EfficientNetB4 with Adam optimizer and learning rate of 0.001 had an accuracy of 95.56%, precision of 96.86%, 
true positive rate of 93.65%, F-score of 95.18%, true negative rate of 97.25%, and the area under the receiver oper-
ating characteristic curve (AUC-ROC) of 96.92% and outperformed other models. Stochastic gradient descent 
was the second-best optimizer (after Adam) which resulted in an accuracy of 94.49% in EfficientNetB4. Root 
Mean Square Propagation and Ftrl were the least efficient optimizers and generated similar results in ResNet, 
Xception, and EfficientNetB4; however, the accuracy of MobileNetV2 decreased only by 0.3% when SGD was 
replaced with Ftrl. The details of the models’ fitness metrics are presented in Table 1. While the EfficientNetB4 
model using the Adam optimizer outperformed the ResNet50 and the other models, the ResNet model was more 
stable with less fluctuation than the EfficientNetB4 regardless of epoch numbers (Fig. 1).

In a study conducted by Zhang et al.37, SGD optimizer showed a better performance than Adam where 
AlexNet, GoogLeNet, and ResNet models were used. While the difference in accuracy between the optimizers 
was only 1.60 and 2.12% for GoogLeNet and ResNet, respectively, the accuracy declined by 81.97% when SGD 
was substituted with Adam in AlexNet. In the present study, Adam was a better optimizer for all models. How-
ever, only one model was common (ResNet) between the studies where the difference in accuracy was less than 
2.6% when the two optimizers were used in either of the studies. This suggests that the efficiency of optimizers 
could be model and hyperparameter-dependent to some degree. Further, the epoch number was different in 
these studies; Zhang et al.37 trained their model using 6240 epochs while we set the epoch to 100, and usually 
SGD could converge better than Adam with a longer training  time51.

Learning rate is considered one of the most important hyperparameters that significantly impact the per-
formance of CNN  models52. Defining the optimum learning rate results in the highest performance of CNN 
models. Defining very small learning rates applies smaller changes to the weights and minimizes the model loss 
function; however, the model needs more epochs to learn the task. Selecting a high learning rate, on the other 
hand, speeds up the training process but it can increase the potential of generating unwanted divergent behavior 
in the model loss  function53. Therefore, in this study, three mid-range learning rates (0.01, 0.001, and 0.0001) 
were used in the training and testing of the models and their effects on the performance of the models were 
evaluated. Considering that Adam was the best optimizer for all models, it was used in analyses conducted to test 
the learning rates. Results of this section indicated that the learning rate of 0.001 was optimum for all the four 
pre-trained CNN models regardless of the epoch number (Table 2 and Fig. 2). EfficientNetB4 represented the 
highest accuracy (average accuracy = 94.70%) across all learning rates where the learning rate of 0.001 resulted 
in the maximum accuracy of 95.56%, precision of 96.86%, true positive rate of 93.65%, and true negative rate 
of 97.25%. ResNet50 was the second-best model regardless of the learning rate (average accuracy = 93.71%). 
The average accuracy of Xception and MobileNet-V2 were 82.5% and 87.91% across all learning rates (Table 2).

A closer look at Fig. 2 reveals that the optimum learning rate of 0.001 resulted in the highest accuracy com-
pared to the other two learning rates and the fluctuation in percentage of accuracy minimizes after 20 epochs at 
this learning rate. Increasing or decreasing the learning rate led to the weaker performance of the models. The 

Table 2.  Statistical fitness metrics of the residual network (ResNet), Xception, EfficientNetB4, and 
MobileNetV2 pre-trained conventional neural network (CNN) models in the detection of rust disease on 
sunflower, dry bean, and field pea using 0.01, 0.001, and 0.0001 learning rates. AUC-ROC = area under the 
receiver operating characteristic curve. All units are in percentage.

Model Learning rate Accuracy Precision True positive rate True negative rate F-score AUC-ROC

ResNet50

0.01 93.38 95.40 91.25 95.51 93.24 94.76

0.001 94.54 96.25 92.70 96.39 94.44 96.00

0.0001 93.20 94.37 91.67 94.67 92.95 93.86

EfficientNetB4

0.01 94.32 95.46 92.65 95.84 93.97 94.37

0.001 95.56 96.86 93.65 97.25 95.18 95.92

0.0001 94.21 95.14 92.29 95.88 93.66 95.62

Xception

0.01 80.85 84.48 76.53 85.18 79.98 82.25

0.001 84.84 86.97 82.34 87.35 84.45 86.00

0.0001 81.81 86.30 75.79 87.83 80.63 82.22

MobileNet-V2

0.01 86.36 88.31 84.89 87.83 86.03 87.31

0.001 88.71 90.09 87.04 90.39 88.52 89.92

0.0001 88.65 86.39 90.01 87.45 88.15 89.31
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smallest value for the learning rate (0.0001 in this study) resulted in a slightly better performance than the high-
est value (0.01) for Xception and MobileNet-V2 (epochs of 100); however, the learning rate of 0.01 resulted in 
negligibly higher accuracy compared to 0.0001 in ResNet50 and EfficientNetB4 models. In general, EfficientNetB4 
and ResNet50 were more robust to the change of the learning rate values, whereas Xception and MobileNet were 
more sensitive to either decreasing or increasing the learning rate.

The role of different learning rates on the performance of CNN models has been studied to some extent. For 
instance, Hassan et al.43 tested a range of learning rates (0.01 to 0.0001) for their efficiency in training of several 
models including EfficientNetB0, MobileNetV2, InceptionV3, and InceptionResNetV2 using PlantVillage dataset; 
however, results of this study did not include the optimum learning rate used for each model. In another study 
conducted on PlantVillage and Nepal datasets, testing three learning rates (0.001, 0.0001, 0.00001) resulted in 
accuracies ranging between 99 to 100% in the CNN model and 81 to 100% in the Capsule Neural Network where 
the optimum learning rate of 0.0001 was reported as a  result54. Our results did not agree with this finding where 
our optimum rate was 0.001. However, several factors such as the model architecture, size and type of dataset, 
number of disease classes, and other hyperparameters are determinants in the performance of the models and 
these factors were not all similar between the two studies and might be the potential reasons of this discrepancy. 
Therefore, evaluating a range of hyperparameters, such as learning rate and optimizer, is an important task to 
tune the model parameters and obtain the maximum accuracy for the desired dataset.

Convolutional neural network models are becoming popular tools in the detection of plant diseases. The result 
of the present study indicated that EfficientNetB4 with the average accuracy of 94.29% outperformed the other 
models. ResNet50 (average accuracy of 93.52%) was the second-best architecture in the detection of rust disease 
on sunflower, dry bean, and field pea where a small dataset with uneven backgrounds and magnitudes were used. 
Further, four different optimizers and three learning rates were tested across all architectures; Adam optimizer 
and learning rate of 0.001 consistently performed better in all evaluated architectures. Moreover, k-fold cross 
validation (tenfold) on EfficientNetB4 with the Adam optimizer and learning rate of 0.001 was used to assess 
the effect of bias caused by random train-test split. The model achieved an average accuracy of 94.34% ± 0.010, 
precision of 96.09% ± 0.006, true positive rate of 93.37% ± 0.018, true negative rate of 97.22% ± 0.005, and F-score 
of 94.81% ± 0.011. As the average accuracy and standard deviations (the values after ± signs) show the model 
was highly accurate and stable.

Visual demonstrations were generated using Gradient-weighted Class Activation Mapping (Grad-CAM) with 
EfficientNetB4 as the base model to indicate how deep learning algorithms make decisions in differentiating 

Figure 1.  The effect of Adaptive Moment Estimation (Adam), Follow The Regularized Leader (Ftrl), Stochastic 
Gradient Descent (SGD), and Root Mean Square Propagation (RMSprop) optimizers with the learning rate of 
0.001 on the accuracy of residual networks (ResNet), Xception, EfficientNetB4, and MobileNetV2 pre-trained 
conventional neural network (CNN) models using different epoch numbers.
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rust-infested from healthy tissue (Fig. 3). The red area refers to the most important discriminative regions where 
the model pays the highest attention and the blue areas are the least critical. As Fig. 3A indicates the model mainly 
focuses on rust postulates and not the background or other injuries such as the one on top right corner of the 
leaf. Figure 3B shows the precision of the model in focusing on the leaf with rust pustulate while it is surrounded 
by other healthy leaves. Most importantly, the model is also focused on the rust pustulates located on the leaf 
tip, not insect injuries at the bottom of the leaf tissue. Figure 3C,D also verify that the rust infested areas on the 
leaves are correctly recognized as discriminative regions.

As a future plan of this study, the rust disease dataset could be expanded by adding more images of tested 
crops and additional field crops such as wheat and corn. A larger dataset would allow the validation of the 
top architectures and, subsequently developing tools and/or mobile applications that assist growers and plant 
pathologists in a fast and cost-effective plant disease diagnosis. Although diseases such as rust could be detectable 
by naked eyes, it is not practical to screen the whole field for the presence of the disease and therefore, farmers 
typically spray the entire field when some symptoms occur. Large scale pesticide applications are costly, labor-
intensive, time consuming, and most importantly endanger the environmental health and safety. Application 
of technology and remote sensing is becoming more common in agriculture with the goal of making precision 
agriculture accessible to a majority of farmers. The first step toward achieving this goal is the development and 
validation of accurate machine learning models with a high level of generalization. In this study, our aim was to 
develop a reliable model for the detection of rust disease on several hosts that could be incorporated into drones 
and/or handheld devices that facilitate precision spraying.

Conclusion
Image processing and deep learning algorithms have demonstrated encouraging results in differentiating healthy 
and infected plants at different stages of the disease progress. In this study, the ability of four different pre-trained 
CNN models including Xception, ResNet50, EfficientNetB4, and MobileNet were evaluated to detect rust dis-
ease on three commercially important field crops. Images from greenhouse and field were used in the training 
and testing the models to represent the variation of the natural conditions. The performance of the models was 
evaluated using two important hyperparameters, i.e., learning rate and optimization algorithm. EfficientNetB4 
trained by Adam optimizer and learning rate of 0.001 was the most accurate model for discriminating healthy 
and rust-infested tissues with the average accuracy of 94.29%. These results demonstrated that EfficientNetB4 
could be a reliable model to detect rust on several host species and therefore be incorporated into tools and 

Figure 2.  The effect of different learning rates (0.01, 0.001, and 0.0001) on the accuracy of the residual networks 
(ResNet), Xception, EfficientNetB4, and MobileNetV2 pre-trained conventional neural network (CNN) models 
using different epoch numbers where Adaptive Moment Estimation (Adam) was used as the optimizer of the 
models.
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devices used in precision management of the disease such as pesticide spraying drones and robots. Intelligent 
spray systems are a major component of precision agriculture that results in reducing pesticide applications and 
protecting environmental and human health.

Materials and methods
Image dataset. Three crops, including sunflower, dry bean, and field pea, which are susceptible to rust 
pathogens, were used in this study. Images with different backgrounds and magnitudes were taken preliminary 
in North Dakota, USA, between 2007 and 2020 under greenhouse and agricultural field environments. The pres-
ence of three rust species, including Puccinia helianthi on sunflower, Uromyces appendiculatus on dry bean, and 
U. viciae-fabae on field pea, on infected plants was visually verified. A total of 1764 images (907 healthy and 857 
infected) from three crops were collected and pooled for data analysis where 70% of the photos were used for 
training. A subsample of healthy and infected plants of three crops is presented in Fig. 4.

All methods were performed in accordance with the relevant guidelines, regulations, and legislation. No 
animals or human participants were used in this study. Further, plant materials were not collected/planted; 
only images were taken under field and greenhouse conditions. All study methods followed North Dakota State 
University guidelines.

Pre‑trained CNN models. In this study, the transfer learning approach using four pre-trained CNN archi-
tectures, including Xception, ResNet50, EfficientNetB4, and MobileNet-V2 were adopted for the detection of 
rust disease on sunflower, field pea, and dry bean. In transfer learning, the model could use previously learned 
knowledge from other tasks to solve a new  problem55. Since in transfer learning, the models are already trained 
on a massive dataset, compared with training a model from scratch, less data is required, and also it could save 
training time and improve the model performance. In this study, all the models were fine-tuned to diagnose the 
rust disease using pre-trained weights of the models on the ImageNet dataset which has approximately 1.4 mil-
lion images in 1000  classes56. Further, to adjust the models to our task, which is a binary classification (healthy 
versus infected), the fully connected layers of the CNN pre-trained models were changed to two, which repre-
sents the dimensionality of the output space. The “Sigmoid” function was chosen as the activation function, and 
“binary cross-entropy” was selected as the loss function.

The architecture of ResNet50 with a total of 16 residual blocks is represented in Fig. 5. The architecture 
of the Xception model is shown in Fig. 6. The architecture of EfficientNetB4 with dimensions of 224 × 224 of 
input images, three channels, and an initial 3 × 3 kernel size convolution is shown in Fig. 7. The architecture of 
MobileNetV2 includes an initial fully convolution layer with 32 filters, followed by 19 residual bottleneck layers 
is represented in Fig. 8. The details of the tested pre-trained CNN models’ architecture could be found in the 
supplementary Note 1.

Further, Grad-CAM57 was used to identify the regions of an input picture that have the greatest effect on 
the classification score. The Grad-CAM method relates the use of the gradients of the classification score to the 

Figure 3.  Heat map generated using Gradient-weighted Class Activation Mapping (Grad-CAM) method. The 
red and blue regions highlight the most and the least discriminative regions, respectively. (A) field pea, (B) and 
(C) dry bean, and (D) sunflower.
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Figure 4.  Examples of images used for training the models: (A) from left to right: healthy dry bean, field pea, 
and sunflower leaves, (B) from left to right: slightly infected dry bean, field pea, and sunflower leaves, (C) from 
left to right: highly infected dry bean, field pea, and sunflower leaves.

Figure 5.  Residual networks (ResNet-50) architecture with a sample input image and 16 residual blocks.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5133  | https://doi.org/10.1038/s41598-023-31942-9

www.nature.com/scientificreports/

final convolutional feature map. Locations with a high value of this gradient reflect those with the most data 
dependence in the final score.

Model evaluation metrics. The performance of the four deep CNN models was evaluated using some 
well-known metrics, including accuracy, true negative rate, precision, true positive rate, F-score, and AUC-ROC 
score. The confusion matrix was used to calculate the performance metrics of the models.

The definitions of these parameters are provided in the next section.

(1)Accuracy =
(TP+ TN)

(TP+ TN+ FP+ FN)

Figure 6.  The architecture of the Xception model with a sample input image and 14 modules.

Figure 7.  EfficientNet basic architecture with a sample input image and 18 convolution layers.

Figure 8.  The architecture of the MobileNetV2 with a sample input image and 19 residual bottleneck layers.
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where TP, TN, FP, and FN represent true positives, true negative, false positives, and false negative, respectively. 
Based on the Eqs. (1–6), the accuracy of a model is defined as the number of all correct predictions divided by 
the total number of predictions. True negative rate or specificity, is defined as the correct classification of nega-
tive instances, and precision, also known as sensitivity, indicates the total number of correctly classified positive 
observations. True positive rate or recall refers to the proportion of correctly classified instances, and the F-Score, 
or F1 score, is the harmonic mean of precision and true positive rate and can be an indicator of the model robust-
ness. In addition, the ROC score represents the performance of the model or diagnostic ability, and it refers to 
the prediction of the positive instances where the actual observations are positive. It has been reported that the 
ROC score could be a better comparison measure than F-Score, specifically where class distribution is unbal-
anced, and the latter might become skewed towards the positive class. Lastly, AUC-ROC indicates the ability of 
a parameter in the separation of two classes (infected and healthy, in this case).

Experiment setup
To evaluate the efficiency of deep learning models for detecting rust disease in this study, the experiment was 
conducted using three different crops, including sunflower, dry bean, field pea and the performance of four well-
known pre-trained CNN architectures were compared. All models mentioned above were trained and tested 
on 70% and 30% of the dataset, respectively. The experiment was implemented on Windows10 using the Keras 
framework with Tensorflow-GPU v2.6.0 as backend on a GPU-enabled workstation with NVIDIA GeForce 
GTX 1080 8 GB GDDR5.

Considering that optimizer plays a crucial role in changing the attributes of the models, pre-trained CNN 
models were trained and tested with four different optimizers including Adam, SGD, RMSprop, and Ftrl. Moreo-
ver, since the learning rate is one of the most important  hyperparameters52 that needs to be tuned to achieve 
optimum performance, we evaluated the performance of the models using three different learning rates includ-
ing 0.01, 0.001, and 0.0001. Supplementary Note 2 provides information and related references about the tested 
hyperparameters.

Other hyperparameters were not benchmarked due to the following reasons: batch size: the computer used 
in this study had GPU of 1080 which could support a batch size of up to 32; epoch number: the top models were 
mainly stable across tested epoch numbers. Therefore, higher epoch numbers were not tested (Figs. 1, 2); early 
stopping: to ensure about the stability of the models across a range of epoch numbers, we did not activate early 
stopping as it stops the model if there is no improvement in the training at a specific epoch number; Image size: 
smaller size images were not used due to the small size of the rust pustules; image size: the maximum image 
size (224 × 224) that our hardware could support was used; depth of model: the depth of the network is fixed 
for pre-trained models.

Data availability
A great part of the data that supports the findings of this study are available from the American Phytopathologi-
cal Society (APS) but restrictions apply to the availability of these data, which were used under license for the 
current study (Authors who transfer images to APS retain the ability to use the materials for their individual 
research, manuscript submission, or Extension activities). Therefore, these data are not publicly available. Data 
are however available from the corresponding author upon request and with permission of the APS.
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