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Understanding 
the hydrological response 
of a headwater‑dominated 
catchment by analysis 
of distributed surface–subsurface 
interactions
Ilhan Özgen‑Xian 1,2*, Sergi Molins 1, Rachel M. Johnson 1, Zexuan Xu 1, Dipankar Dwivedi 1, 
Ralf Loritz 3, Utkarsh Mital 1, Craig Ulrich 1, Qina Yan 1 & Carl I. Steefel 1

We computationally explore the relationship between surface–subsurface exchange and hydrological 
response in a headwater‑dominated high elevation, mountainous catchment in East River Watershed, 
Colorado, USA. In order to isolate the effect of surface–subsurface exchange on the hydrological 
response, we compare three model variations that differ only in soil permeability. Traditional methods 
of hydrograph analysis that have been developed for headwater catchments may fail to properly 
characterize catchments, where catchment response is tightly coupled to headwater inflow. Analyzing 
the spatially distributed hydrological response of such catchments gives additional information on the 
catchment functioning. Thus, we compute hydrographs, hydrological indices, and spatio‑temporal 
distributions of hydrological variables. The indices and distributions are then linked to the hydrograph 
at the outlet of the catchment. Our results show that changes in the surface–subsurface exchange 
fluxes trigger different flow regimes, connectivity dynamics, and runoff generation mechanisms inside 
the catchment, and hence, affect the distributed hydrological response. Further, changes in surface–
subsurface exchange rates lead to a nonlinear change in the degree of connectivity—quantified 
through the number of disconnected clusters of ponding water—in the catchment. Although the 
runoff formation in the catchment changes significantly, these changes do not significantly alter 
the aggregated streamflow hydrograph. This hints at a crucial gap in our ability to infer catchment 
function from aggregated signatures. We show that while these changes in distributed hydrological 
response may not always be observable through aggregated hydrological signatures, they can be 
quantified through the use of indices of connectivity.

Runoff generation and overland flow results from the interactions among rainfall, surface topography and rough-
ness, and soil physical and hydrological  properties1. These interactions control the development of preferential 
flow paths both on the surface and in the subsurface, which route net water fluxes towards the catchment’s 
 outlet2,3. The in- and exfiltration processes along these preferential flow paths result in transient spatial patterns 
of hydrological state  variables4. Runoff formation processes occur at small spatio-temporal scales (submeter, 
minutes), but manifest themselves in hydrological signatures across scales up to the catchment scale. The mecha-
nisms of this flux re-scaling are still not completely  understood5,6.

Runoff formation and preferential flow paths are interlinked with other environmental  processes7. For exam-
ple, increased infiltration along preferential flow paths creates local pressure gradients, concentration gradients 
or depletion of soil moisture, biogeochemical  hotspots8, and vegetation patterns in water-limited  ecosystems9. 
Further, spatial dynamics of infiltration and exfiltration, controlled by the interactions between surface and 
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subsurface, regulate the runoff generation and formation in the catchment itself. Thus, understanding the devel-
opment of runoff formation and preferential flow paths can give insight into spatial patterns of hydrology-driven 
biogeochemical and ecological  processes10,11.

Most runoff modeling studies consider catchments with no significant inflow from upstream  areas1,12–18. In 
contrast, in catchments that receive upstream water, the hydrograph may be controlled by this inflow from their 
headwaters. A common challenge is that the headwater inflow “drowns out” the catchment’s own response. In 
such headwater-dominated catchments, distinct states of runoff formation cannot be observed in the aggregated 
hydrograph. This makes it difficult to identify the hierarchy of controls on the runoff formation. From a mod-
eling perspective, these challenges manifest themselves during model calibration, because the dominance of the 
boundary condition makes it difficult to assess whether the system has been properly parameterized. It can be 
argued that these challenges arise because we are essentially considering an incomplete system and that modeling 
the entire watershed system would resolve this issue. However, this is often not feasible due to finite computing 
resources. Further, spatially distributed data to properly constrain such models are often not available due to 
difficulty to access steep mountainous upstream catchments. Thus, an improved understanding of runoff forma-
tion in headwater-dominated catchments as isolated systems is necessary to enable their robust modeling. This 
is important for water resources management, because these systems are often where water is sourced.

A common approach to understand runoff formation is to analyze so-called aggregated hydrological 
responses19. For example, catchment hydrographs are commonly analyzed with a top-down approach and decom-
posed into their individual components—base flow, interflow, overland flow—to understand the system response 
of the  catchmen19–22. However, because different combinations of these individual components can generate simi-
lar aggregated hydrological responses, this approach yields non-unique descriptions of the catchment  system23,24.

The analysis of runoff formation can be further constrained through the inclusion of distributed hydrologi-
cal responses, which are point or profile measurements of hydrological state variables and processes inside the 
 catchment19. Measured distributed hydrological responses can be used to further constrain the hydrograph 
analysis by providing valuable local information. Similarly, high-resolution spatio-temporal patterns of hydro-
logical state variables can be obtained through distributed hydrological modeling.

When these patterns are linked to aggregated hydrological responses, they can—at least to some extent—
overcome the aforementioned issue of  equifinality17. In this context, hydrological connectivity is a promising 
conceptual  development25,26. Hydrological connectivity describes how different parts of the catchment con-
nect through mass fluxes. The hydrological connectivity of a catchment is typically considered to consist of 
two parts: (1) the structural connectivity, which is static and can be deduced by catchment characteristics and 
(2) the dynamic connectivity, which is a transient and emergent property of interactions between rainfall and 
the  catchment26. Indices of hydrological  connectivity26–28 aim to relate these spatio-temporal distributions to 
hydrological signatures.

In this modelling study, we aim to blue identify the internal hydrological controls on the response of a catch-
ment that is dominated by the dynamics of its headwaters. In particular, we want to understand (1) to what 
extent surface–subsurface exchange fluxes affect hydrological connectivity and (2) how changes in connectivity 
are reflected in the catchment’s aggregated hydrograph. For this purpose, we investigate the relationship between 
aggregated and distributed hydrological response of a headwater-dominated catchment of the East River Water-
shed, Colorado, USA, which receives significant inflow from its headwater catchments. We use simulation of 
integrated hydrology processes to highlight the specific set of challenges that are associated with analyzing the 
hydrological response of a headwater-dominated catchment. We compare the hydrological response of this 
catchment for different degrees of surface–subsurface exchange, obtained by varying the permeability of the 
subsurface. Other catchment parameters are kept constant to isolate the effect of surface–subsurface exchange. 
We explore whether by linking the catchment’s hydrological connectivity to its aggregated discharge, we are 
able to relate changes in the internal state of the catchment to aggregated hydrological response. This relation 
may be used to develop a physics-informed systems approach for hydrological applications, where the relation 
between input and output is directly obtained as an emerging behaviour of the catchment system instead of pure 
mathematical considerations.

Materials and methods
Study site. The East River Watershed is a mountainous headwater catchment in the Upper Colorado River 
Basin, see Fig. 1 (top). As one of two major contributors to the Gunnison River, the East River Watershed is a 
crucial source of water for the western  USA29. The majority of this water is stored as snowpack and released over 
the year. Our study site is the Lower Triangle (LT), a headwater-dominated, 15 km2 subcatchment of the East 
River Watershed (Fig. 1 (top)).

The geology of the LT is characterized by marine shale of the Mancos formation, with Cenozoic igneous 
formations intruding the Mancos formation in the western part and the Palaezoic and Mesozoic sedimentary 
strata in the eastern part, where it forms steeply dipping  beds31.

The elevation of the LT ranges from 2759 m at its south-western part to 3787 m at its northern part. The 
lower parts of LT feature a meandering riparian corridor. The stream is fed by high-energy mountain streams 
from subcatchments on the LT’s north, namely Copper Creek and Quigley  Creek32—see Fig. 1 (top). The LT is 
one of the U.S. Department of Energy’s intensively monitored sites to understand the impact of climate change-
induced perturbations on watershed  systems29. A pumphouse (PH), located at the outlet of the LT, extracts 
water for the municipality of Mt. Crested Butte, Colorado, USA. Daily discharge measurements are provided 
at this  location33. In the northern part, the EBC station measures daily discharges in the river, which we use as 
the inflow hydrograph at the northern boundary of the LT in this  work33. Discharge is measured with a SonTek 
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Flow Tracker acoustic Doppler velocimeter in conjunction with Solinst Levellogger Edge pressure transducers 
corrected with barometric  pressure31.

The hydrology in the region is snow-dominated, due to the continental subarctic climate with long, cold 
winters and short, cool summers. The annual precipitation ranges between 670 and 1200 mm, where up to 70% 
is in the form of snow and the majority of the remaining precipitation is in the form of monsoonal  rains31,34. 
Snowfall occurs from October through May and monsoonal rains occur from July through September. Snowmelt 
starts in April and continues through the year. The discharge at the PH station usually peaks in June to July, when 
snowmelt from the northern subcatchments arrives at the  outlet35, see also Fig. 1 (bottom).

Figure 1 (bottom) shows the inflow and outflow hydrographs as well as the difference between these hydro-
graphs for the water years 2015 and 2016. In this time interval, the LT contributes about 36% of the total discharge 
volume at the PH, while the rest is headwater. While the LT contribution to the outflow hydrograph is significant 
at some times during the high flow periods, it is diminished significantly during the low flow periods. In such a 
situation, changes in spatial flow dynamics may not always be observable from the hydrograph alone.

Integrated hydrological solver. We use the Advanced Terrestrial Simulator (ATS)36—a physically-based, 
distributed, integrated hydrological model written in C++—to compute the flow and the spatial patterns of 
different state variables, such as water depth and soil moisture. ATS solves overland flow and subsurface flow 
on a computational mesh in an integrated manner, using the two-dimensional zero-inertia equation and the 

Figure 1.  Top: Map of East River Watershed, Colorado, with sub-watersheds (red boundaries). The study 
region Lower Triangle (LT) is located at the downstream of the watershed. At the outlet of the LT, a pumphouse 
is located where discharge data is measured daily. The red point labeled with EBC denotes the location of 
discharge measurements that were used as inflow boundary condition. The map has been generated using the 
matplotlib library (v3.5)30. Bottom: Net flow at the northern boundary (EBC), the discharge measured at the 
Pumphouse (PH), and difference between the inflow and the outflow, calculated as �Q = QPH − QEBC.
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three-dimensional Richards(on)  equation37,38, respectively. The computational mesh describes the topography 
and subsurface geology and can be a Cartesian grid or an unstructured triangular mesh. Further processes con-
sidered in this study are snow storage and evapotranspiration. Snow storage is modeled through a temperature-
based approach and evapotranspiration is modeled using the Priestley–Taylor  equation39.

Model of the Lower Triangle. Model setup. The topography of the catchment is available from a Digital 
Elevation Model (DEM) with a resolution of 0.5  m40. The domain is discretized using a multiresolution, unstruc-
tured triangular mesh generated through a wavelet-based meshing  strategy41. The horizontal resolution is set 
to 10 m around streams and coarsened up to 160 m in the other parts of the catchment. The vertical resolution 
goes from 0.1 m at the surface to 30 m in the deeper regions. More information on the mesh is provided in the 
supplementary information.

Subsurface permeability and soil parameters are assigned according to the geological structure of the sub-
surface. This structure is predicted by a forward simulation by a three-dimensional geological model, using 
Emerson-Paradigm’s SKUA-GOCAD software. SKUA-GOCAD uses the proprietary UVT Transform  algorithm42. 
The geological model simulation is constrained by USGS geology maps. The geological model results provide 
a complete high-resolution description of the geology in the domain, including heterogeneity that cannot be 
obtained by extrapolating the USGS geology maps. Model results indicate that the weathered shale is layered on 
top of fractured shale and sand. Localized quartz intrusions pinch through the weathered and fractured shale.

Model parameters for the subsurface are taken from the literature. The saturated permeabilities were set based 
on the values reported by Tokunaga and  collaborators43, where permeability values at a hillslope in the region are 
quantified through field observations. The van Genuchten soil  parameters44 were based on values reported by 
Xu and  collaborators45, where a hydro-geochemical model of a neighboring catchment has been calibrated. We 
summarize permeability and van Genuchten values in Table 1, where the permeability taken from Tokunaga and 
 collaborators43 is under the column Ks(P0). Here, α is a parameter related to the inverse of the air-entry pressure, 
m is a parameter related to the pore-size distribution, θr is the residual soil water content, and θs is the saturated 
soil water content. The surface roughness is accounted for by Manning’s law. The Manning coefficient is set to 
1.0 sm−1/3 throughout the catchment and was not modified for calibration. The model performance is assessed 
by comparing model results with the measured daily discharge at the PH. Here, we used the hydrographs for 
the water years 2016 and 2017.

Meteorological data needed for the simulation are obtained via the Daymet dataset, which provides daily 
averaged weather and climatology variables for the entire U.S. at a kilometer  resolution46. In this work, we use 
the Daymet estimations for precipitation, temperature, and radiation in the center of the LT and apply them in 
a spatially uniform manner to the entire catchment. The precipitation is plotted in Fig. 1 (bottom). Temperature 
and radiation are subject to seasonal cycles (plot omitted). The temperature drops below the freezing point 
throughout the winter and reaches its peak in the summer. Similarly, radiation decreases during the winter and 
peaks in summer.

At the north boundary of the domain, we impose a discharge boundary condition to account for the streams 
entering the domain from this boundary. The boundary condition is informed by measurement data in the stream 
at the station EBC, which is located close to the north boundary—see Fig. 1 (top). The imposed hydrograph is 
plotted in Fig. 1 (bottom). At the downstream boundary, a free outflow boundary condition is set.

Model variations. We carry out explorative numerical simulations, where we vary the permeability of the sub-
surface as a way to modulate the surface–subsurface exchange, without changing other catchment characteris-
tics. Thus, changes in the hydrological response can be directly attributed to the surface–subsurface exchange. 
This is not meant as a thorough sensitivity analysis but as a means to study changes in hydrological response as 
a consequence of surface–subsurface exchange. For sake of simplicity in the interpretation of simulation results, 
we did not change the van Genuchten parameters in our model variations. Thus, conceptually, our model vari-
ations are not considering different soil types but variations in the saturated permeability of the same soil type. 
Hereinafter, the model variation P0 corresponds to the model with the parameters reported in Table 1. For the 
model variation P−, all permeability values are reduced by a factor of 5, while for the model variation P + , all per-
meability values are increased by a factor of 5. The permeability values of all model variations are summarized 
in Table 1. We note that the reduction and increase by the chosen factor of 5 is rather small when compared to 
the range of permeability values typically observed in the field. However, as we will see in the following section, 
even such small changes can yield significantly different runoff behavior.

Table 1.  Permeability values ( Ks ) and van Genuchten soil parameters of the investigated model variations for 
the geological layers in LT.

Geology Ks (P0) (m2) Ks (P−) (m2) Ks (P+ ) (m2) α (Pa−1) m θs θr

Shallow soil 9.9× 10
−13

1.98× 10
−13

4.95× 10
−12 0.0003 0.6 0.53 0.2

Weathered shale 1.13× 10
−13

2.26× 10
−14

5.65× 10
−13 0.0004 0.5 0.5 0.1

Fractured shale 1.6× 10
−14

3.2× 10
−15

8× 10
−14 0.0004 0.5 0.5 0.1

Quartz 1× 10
−15

2× 10
−16

5× 10
−15 0.0003 0.4 0.67 0.1

Sand 2.26× 10
−12

4.52× 10
−13

1.13× 10
−11 0.0002 0.6 0.2 0.1
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Initial conditions. Initial conditions for the subsequent simulations were generated by a so-called “spin-up” 
simulation. Starting with initially saturated soil and a dry surface, the domain was drained for 10 years. Saturated 
soil water content values θs for the subsurface are summarized in Table 1. Afterwards, a constant precipitation 
with an intensity of 10−8 ms−1 , which corresponds to the annual mean, was applied for 5 years. Finally, a 1 year 
simulation using the precipitation data for the water year 2016 was carried out to obtain the initial conditions. 
Throughout the spin-up, the temperature and radiation data from the water years 2016 and 2017 are used.

Metrics and indices. Pearson and Spearman correlation. Pearson’s correlation  coefficient47 (r) between 
two data sets x and y is calculated as

where xi and yi denote the i-th entry of the data set x and y, respectively, and x and y denote the mean value of 
the data set x and y, respectively.

Spearman’s correlation  coefficient48 ( ρ ) between two data sets x and y is calculated as

where n is the size of the data sets.

Nash–Sutcliffe and Kling–Gupta efficiency. The Nash-Sutcliffe  efficiency49 ( NSE ) is calculated through

where t is the time, Qs is the simulated discharge, Qo is the observed discharge, and Qo is the mean observed 
discharge.

The Kling–Gupta  efficiency50 ( KGE ) is calculated using statistical moments as

where r is the linear correlation between observation and simulation data, σs and σo are the standard deviation 
in simulation and observation data, respectively, and Qs is the mean the simulation discharge.

In general, higher values of both of these coefficients are considered to suggest a better agreement between 
simulated and observed hydrographs.

Disconnected water clusters as an index of hydrological connectivity. We use the term hydrological connectivity 
to refer to hydrologically relevant spatial patterns of properties and variables that control flow and transport in 
a hydrological  system51,52. In the literature, several indices and measurements of hydrological connectivity have 
been put  forward26. One of these indices is the total number of disconnected clusters of ponding water, which is 
an intuitive metric to quantify hydrological connectivity for surface flow  processes1. A cluster is defined as one 
or more “wet” pixels that are geographically separated from the rest of the wet areas. The assumption is that the 
number of clusters decreases as the hydrological connectivity of the system increases. When the entire system is 
hydrologically connected, that is to say that all wet areas are connected throughout the domain, the number of 
clusters is equal to 1.

Computation of metrics and indices. Plots in this work have been generated with the matplotlib  library30 and 
the tidyverse  library53. NSE and KGE have been computed with the help of the numpy  library54. Disconnected 
water clusters have been counted using the image analysis capabilities of the scipy  library55.

Results
Distributed hydrological response. We quantitatively assess the interaction between surface and sub-
surface through the exchange mass flux across the surface–subsurface interface. The mass flux is either an infil-
tration flux, that is to say that water penetrates into the soil from the surface, or an exfiltration flux, which means 
that soil water is pushed from the subsurface towards the surface due to a pressure gradient. In ATS, negative 
values of the exchange flux imply exfiltration and positive values imply infiltration. Based on the sign of the 
exchange flux, spatial patterns of infiltration and exfiltration can be deduced. Figure 2 (left) showcases the dif-
ferences in these spatial patterns obtained from different model variations at selected time steps. In all cases, 
water exfiltrates in the riparian areas, especially in the downstream parts, which has flat topograpy and saturated 
soils—see Fig. 2 (right). This is in agreement with our conceptual understanding of the hydrological cycle, where 
rainfall infiltrates in the upslope areas, is routed through the subsurface, and exfiltrates in the riparian areas and 
river  channel15,56. During low flow conditions ( T = 50 d and T = 500 d, compare also the hydrograph in Fig. 1 
(bottom), infiltration is observed in the upstream parts of the river channel. During these times, the soil water 
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in the near surface is lower than during high flow conditions, indicating that the soil is being drained during low 
flow conditions and therefore has the capacity to absorb water. As the discharge at the outlet begins to increase, 
the soil in the river channel gets quickly saturated and switches from infiltration to exfiltration. Here, we assume 
that the simulated time scales are small, such that the influence of deep groundwater is negligible.

Surface–subsurface exchange increases as the permeability of the subsurface is increased. This has significant 
influence on the spatio-temporal distributions of the exchange flux. As surface–subsurface exchange increases, 
infiltration and exfiltration rates along ephemeral streams in the northeast of the catchment increase. Water 
moves faster through the catchment, connecting different compartments on its way. Thus, increased surface–sub-
surface exchange leads to a higher degree of connectivity inside the catchment.

The degree of surface hydrological connectivity can be investigated by analyzing the spatial distribution of 
ponding water in the catchment. Maps of the ponding water depths in the catchment can be thresholded into 
binary wet/dry maps. If the water depth at a certain point is below a certain threshold, the point is considered 
“dry”, otherwise the point is considered “wet”. Here, we use a threshold of 0.01 m, which is consistent with 
the  literature1,5. Figure 3 shows such wet/dry maps for all cases at selected times. Four separate stages of flow 
regimes are identified in the context of microtopography at the hillslope scale, which can be transferred to the 
catchment scale to categorize the flow  regimes57. These flow regime stages are namely (1) local flow, where 
water flows mostly in disconnected depressions and fills them, (2) channel flow, where local streams start to 
develop between filled depressions, (3) mixed flow, where filled depressions start to merge as the topography 
gets inundated, with higher parts remaining dry, and finally, (4) sheet flow, where all depressions are filled and 
the surface is completely inundated.

The spin-up simulations ensure that at the initial state, the flow regime at the riparian areas reaches sheet 
flow. In the P− model variation, upslope areas showcase local flow regimes with disconnected puddles that 
showcase a mixture of in- and exfiltration. The P0 model variation results in localized channel flow regimes in 
the upslope areas, in combination with local flow regime in parts. The wetland area is extended and in addition 
to sheet flow showcases mixed flow regimes at its edges. Further increase in surface–subsurface interaction 
leads to a connection between depressions and leads to a mixed flow regime in the upslope areas, that are then 
partially connected to the riparian areas through one-dimensional channels. The riparian areas are dominated 

Figure 2.  Left: snapshots of the spatial patterns of infiltration and exfiltration at the surface. Right: snapshots 
of the spatial patterns of soil saturation in the top layer. T = 50 d: low flow conditions in the first water year, 
T = 250 d: rising limb in the first water year, T = 500 d: low flow conditions in the second water year, shortly 
before the rising limb.
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by sheet flow. Temporally speaking, the low flow conditions ( T = 50 d and T = 500 d) showcase a higher degree 
of connectivity between the depressions than the conditions at the rising limb ( T = 250 d), where the ephemeral 
streams in the upslope areas seem to dry out, reverting the flow regime from channel flow to local flow in these 
areas. Comparison between T = 50 d and T = 500 d reveals that the catchment is not fully drained, some of the 
initially dry localized ponds and ephemeral streams that appear on the rising limb of the hydrograph ( T = 250 
d) persist during the low flow conditions.

Aggregated hydrological response. We have observed that the different model variations result in dif-
ferent spatial distributions of hydrological variables. We will now proceed to analyze whether these different spa-
tial distributions can be observed in the hydrographs at the outlet of the catchment. Figure 4 compares the com-
puted hydrographs of all model variations and the observed hydrograph (PH). Qualitatively, the hydrographs 
from all model variatons showcase similar dynamics and accurately capture the peaks. Indeed, the hydrograph 
produced by P0 is difficult to distinguish visually in this figure. The reason for this might be that during peak 
flow conditions the soil below the flow paths in the riparian areas quickly becomes saturated, which increases the 
dependency of the hydrograph on the headwater. This is partially supported by the fact that smaller fluctuations 
on the rising limb of the first peak are not reproduced, which is one of the rare times when the LT’s contribu-
tion to the hydrograph exceeds the contribution of the headwater catchments significantly—see Fig. 1 (bottom). 
This is similar to the findings by Caviedes-Voullième and  collaborators1, who observed that for high rainfall 
intensities, the effect of topography on the hydrograph is reduced, because the surface depression storage fills in 
the early stages of rainfall onset. Differences in model predictions become more clear when the net catchment 
hydrograph �Qi = Qi − QEBC is plotted. For each model variation i, the net catchment hydrograph is calculated 
by subtracting the inflow QEBC from the discharge Qi computed at the outlet. The net catchment hydrographs 
are plotted in Fig. 5 (top).

The volume of the discharge is calculated as the integral of the hydrograph, see Table 2. All discharge volumes 
are in the same order of magnitude. The differences between the discharge volumes are mainly due to discharge 
differences during low flow conditions, which are especially affected by the change in permeability. The volume 
of the hydrograph belonging to P + model is the largest, the difference is about 13% of the observed discharge 

Figure 3.  Snapshots of the spatial patterns of wetting and drying at the surface. T = 50 d: low flow conditions 
in the first water year, T = 250 d: rising limb in the first water year, T = 500 d: low flow conditions in the second 
water year, shortly before the rising limb.
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volume. This can be attributed to the increased base flow accumulating throughout the years. The best match 
for the discharge volume is achieved by the P− model, but the P0 model’s discharge volume does not deviate 
significantly.

The Nash–Sutcliffe and Kling–Gupta efficiency coefficients are calculated for each simulated hydrograph 
with respect to the measured time series. The computed coefficients for all model variations are summarized 

Figure 4.  Model discharge predictions at PH for different model variations. Dashed lines indicate 
t = 50, 250, 500 d , where snapshots of distributed hydrological response is plotted in Figs. 2 and 3.

Figure 5.  Top: Model discharge predictions at PH for different model variations with the boundary condition 
subtracted to visualize isolated processes within the catchment. The observed discharge at PH is plotted with 
a black continuous line. Middle: Number of disconnected wet clusters. Bottom: Runoff generation mechanism 
dynamics in the catchment. The figure plots the fraction of the catchment area that showcases a certain runoff 
generation mechanism over time.

Table 2.  Summary of discharge volumes, NSE (NS) and KGE (KG) for the observed discharge data and the 
simulations. �V  denotes the difference in discharge volumes with respect to the observed discharge volume 
and Vo is the observed discharge volume.

V ( m3) �V/Vo ( %) NS(Q) KG(Q) NS(�Q) KG(�Q)

Obs. 126× 10
6 – – – – –

P+ 142.5× 10
6

+13.1 0.94 0.86 0.58 0.55

P0 129× 10
6

+2.5 0.95 0.96 0.63 0.73

P− 125× 10
6

−0.8 0.95 0.97 0.63 0.74
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in Table 2, for both the catchment hydrograph Q and the net catchment hydrographs �Q . The deviation in 
discharge volumes is reflected in both the NSE and KGE coefficients. While all hydrographs have very similar 
NSE values, the P + model variation with the highest deviation in the discharge volume yields the lowest NSE . 
Nevertheless, the difference might be considered negligible, even though the base flow in this model variation 
is overestimated significantly. This is a known limitation of the NSE , which tends to place more emphasis on 
the peaks of the  hydrograph58. The KGE takes the deviation in base flow into account in a more balanced way. 
Consequently, the difference in the discharge volumes is better reflected in the corresponding KGE values. P + 
has the lowest KGE value and the difference is clearly distinguishable. P− has the highest KGE value, followed 
by P0 by a small margin.

Linking runoff generation mechanisms to hydrological response. Runoff generation mechanisms 
are commonly classified as (1) saturation excess (Dunne) runoff, (2) infiltration excess (Hortonian) runoff, and 
(3) subsurface storm  flow4,59,60. Using the spatial distributions discussed above, we classify the runoff generation 
mechanism in a spatially distributed manner. Starting from the wet/dry maps (Fig. 3), we decide for each wet 
cell, whether the runoff is saturation excess or Hortonian. If the underlying subsurface is fully saturated, the 
runoff is classified as saturation excess and otherwise it is classified as Hortonian. For dry cells, we classify the 
runoff as subsurface stormflow if there is flow in the underlying subsurface. These cell-based results can then be 
aggregated to obtain a single dominant runoff generation mechanism in the domain.

Figure 5 (bottom) compares the temporal evolution of the areal fraction controlled by different runoff gen-
eration mechanisms for all model variations. Dunne runoff stays nearly constant during low flow conditions 
and slightly increases during the hydrographs’s peaks. All model variations result in similar Dunne runoff, 
especially the P− and P0 model variations. The subsurface stormflow shows variations of a factor of about 80 
across the model variations. For all model variations, the subsurface stormflow starts high, rises slightly during 
the hydrograph’s first rising limb and suddenly drops during the hydrograph’s receding limb. During the low 
flow period, subsurface flow gradually increases until it drops again during the hydrograph’s second rising limb. 
The highest subsurface stormflow results from the P0 model, followed by the P + model. The lowest subsurface 
stormflow results from the P− model. Hortonian flow is only observed during both peaks of the hydrograph. 
P− model yields the highest Hortonian flow by orders of magnitude. Overall, P0 and P− models result in similar 
hydrographs, but result from different combinations of runoff generation mechanisms. The subsurface storm-
flow is inversely related to the surface connectivity in the domain. This is reasonable, since increased subsurface 
stormflow implies decreased surface runoff, which results in less ponding on the surface.

Linking permeability of the subsurface to hydrological response. Comparing spatial distributions 
of permeability with soil saturation reveals that permeability distribution does not significantly affect spatial 
distributions of soil saturation. In all model variations throughout the subsurface, the Pearson correlation coef-
ficient is the range of −0.01 at the top to −0.13 at the bottom of the subsurface, indicating no significant linear 
relationship between these two distributions. Meanwhile, the Spearman correlation coefficient is in the range 
of −0.1 at the top to −0.4 at the bottom of the subsurface, indicating that no significant monotonicity can be 
detected in the relationship, that is to say, locally higher permeability does not lead to locally higher saturation. 
This indicates that in our case, the topography and surface hydrology are the dominant control on the spatio-
temporal distribution of soil saturation throughout the subsurface. In general, the correlations are slightly worse 
for the P− model variation, where the surface–subsurface interaction is decreased.

Linking hydrological connectivity to hydrological response. Surface connectivity. The wet/dry 
maps in Fig.  3 show disconnected clusters of wet cells. When precipitation or the inflow increase, the flow 
regime in the catchment shifts from local flow towards sheet flow—that is to say, it shifts from water flowing 
mostly in disconnected depressions to filled depressions and inundated  surfaces57. This shift in the flow regime 
is marked by a decrease in the number of disconnected clusters. Consequently, a decrease in the number of dis-
connected clusters implies an increase in the degree of connectivity and vice versa. The evolution of the number 
of these disconnected clusters is plotted in Fig. 5 (middle). The rainfall does not affect the connectivity in the 
catchment, which is in contrast to the findings by Han and  collaborators61, where rainfall characteristics were 
found to dominate connectivity in a headwater catchment. This difference is most likely due to the LT being 
headwater-dominated. The connectivity of the catchment decreases during the rising limb of the hydrographs 
and gradually increases in the recession phase. This is roughly the behavior reported by Khosh Bin Ghomash and 
 collaborators5, where the decrease in connectivity is related to the microtopography getting partially inundated. 
Similarly, in the LT the wetland area extends as the hydrograph rises, causing local flow with disconnected clus-
ters of water at its edges. Increasing the surface–subsurface exchange alters the connectivity in the catchment but 
the relationship is non-linear. The P0 model variation results in the least degree of connectivity, and increasing 
and decreasing the surface–subsurface exchange both results in an increased connectivity.

Figure 6 (left) shows a hysteretic relationship between the number of disconnected wet clusters plotted and 
the discharge at the outlet. As the discharge at the outlet increases, the number of disconnected clusters increases. 
This indicates that the degree of connectivity in the catchment decreases, reaching its minimum on the receding 
limbs of the hydrograph. This marks the transition of the flow regime in the catchment from sheet flow back to 
local flow. We observe a thresholding behavior at about 2 m 3/s, after which the surface connectivity does not 
decrease significantly. However, in the second water year, the P0 model variation showcases a rapid disconnec-
tion of the catchment during the receding limb of the hydrograph, leading to pronounced new maxima in the 
disconnected wet cluster number.
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Subsurface connectivity. Similar to the thresholding to create wet/dry distributions, the subsurface saturation 
can be thresholded into a binary saturated/unsaturated distribution. Similar to the wet clusters on the surface, 
such saturated cluster distributions can be used to derive metrics of subsurface  connectivity15,28. Figure 6 (right) 
shows the number of disconnected saturated clusters at the top subsurface layer and its relation to the discharge 
at the outlet of the domain. The subsurface connectivity follows the same dynamics as the surface connectiv-
ity. The subsurface displays a higher degree of connectivity during low flow conditions and disconnects as the 
hydrograph rises and falls. This might be related to the widening of the wetland area, which inundates previously 
dry areas and causes localized saturated clusters. We identify the same threshold of 2 m 3/s, after which the con-
nectivity for most model variations does not decrease significantly.

Discussion
In order to understand the effect of surface–subsurface exchange on distributed and aggregated hydrological 
response, we explore whether these two responses can be linked through the concept of hydrological connectivity.

Surface–subsurface exchange causes complex spatial runoff and connectivity dynamics at the catchment 
scale, which may not be observable through aggregated hydrological signatures. Indeed, the surface–subsurface 
exchange alters the catchment behavior—as observed both in the connectivity and the localized runoff generation 
mechanisms—in a non-linear manner that still results in similar hydrographs. The different initial conditions that 
result from the individual spin-up simulations carried out for each model variation amplify this non-linearity62. 
Here, the surface topography was identified as the dominant control on spatio-temporal distributions of hydro-
logical variables both at the surface and in the subsurface.

In headwater-dominated catchments, we show that the catchment’s own signal may be overshadowed by the 
headwater dynamics. In this study, we assume that catchment characteristics only change in the downstream 
catchment, but not in the headwater catchment—the inflow boundary condition remains the same. In reality, 
such changes may also apply to the headwater catchment, which would affect the inflow boundary condition 
and consequently, would influence our results. Still, we expect the effect of the catchment characteristics on 
aggregated signatures to diminish as the volume of the headwater inflow increases.

Both surface and subsurface connectivity dynamics follow the same pattern, see Fig. 6 (left) and (right). 
High connectivity during low flow conditions, gradual disconnectivity until a threshold whereinafter either no 
significant change or rapid increase in disconnectivity is observed. The thresholding behavior is consistent with 
the results by Weill and  collaborators15, but the relationship between connectivity and discharge is the oppo-
site—the highest degree of connectivity is reached during peak flow. We speculate that this might be because 
the catchment investigated by Weill and  collaborators15 is a headwater catchment, while our study considers a 
catchment with headwater inflow, however more thorough studies are necessary to make a conclusive statement.

The differences in the connectivity dynamics between the model variations do not clearly manifest in the 
hydrographs, see the overlapping hydrographs in Fig. 4. Differences in the rising limbs of the hydrographs from 
different model variations, which have been reported for microtopographical controls on  runoff1,5, have not been 
observed. This indicates that the rising limb of the hydrograph is strongly related to the structural connectivity of 
the topography, which has been kept constant in this study. However, the inflow from the headwater catchments 
and the LT runoff are entangled to an extent that makes it difficult to identify the individual contributions, as 
seen in Fig. 1 (bottom). This inability to distinguish between individual contributions is a particular challenge 
in headwater-dominated catchments. From simulation snapshots in Fig. 3, we observe that the runoff in the LT 
leads to the occurrence of ephemeral streams in the domain that feed the river valley for a brief period of time. 
To what extent these contributions generate inundations in the river valley remains to be ellucidated.

We see in Table 2 that the change in the distributed hydrological response triggered by a change in sur-
face–subsurface exchange fluxes is reflected in the difference in discharge volumes as well as the KGE . The NSE 

Figure 6.  Relationship between number of disconnected wet clusters and discharge at the outlet for both 
simulated water years. Left: surface clusters of ponding water depth, right: saturated subsurface clusters.
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is not sufficient to detect these changes. This suggests that the most significant impact of surface–subsurface 
exchange on the aggregated hydrograph is the rainfall partitioning into overland flow and subsurface flow 
during low flow conditions, which is better reflected in the discharge volumes and the KGE . The discrepancies 
between computational and observational data were drowned out by the signal of the inflow from the headwater 
catchments. A reason for the relatively good fit of the aggregated hydrograph among all model variations is that 
although watershed parameters such as permeability and roughness are important, hydrographs at the outlet are 
largely controlled by topography and shape of the watershed. Thus, with high-resolution topography data, the 
ATS model is able to reproduce the hydrograph at the outlet reasonably well. This has been demonstrated across 
multiple  catchments63. The good fit might further result from the fact that the catchment response is heavily 
affected by the inflow boundary conditions.

The net catchment hydrographs ( �Q ) yield lower NSE and KGE values than those from the aggregated 
hydrographs (Q), indicating that �Q is not captured as accurately. In part, this poorer fit may be explained by 
the fact that �Q neglects the temporal delay between the inflow and the outflow. But it also indicates that the 
current model does not completely capture all catchment processes correctly and �Q is more sensitive to this. 
Ultimately, it emphasizes the fact that the headwater inflow overshadows the contribution of the catchment in 
the aggregated hydrograph. Thus, when the model is calibrated to the aggregated hydrograph, the net catch-
ment contribution might not be captured accurately. This mismatch can only be detected when the net �Q is 
available as is the case in this study. Point measurements inside the catchment that inform about the distributed 
hydrological response would help to further constrain the model.

An effect of varying the permeability is that the volume of the hydrograph is different in each scenario, 
accounted for mostly by changes in the unsaturated zone. The effect on the distributed hydrological response is 
complex, because these changes in the unsaturated zone storage behavior are amplified by topographical drivers 
and increase the local heterogeneity—new locations of in- and exfiltration are created, see Fig. 2. In addition, 
as seen in Fig. 3, water ponds at different locations, indicating also a change in the surface storage. This can be 
observed in the surface connectivity of the catchment, shown in Fig. 6, where different degrees of connectivity 
are obtained for different model variations.

A limitation of this study is that only three model variations with a relatively narrow permeability range have 
been compared. In order to gain a more complete understanding of the effect of surface–subsurface exchange on 
the hydrological response, a systematic study spanning a wider range of permeability values is needed to detect 
possible thresholding behavior in the catchment’s response. Further, permeability values were varied in bulk, 
which does not result in new patterns of heterogeneity. The effect of changing the permeability of individual 
layers was not explored. Another limitation is the spatially uniform precipitation that has been used for the stud-
ies, which does not allow the study of localized precipitation events. With elevation that spans more than 1200 
m across the LT, orographic effects may enhance such localized precipitation events and thus, the precipitation 
within the catchment may show high variability that is not accounted for in this study. The importance of spatially 
heterogenous precipitation on catchment response has been reported by Shuai and  collaborators63.

Conclusions
Using computational experiments, we investigated the effect of surface-subsurface exchange on distributed 
and aggregated hydrological response in a headwater-dominated catchment. Based on our results, we conclude 
that (1) surface–subsurface exchange significantly affects hydrological connectivity in catchments not only by 
runoff partitioning but also by creating new spatial patterns of in- and exfiltration. In the presence of significant 
headwater inflow, surface–subsurface exchange controls the in- and exfiltration dynamics in the riparian areas. 
We further conclude that (2) distinct states of hydrological connectivity cannot be directly observed in the 
catchment’s aggregated hydrograph, if it is dominated by headwater inflow. However, linking indices of con-
nectivity such as disconnected cluster count to the aggregated signature reveals hysteretic behavior, indicating 
that the system’s history remains relevant for the aggregated hydrological response even in headwater-dominated 
catchments. From the investigated model variations, the P0 model seems to be the most reliable, because its 
parameters have been taken from other studies in the region and the NSE and KGE values are acceptable when 
compared to the other model variations.

The temporal evolution of connectivity in the headwater-dominated catchment is the opposite of what has 
been reported for a headwater  catchment15. This may be related to the widening of the riparian areas due to 
increased headwater inflow during peak flow conditions, which inundates previously dry areas and creates 
disconnected local flow. This widening of the riparian areas may not be as significant in headwater catchments, 
where the emergence of ephemeral streams connecting disconnected clusters dominates the connectivity. The 
inverted temporal evolution implies that geochemical hotspots associated with hydrological (dis)connectivity 
are different in headwater-dominated catchments compared to catchments without inflow from their upstream. 
It would be desirable to see if this behavior is generalizable to other catchments.

We have shown that the number of disconnected water clusters is a straight-forward index of connectivity in 
this study. However, generally, this index does not make use of other available information about the catchment’s 
state or complexity. Normalizing the index by the wet surface area, for example, may potentially help to distin-
guish between different catchment states. Such a normalized index would behave differently for the beginning of 
a rainfall event—wet surface area is small but extending—and the end of the rainfall event—wet surface area is 
large but decreasing. Shannon’s entropy  index64 is an alternative index that gives a measure of inner complexity 
of a system, including flow  complexity28 and could be linked to aggregated signatures for additional insights. 
Linking the catchment’s hydrological connectivity to its aggregated discharge could be used to develop physics-
informed systems approaches that account for the hydrological system’s internal state more accurately than 
current approaches. The dynamics of a suitable index of hydrological connectivity could then be used to define 
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the relation between input and output of the system. While beyond the scope of this work, this would allow to 
conceptually account for spatially distributed hydrological response in so-called lumped hydrological models.

In terms of hydrograph analysis, the KGE is found to detect the discrepancy in the base flow better than 
the NSE, which is in agreement with the  literature58. Depending on the aim of the study, it may be seen as 
beneficial that changes in connectivity do not affect the aggregated hydrograph, however, the correct repre-
sentation of connectivity may be significant when modelling morphodynamics, ecological processes, or (bio)
geochemistry9,11,65–67. A promising development in linking distributed and aggregated hydrological responses 
is the use of stable water isotope-based modeling  approaches68–70, which allow constructing a more precise 
relationship between spatiotemporal distributions and the hydrograph that can be directly supported by field 
 measurements71,72.

Data availability
All data used in this study is available through ESS-DIVE at https:// data. ess- dive. lbl. gov, under permissive 
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data is available at https:// doi. org/ 10. 21952/ WTR/ 14953 80.

Code  availability
The Advanced Terrestrial Simulator is available through Github, at https:// github. com/ amanzi/ ats/ relea ses, under 
a 3-clause BSD license. ATS Release 1.0.0, used in this study, was tagged on May 14, 2021. All model results are 
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