
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5384  | https://doi.org/10.1038/s41598-023-31918-9

www.nature.com/scientificreports

A novel Raman spectroscopic 
method for detecting traces 
of blood on an interfering substrate
Yury V. Kistenev 1*, Alexei V. Borisov 1, Alisa A. Samarinova 1, Sonivette Colón‑Rodríguez 2 & 
Igor K. Lednev 2*

Traces of body fluids discovered at a crime scene are a primary source of DNA evidence. Raman 
spectroscopy is a promising universal technique for identifying biological stains for forensic purposes. 
The advantages of this method include the ability to work with trace amounts, high chemical 
specificity, no need for sample preparation and the nondestructive nature. However, common 
substrate interference limits the practical application of this novel technology. To overcome this 
limitation, two approaches called "Reducing a spectrum complexity" (RSC) and "Multivariate curve 
resolution combined with the additions method" (MCRAD) were investigated for detecting bloodstains 
on several common substrates. In the latter approach, the experimental spectra were “titrated” 
numerically with a known spectrum of a targeted component. The advantages and disadvantages of 
both methods for practical forensics were evaluated. In addition, a hierarchical approach to reduce the 
possibility of false positives was suggested.

Body fluid traces discovered at a crime scene play a significant role in reconstructing the event and are the primary 
source of DNA, RNA, etc. The majority of current methods for body fluid detection and identification are based 
on biochemical  reactions1. Several presumptive and confirmatory tests have been developed for bloodstains, 
which are often found at the scenes of violent crimes. Presumptive blood tests, which can be conducted at the 
scene, are mainly based on the peroxidase catalysis of hemoglobin (Hb) from red blood cells. These tests can 
potentially result in false positives caused by environmental  oxidants2,3. Confirmatory tests for blood, including 
Teichmann and Takayama hemoglobin crystal tests, and immunological tests, such as ELISA and LDH assays, 
are labor intensive and costly and require a laboratory  environment4. Several emerging technologies have been 
recently developed for body fluid identification, including blood. Liquid chromatography–mass spectrometry 
and capillary electrophoresis can provide confirmatory identification of all main body fluids. However, these 
tests are time-consuming and require extensive sample preparation and a laboratory  setting5,6. The analysis of 
mRNA expression has also been introduced in forensic science as a tool to identify body fluids and tissues due 
to its specificity and sensitivity by targeting RNA sequencing of upregulated biomarkers. These RNA assays have 
successfully expanded into the study of multiplex body fluid samples potentially found in sexual assault  cases7,8.

Spectroscopic methods such as IR, UV‒Vis absorption, and fluorescence have been shown to have great 
potential for detecting and identifying body fluid  traces9–13. These techniques are nondestructive and could be 
applied at a crime scene since portable commercial instruments are available. Among these new methods, Raman 
spectroscopy appears very attractive as a universal, confirmatory method for the identification of all forensically 
relevant body fluids due to its specificity, ease of use, required minimal sample preparation, and possibility 
of being conducted at the scene of a  crime4,14–16. The benefits of Raman spectroscopy in forensics include the 
possibility to work with a small amount of material, as low as several picograms or femtoliters, high sensitivity 
to a sample’s chemical composition and structure, and a noncontacting and nondestructive method of analysis. 
Raman spectroscopy is already used by law enforcement agencies for confirmatory drug identification, trace 
evidence, paint and fiber analysis, etc.17,18. Chemometric analysis combined with Raman spectroscopy allows 
for the confirmatory identification of  bloodstains19,20, determining the time since  deposition21, differentiating 
human and animal  blood22, and providing phenotypic information about the  donor23,24.

The specificity of body fluid trace detection at a crime scene can be affected by an underlying surface 
(substrate) such as floor tile, paper tissue, or contaminants, which can contribute to Raman  scattering25. The 
substrate’s surface energy, the interaction between the body fluid and substrate, determines the wetting and 
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affects the final morphology of the dried  biofilm26,27. A substrate can produce Raman scattering that is stronger 
by orders of magnitude compared to a body fluid signal. To implement Raman spectroscopy in practical forensics, 
the interference signal from common substrates must be  overcome28. A popular experimental approach to avoid 
substrate interference is restoring an initial state of body fluid by a sample soluting in  water25. However, this is 
time-consuming and destructive because adding water to dried body fluid, accompanied by chemical reactions, 
can affect Raman spectra. Therefore, the vital problem of body fluid trace identification is the interference 
from a substrate. This problem can be solved in two ways: considering a substrate as an additional component 
in a combination of "sample & substrate" or extracting Raman spectra of a target body fluid sample from this 
combination without defining substrate characteristics.

The former can be realized through methods similar to a multivariate curve resolution based on a bilinear 
model of a complex mixture spectrum in the form of a superposition of contributions of pure  components29–31. 
In common, the problem is described by an equation set:

where S is the matrix of all component spectra in a composition, C is the matrix of concentrations, and W is the 
matrix of experimental  spectra32. Here, superscript character t  means matrix transposition. One of the main 
issues here is to have standard Raman spectra of a body fluid and a substrate separately. The latter can be solved 
easily using consequent measurements. The only way to acquire the standard spectrum of a body fluid is to 
measure it using a minimally interacting substrate. Boyd et al.33 compared Raman scattering from blood samples 
deposited on various substrates, including borosilicate glass, a silicon wafer, a polyethylene cup, and a microscope 
slide coated with commercial aluminum foil. Raman scattering peaks from all substrates, except aluminum foil, 
were detected. Therefore, the AI substrate is the most suitable for recording standard Raman spectra of targeted 
substances. This approach was applied to differentiate multicomponent Raman spectra and exclude interference 
from substrate  contributions34–36. Sikirzhytskaya et al.35 successfully used alternating least squares statistics and 
multivariate curve resolution to decode blood signatures in the experimental Raman spectra of biological samples 
in the presence of contaminants. Gautam et al.36 used partial least squares discriminant analysis to distinguish 
the age of blood samples with high accuracy in the presence of polymer substrate interference. They used a 
rather strong assumption that the polymer is homogeneous and produces the same contribution to all spectra.

The identification of a target body fluid on an interfering substrate without defining its characteristics 
(knowledge of S is not complete) is more attractive. In this situation, Eq. (1) can be solved for the case when we 
have experimental spectra for the compositions with varied concentrations of some components in a mixture 
during its evolution, for example, associated with a chemical process (Manne condition in a concentration space, 
see Fig. 137.) A Manne condition means that concentrations of two components in a mixture can be identified 
if intervals of evolution variable corresponding to their function f (t) nonzero values (the function carrier 
shown as a rectangle in Fig. 1) do not overlap. In fact, this condition means that the concentration of a specific 
component can be restored if, during this mixture evolution, there is a situation when the concentration of the 
remaining components is zero. The latter is hardly implemented for the interfering substrate because it means 
that we should have a spatial point where substrate impact is absent. Of course, the opposite task of substrate 
characteristic identification can be easily solved by measuring at a spatial point on the substrate surface where a 
biofluid stain is absent. A weaker version of this condition can be fulfilled for a target component by combining 
multivariate curve resolution with the addition method (MCRAD)38,39. The latter can be implemented by varying 
the concentration of a target component by chemical manipulations or virtually (by computer simulations). The 
benefit of the MCRAD is that only the target component concentration has to be varied. Therefore, we do not 
need any information or special conditions for the interfering substrate.

(1)W = CS
t ,

Figure 1.  Manne condition in a concentration space. Here, f (t) is the concentration of one component (solid 
line) and another component (dotted line). The function carriers are shown as rectangles. According to the 
Manne condition, the function carriers should not completely overlap. Here, the black star corresponds to the 
area of evolutionary variable t  , where the “black” component can be analyzed without the influence of the “blue” 
component. The opposite situation is marked with a blue star.
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Another approach to extract a certain component concentration from an IR absorption spectrum of a complex 
gas mixture was developed by  us40,41. The approach starts from degenerating Eq. (1) in the following form:

where Sorg is an experimental spectrum, Sref (k) is a spectrum of a target component, C is its concentration (or 
any other quantitative characteristic of this component volume fraction), which is a priori unknown, and Sblank 
is an unknown spectrum of other components in a mixture. k is a wavenumber (Raman shift). This approach 
uses the concentration restoration criterion for a specific component based on reducing the spectrum complexity 
(RSC) when the spectral component is removed from the experimental spectrum (see Fig. 2)42. This criterion is 
associated with the minimization of the following functional:

Here, one needs to know the spectrum of the target component, and the latter has to have spectral peculiarities 
relative to other components. The latter is the same Manne condition but in a spectral space, which resembles the 
condition of applicability of DIAL (differential absorption LIDAR)43 or DOAS (differential optical absorption 
spectroscopy)44 approaches to study the molecular composition of the atmosphere using multifrequency 
absorption data. The MCRAD and RSC implement a "one-per-step" decomposition approach, which is more 
suitable for practical use. It should be noted that some variation of MCRAD has already been used for recovering 
a known Raman spectral component from a complex  matrix38,39, while RSC has not been used yet for this 
purpose.

This work investigated the capability, limitations, and benefits of the "one-per-step" decomposition model for 
the detection and correct identification of blood traces on interfering substrates using Raman spectroscopy. We 
applied MCRAD and RSC to Raman spectral data obtained for bloodstains on various common substrates, pure 
bloodstains, and pure substrates. The RSC method detected blood with a confidence probability close to 100%. 
The MCRAD method was shown to demonstrate a poor ability to detect bloodstains on blue polyester, denim, 
white polyester, and cotton fabric. The control studies aimed at apparent blood detection on pure substrates. Both 
methods demonstrated a good but not perfect ability to prove that bloodstains are absent on pure substrates. In 
our opinion, false positive errors are associated with a similarity between blood and substrate Raman spectra. 
We illustrated this conclusion using the Soergel distance between Raman spectra of blood and a substrate.

Results
Bloodstain identification on interfering substrates. To simulate realistic bloodstain evidence, which 
is typically recovered at the scene of a crime, droplets of whole blood of 10-μL volume were deposited on the 
surface of white cotton fabric, white polyester fabric, blue polyester fabric, and denim fabric using a micropipette. 
The bloodstains were left to dry overnight under ambient conditions. A bloodstain on aluminum foil was 
used as a standard sample on a noninterfering  substrate45. Automatic mapping was used to collect multiple 
Raman spectra from different spots of the sample to probe potential sample  heterogeneity19. Selected Raman 
spectra of bloodstains on various substrates as well as Raman spectra of the substrates are shown in Fig. 3. The 
Raman spectrum of blood on Al foil is consistent with the pure blood spectra reported  previously19. Spectra 
of bloodstains on various substrates show a significant contribution from substrates. The Raman spectrum of 
a bloodstain on denim is dominated by denim, which further illustrates the need for special data analytics to 
detect blood traces on such interfering substrates.

(2)Sorg (k) = Sblank(k)+ C · Sref (k),

(3)δf
(
C̃
)
=

∫ ∣∣∣∣∣
d(Sorg − C̃ · Sref )

dk

∣∣∣∣∣dk.

Figure 2.  The functional (3) dependence on variable parameter C̃ . Here, the true concentration value C is equal 
to 1.
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The origin of specific blood Raman peaks is as follows. The pronounced peak at 1658  cm−1 corresponds to 
the amide I vibrations in a peptide chain. The peak at 1003  cm−1 and a doublet at 826 and 856  cm−1 corresponds 
to phenylalanine and tyrosine. The band at 754  cm−1 is associated with the pyrrole ring. The carbohydrates 
provide Raman peaks near 960, 1032, 1127 and 1208  cm−1 related to the stretching of C–O, C–C, C–O–H 
and C–O–C bonds. Peaks detected at 1449 and near 1340  cm−1 can be associated with lipoproteins but their 
content has individual variability. The Raman bands at 623 and 644  cm−1 refer to phenylalanine and tyrosine, 
 respectively19,46,47.

The denim fabric most intense Raman peak at 1573  cm−1 is attributed to the indigo. Raman bands from 1030 
to 1150  cm−1 and at 1380, 1340, 1090 and 460  cm−1 correspond to cotton  fibers28,48. These bands are presented 
in white cotton Raman spectrum.

For blue polyester, the Raman band at 1725  cm−1 corresponds to the stretching of the carbonyl group C=O, 
the band at 1612  cm−1 corresponds to C–C vibrations in the aromatic ring. The 702  cm−1 band also corresponds 
to the stretching of the C–C bonds in the ring. The Raman bands at 859  cm−1, 998  cm−1, 1096  cm−1, 1179  cm−1, 
1291  cm−1, 1416  cm−1, 1463  cm−1 belong to a polyethylene  terephthalate49. For white polyester, the Raman bands 
at  1637cm−1, 1440  cm−1, 1080  cm−1, 1280  cm−1, 1300  cm−1, 1128–1060  cm−1, 1235  cm−1 are associated with nylon 
 stripes50.

A Raman spectrum of a bloodstain on an interfering substrate is described by Eqs. (1) or (2), where C is the 
volume fraction (VF) of the blood. The results of the application of MCRAD and RSC for the set of experimental 
Raman spectra of bloodstains on tested substrates are shown in Fig. 3. Calculations were conducted for a full 
Raman spectral dataset for a bloodstain on each common substrate and noninterfering Al foil. The latter was 
considered the blood spectral standard. The results of blood volume fraction restoration are presented in the 
form of the probability density function f (C) :

which characterizes the distribution of restored blood volume fraction values. The restored volume fractions 
are defined by all combinations of experimental Raman spectra of a bloodstain on a specific substrate and 
experimental Raman spectra of a bloodstain on an Al foil. Further data preprocessing included the calculation 
of a mean value and standard deviation for every value of restored volume fraction C. It was found that the 
MCRAD predicted mean values of C close to zero, while the RSC predicted a mean value of approximately 0.1 
for the bloodstain on the blue polyester, 0.4 for denim and white polyester, and 0.6 for cotton fabric. Notably, 
these results were obtained for samples containing bloodstains on the substrates. Therefore, MCRAD gave a 
quantitatively incorrect result (false negative). To further validate this conclusion using a statistical approach, we 
evaluated the hypothesis of the absence of blood on a substrate using the standard score  criterion6,7: Z = (0 − μ)/σ, 
where μ is the mean value in a dataset and σ is the standard deviation. Here, the Z score shows how far the mean 
value of an experimental random parameter is from zero on a scale of the standard deviation. In other words, 
the larger |(0 − μ)|/σ is, the more confidently we can say that the estimated parameter is different from zero. The 
results of the Z score calculations and the confidence probability P of the blood absence in the sample are shown 
in Table 1 for each of the distributions f (C), which are presented in Fig. 4. These distributions were calculated 
using the MCRAD and RSC methods for all combinations of every Raman spectrum of a bloodstain on an Al 
foil with every Raman spectrum of a bloodstain on a corresponding substrate. After that, the mean value and 
standard deviation were calculated.

If we choose the confidence level of 95%, it will correspond to the interval from − 1.96 to 1.96 in Table 1. The 
confidence probabilities of blood absence in a sample calculated according to Z scores are presented in Table 1.

Therefore, the MCRAD method with a confidence probability of not less than 95% demonstrates the absence 
of blood for the bloodstains on blue polyester and denim. The same predictions are fulfilled for white polyester 
with a confidence probability of 59%. The MCRAD predicts blood presence on a cotton fabric with a confidence 
probability of 91%. The RSC method demonstrates the presence of blood for the same samples with a confidence 
probability close to 100%.

∫
f (C)dC = 1,

Figure 3.  Selected Raman spectra of pure blue polyester, denim, cotton fabric, and white polyester substrates 
(a) and the bloodstains on Al foil on the same pure substrates (b).
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Control experiments: apparent presence of blood on pure substrates
It is of great importance for a new forensic method to determine the potential for false positives. The results of 
an attempt to detect blood on pure substrates using MCRAD and RSC are shown in Fig. 5. The blood volume 
fractions were estimated as follows. We used the MCRAD and RSC methods for all combinations of every Raman 
spectrum of a blood sample on an Al foil with the Raman spectrum of a sample of corresponding pure substrate. 
In total, RSC demonstrates an appropriate level of such error for more substrates compared to MCRAD. The issue 
is a denim substrate. Therefore, taking into account the results presented in Figs. 4 and 5, RSC appears to be a 
more universal method in a case when we do not have a priori information about whether there is a biological 
sample on a substrate and which one.

In our opinion, the bias in extracting a blood volume fraction from a pure substrate (see, for example, Fig. 4b) 
is associated with a similarity between blood and the substrate Raman spectra. To test this hypothesis, we used 
the Soergel distance to quantitatively estimate the similarity of two spectral curves:

Table 1.  Estimations of the Z score and the confidence probability P of the blood absence in the sample set of 
blood stains on various substrates.

Z score

Blood on a blue polyester Blood on a denim fabric Blood on a cotton fabric Blood on a white polyester

MCRAD − 0.0002 0.03 1.7 0.54

RSC 2.8 2.2 6.6 2.7

P

Blood on a blue polyester Blood on a denim fabric Blood on a cotton fabric Blood on a white polyester

MCRAD 0.999 0.976 0.093 0.59

RSC 0.006 0.031 < 0.0001 0.007

Figure 4.  The blood volume fraction restored by MCRAD and RSC in experimental Raman spectra of 
bloodstains on blue polyester (a), denim (b), cotton fabric (c), and white polyester (d) substrates.
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where xi and zi are these curve abscissa values (Raman signal) for the same ordinate (Raman frequency shift). 
N is the number of data points in the curves. Let us denote as Sl the value of S calculated according to (4) but for 
two spectra, which are preliminary averaged over a sliding spectral window including l  points (l<N). In other 
words, this means that Raman spectra are averaged in the sequential intervals including l  spectral points. Here, 
we used spectral preliminary normalization based on the area under a spectrum curve. In this case, lim

l→N
Sl = 0 . 

Note that Sl = 0 for identical curves for any l  . Therefore, Sl(l) may provide information about the similarity of 
the two spectra. The results of the Sl calculation for a blood spectrum on an Al foil and a common substrate are 
presented in Fig. 6. Calculations were conducted for mean Raman spectra of blood on an Al foil and spatially 
averaged Raman spectra of a specific substrate. To calculate Sl(l), we initially averaged Raman spectra for spectral 
subintervals with length l  . Then, we calculated Sl(l) for all combinations of every Raman spectrum of a blood 
sample on an Al foil with every Raman spectrum of a blood sample on a corresponding substrate. After that, the 
mean value and standard deviation were calculated. This procedure was repeated for l  varied in the interval [1, 
N].

We see that the dependence Sl on l  for denim substrate has smaller values compared to other substrates, 
especially for l > 400 . This substrate gives the largest errors in the estimation of a blood volume fraction on 
the pure substrates using the RSC (see Fig. 5b). In more detail, the Soergel distances calculated for individual 
sliding spectral windows for various Raman frequency shifts are presented in Fig. 7. These calculations were 
conducted in the same manner as the results presented in Fig. 6. We see that the difference between blood and 
denim Raman spectra is minimal compared to other substrates. This can be a reason for the largest error in the 
results presented in Fig. 5.

Therefore, metrics such as the Soergel distance can estimate the spectral peculiarities of comparing spectra. 
Nevertheless, more work needs to be done to understand this interesting observation, although this is beyond 
the scope of this study.

(4)S =

∑N
i=1 |xi − zi|∑N

i=1 max(xi , zi)
,

Figure 5.  The blood volume fraction restored by MCRAD and RSC in experimental Raman spectra of pure 
blue polyester (a), denim (b), cotton fabric (c), and white polyester (d) substrates.
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Discussion
In general, the accuracy of any analytical method of a mixture decomposition using Raman spectroscopy data is 
defined by; (i) a similarity of Raman spectra of pure components existing in a studied composition; (ii) the ration 
of the pure components volume fractions. The detection of a target component is complicated essentially in the 
case of its strong similarity and small volume fraction relatively other components in the studied composition.

Figure 6.  Calculated dependence of the Soergel distance Sl on the number of points l  in the sliding spectral 
window for bloodstain spectra on Al foil and common substrates.

Figure 7.  Results of the Soergel distance calculations in an individual sliding spectral window for various 
Raman bands. The distance is presented in terms of mean values between the Raman spectra of blood on Al 
foil and pure blue polyester (a), denim (b), cotton fabric (c), and white polyester (d) substrates. Here, i is the 
number of sliding spectral windows.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5384  | https://doi.org/10.1038/s41598-023-31918-9

www.nature.com/scientificreports/

The RSC method is based on subtracting a target Raman spectrum with an unknown weight coefficient C 
from an experimental spectrum of a complex sample, achieving a minimum of the objective function (3). The 
possible reason for the greater stability and robustness of the RSC is as follows. RSC is based on the application 
of the L1 norm to a function 

∣∣∣ d(Sorg−C·Sref )

dk

∣∣∣ through an estimation of an integral in Eq. (3). The L1 norm is 
associated with function integration over an independent variable variation interval. Let us explicitly include 
random noise in the description. Both Sorg and Sref  can include an additive random nose ( R1(k),R2(k)):

where S0org , S0ref  are the corresponding features without noise. Then, Eq. (3) takes the form

Let R1(k),R2(k) be stationary random functions with zero mean values:

where ν is the amplitude of the noise component presented in a relative fraction of a mean value of the set of 
Raman spectra of blood on an AI foil, and Rand(k) is a set of random values varied in the interval [-0.5, 0.5].

If the function

is an ergodic random process, then integrating this function over evolution variable k is equivalent to averaging 
over an ensemble of realizations. The latter causes noise reduction and influences the target component 
concentration (volume fraction) restoration results. To obtain arguments about this, we conducted numerical 
experiments with Eqs. (7) and (8), limited by a noise level up to 5% of the mean value of the Raman spectra set 
used, which exceeds the typical values of the noise component with a margin. We synthesized a set of 100 
realizations of random functions R1(k), R2(k) according to Eq. (8) with ν varied in the interval [0.0, 0.05] and 
restored volume fraction Ĉ using criterion (6). The calculation of the latter was conducted as follows. We took 
every Raman spectrum of a blood sample on an Al foil as a reference and used it to restore the volume fraction 
in the remaining Raman spectra of a blood sample on an Al foil. This procedure was repeated for all other Raman 
spectra of a blood sample on an Al foil. Then, the mean value and standard deviation were calculated. The results 
are presented in Fig. 8. One can see that the presence of such noise levels causes the target component (blood) 
volume fraction restoration relative error δC up to 1%. Here, δC =

∣∣∣C − C̃
∣∣∣/C. Therefore, RSC is quite robust to 

random fluctuations of spectral data due to random experimental errors and intergroup variability.
A possible reason for the weak stability and robustness of MCRAD is as follows. MCRAD is based on 

Eq. (1) solution, with the matrix of concentrations C containing a set of Ĉj + C̃ values, where C̃ is the unknown 
concentration (volume fraction) of a blood sample and Ĉj are known additional volume fractions (VFs) according 
to the principle of standard addition. The evaluation of C̃ is conducted through an iterative solution of the set 
of  equations38,39:

(5)Sorg (k) = S0org (k)+ R1(k),

(6)Sref (k) = S0ref (k)+ R2(k),

(7)δf
(
C̃
)
=

∫ ∣∣∣∣∣∣

d
(
Sblank + S0ref

(
C − C̃

)
+ R1 − C̃R2

)

dk

∣∣∣∣∣∣
dk.

(8)R1(k) = ν · rand(k), R2(k) = ν · rand(k),

∣∣∣∣∣∣

d
(
Sblank + S0ref

(
C − C̃

)
+ R1 − C̃R2

)

dk

∣∣∣∣∣∣

Figure 8.  Dependence of the target component (blood) volume fraction restoration error on the additive noise 
amplitude ν . Here, the true volume fraction value is equal to 1.0.
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The iterative procedure is based on the application of the L2 norm (the Euclidian norm) to a function similar 
to (W − CS

t) , where S is the matrix of all component spectra in a composition, C is the matrix of concentrations, 
and W is the matrix of experimental spectra. Even in the case of a spectrum with additional random noise being 
an ergodic random process, the L2 norm cannot be averaged over an ensemble.

We conducted the simulation using MCRAD with the same noise model (5), (7), and the same noise level as 
for the RSC. A Raman spectrum of a bloodstain on Al foil was used as a reference to restore the volume fraction 
in the rest of the Raman spectra of a blood sample on Al foil. This procedure was repeated for all other Raman 
spectra of blood on Al foil. After that, the mean value and standard deviation were calculated. The results of the 
concentration (volume fraction) C restoration in 100 simulations are shown in Fig. 9. We see that the influence 
of noise on the concentration restoration accuracy is much stronger than that of the RSC. A possible reason is 
that the Euclidian norm does not allow the use of the benefits of ergodic random processes from the point of 
view of noise reduction. This can be a reason for the responsiveness of the MCRAD algorithm to random noise.

A hierarchical approach to reduce the possibility of false positives
Potential errors (false positives and false negatives) of a new method could significantly reduce the interest of 
forensic practitioners. False negatives due to the low detection limit could result in missing valuable evidence. 
False positives could result in a significant waste of time and resources. To further reduce potential false positives 
for the method developed here, a second stage of the data analysis could be conducted as a part of a hierarchical 
approach. It is noteworthy here that running an additional analysis will not noticeably increase the total test 
time because of the fast spectral measurements and high speed/efficiency of modern computers. The second 
data analysis, which we propose, is the comparison of the obtained Raman spectra with the spectra of the 
corresponding pure substrate. The latter could already be in the spectral library of the software. If not, the 
mapping of the pure substrate could be conducted quickly at the crime scene or in the lab if the evidence sample 
on a piece of material is already collected and delivered to the lab.

Of course, Raman spectrum of an analyzed real biofluid sample is not exactly the same compared to an etalon 
Raman spectrum and it is a source of bias. However, the variations in Raman spectra of all main body fluids did 
not prevent us from 100% accuracy in their identification when a high-quality Raman spectrum was measured for 
a “new” sample, which was not used for the training  dataset14,15. In addition, blood is by far the most consistent 
body fluid (relative to other main body fluids including semen) from the viewpoint of biochemical composition. 
Therefore, we hypothesized that we can use a single reference Raman spectrum of dry blood in this study in 
contrast to a set of individual spectral components as we have done for semen traces in our earlier  work38. In this 
study, we created a reference Raman spectrum using several bloodstains on an aluminum substrate and then used 
this reference spectrum for the detection and identification of blood traces on interfering substrates. It is very 
important to emphasize here that the integrated bloodstains on interfering substrates were prepared from blood 
samples, which were not used for developing the reference Raman spectrum of dry blood (different donors).

In any case, if there are doubts about the adequacy of the available reference spectrum of biological fluid to 
the sample under study, the RSC can be used in the reverse manner. We can measure the Raman spectrum of 
substrate in a spatial point without stain. After that, we can extract this component from the Raman spectrum 
measured in a spatial point with presence of a "biofluid stain & substrate" combination. The residue is a Raman 
spectrum of a specific biofluid stain sample. The latter can be identified by any suitable manner, for example, by 
comparing it with a library of biofluids’ Raman spectra. The decision about what biodluid is presented can be 
based, for example, on a fuzzy logic approach by comparing “distances’ of the residue with “standard’ Raman 
spectra of various biofluids from the library. The implementation of this approach is shown in Fig. 10. Here, the 
residuals SR between the experimental Raman spectra of bloodstain on a definite substrate and the Raman spectra 

(9)Ŝj = Sorg + (Ĉj + C̃)Sref .

Figure 9.  Dependence of the target component (blood) volume fraction restoration error on the additive noise 
amplitude ν . Here, the true volume fraction value is equal to 1.0.
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of the same pure substrate  are compared with the set S0 of 100 Raman spectra of blood on Al foil and 100 Raman 
spectra of seminal fluid on an Al foil measured by us  earlier19. The proximity factor was calculated using formula

where summation is conducted over all spectral points in the compared Raman spectra. For all cases, we can 
conclude that residual Raman spectrum corresponds to blood. Therefore, we can conclude that there are principal 
solutions of the issue about, strictly speaking, absence of absolute etalon Raman spectrum of a biofluid, which 
perfectly corresponds to a concrete experimental sample of biofluid analyzed “here and now”. The fundamental 
background of this positive for practical usefulness conclusion is as follows. Let the black line in Fig. 1 correspond 
to the spatial positions of biofluid stain presence. Then, in a spatial area marked by a blue star, we can measure 
the Raman spectrum of the pure substrate because biofluid stain is absent. Therefore, this situation fully matches 
the Manne condition (see Fig. 1) when evolutionary variable t  describes a spatial position on a substrate surface. 
A more deep analysis is not in the scope of current study and will be presented in the future papers.

Another important issue about RSC robustness to false positive results. Once again, to validate this, we can 
use the Raman spectrum of substrate in a spatial point without stain. The following is an example of this approach 
implementation for bloodstain detection on various substrates. The goal is to confirm that the detected bloodstain 
is not a false positive. We suggest using additional experimental data from neighboring points on a substrate 
surface, which do not contain blood traces (pure substrate). We used the simplest unsupervised classification 
method, principal component analysis (PCA), to test whether Raman spectra from apparent bloodstains and a 
pure substrate could be differentiated. Figure 11 shows a PCA score plot obtained for Raman spectra collected 
from a bloodstain on a common substrate and those collected from the same pure substrate.

These two classes of Raman spectra could be differentiated with high confidence in the case of blue and 
white polyester and cotton. However, there is some overlap on the score plot for Raman spectra collected from a 
bloodstain on denim substrate and those collected from pure denim. We believe that this is because denim has a 
strong Raman signal and overwhelms the signal from blood. As evident in Fig. 3, Raman spectra of a bloodstain 
on denim substrate are very similar to the spectra of pure denim with no noticeable contribution from blood. 
Nevertheless, despite some overlap, there is a significant number of points on the score plot, which are well 
separated. Therefore, we believe that the proposed approach should allow for testing for false positives even in 

(10)r =
1

2

∑

i

∣∣SR,i − S0,i
∣∣

∣∣SR,i + S0,i
∣∣ ,

Figure 10.  The probability density distribution of the proximity factor (9) for the residuals SR between the 
experimental Raman spectra of blood stain on a definite substrate and the Raman spectra of the same pure 
substrate  in relation to the set S0 of Raman spectra of blood and the set the seminal fluid Raman spectra of on 
an Al foil: blue polyester (a), denim (b), cotton fabric (c), and white polyester (d) substrates.
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the case of denim if Raman spectra are collected from multiple points on the bloodstain and compared with those 
collected from a pure denim. Obviously, more work needs to be done to optimize this process, including using 
more robust statistical methods of supervised statistics. We plan to work on this in the near future.

Methods
Samples. Blood samples were purchased from BioIVT, LLC (Westbury, NY), from five anonymous donors. 
Donors were negative for HbsAg, HCV, HIV-1&2, syphilis, and HIV-1 antigen. All samples were deposited onto 
one of the following substrates: aluminum tape, white cotton fabric, white polyester fabric, blue polyester fabric, 
and denim fabric, pipetting 10 μL on the surface and letting it dry overnight.

Raman spectra acquisition and preprocessing
A Renishaw InVia confocal Raman spectrograph equipped with a research-grade Leica microscope, a long-range 
50 × objective, and a Renishaw PRIOR stage for automatic mapping were used to collect the Raman spectra 
over a range of 400 –1800  cm−1. A 785-nm laser light was utilized for excitation. The maximal laser power was 
about 80 mW. It was reduced from to ten percent capacity with a spectrum accumulation time of 10 s to avoid 
photodegradation. The spot size of the excitation beam on the sample was approximately 2 µm using standard 
confocal mode and a 50-µm slit. Multiple spectra were collected from different spots of each bloodstain using 
automatic mapping, and each spectrum was an average of ten accumulations. Peak accuracy was assured by 
verifying instrument calibration before each analysis using a silicon standard. All spectrum measurements 
were first treated using WiRE 3.4 software to remove any cosmic ray interference. The processing of the received 
data was performed with MATLAB software. Outliers were removed using the random forest  method51. The 
preprocessing of the experimental Raman spectra was conducted in 3 steps: background subtraction (a standard 
procedure for minimizing the fluorescence contribution), a random noise filtration, and normalization by the 
area under the curve. The background subtraction was implemented by shape-preserving piecewise cubic 
interpolation of a Raman spectrum at neighboring grid points in a gliding spectral window with a width of 
200 spectral points (182.2  cm−1), the quantile value is set to 10%. The noise reduction was implemented using 
Savitsky-Goley filter with the following parameters’ value: the order of the polynomial was equal to 1, the gliding 

Figure 11.  A hierarchical approach to test for potential false positives. Raman spectral data obtained for an 
apparent bloodstain are statistically compared with Raman spectra obtained for a pure substrate material. 
Principal component analysis (PCA) score plots prepared using the first and second principal components 
demonstrate significant separation of the two classes of Raman spectra for blood stains on all substrates used.
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spectral window width was equal to 45 spectral points (41  cm−1). The finding this filter optimal parameters was 
estimated by the following way. The random nature of noise allows us to consider the average Raman spectrum 
Ssamp of an experimental sample set of Ssamp,i spectra:

as an approximation to the actual spectrum without noise. Here, N is the volume of the experimental set. Let’s 
denote the Raman spectrum Ssamp,i(k) processed by Savitsky-Goley filter as SSG,i(k), where k =

−

1,K  is Raman 
shift. Optimal filter parameters are corresponded to minimum of the following functional r (see Eq. (9)):

The dependence of r  on the gliding spectral window width is presented in Fig. 12. Here, we used the first-
order polynomial in Savitsky-Goley filter. In common, the choice of the gliding window width about 40  cm−1 is 
quite reasonable. The using polynomial of more high orders reduces the quality of filtration (see Fig. 13) because 
less r value corresponds more close shape of a processed by Savitsky-Goley filter Raman spectrum to an average 
Raman spectrum of the respective experimental sample set.

The typical Raman spectra signal-to-noise value near their maxima was about 62 dB, the mean value of this 
parameter was about 7 dB that is caused by presence of many small peaks.

Ssamp =
1

N

N∑

i=1

Ssamp,i

r =
1

2NK

∑

j,k

∣∣SSG,j(k)− Ssamp(k)
∣∣

∣∣SSG,j(k)+ Ssamp(k)
∣∣

Figure 12.  The dependence of r  on the gliding spectral window for Raman spectra of blood on various 
substrates processing by Savitsky-Goley filter (a) and the same for pure substrates (b). Here, the first-order 
polynomial was used in this filter implementation. Here, “framelen” parameter means the gliding spectral 
window.

Figure 13.  The dependence of r  on the polynomial order for Raman spectra of blood on Al substrate (a), blue 
polyester substrate (b), and pure blue polyester substrate (c) processing by Savitsky-Goley filter. Here, “framelen” 
parameter means the gliding spectral window, “order” is the order of polynomial used in Savitsky-Goley filter.
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Conclusion
The results of a comparative study of two methods for the detection of body fluid traces on common substrates 
are presented. The first method, referred to as MCRAD, is a standard in Raman spectroscopy that combines 
multivariate curve resolution with the addition method. Another method referred to as RSC is new in Raman 
spectroscopy applications, which is based on reducing spectrum complexity when we remove a spectral 
component from a mixture entirely. Both methods implement the "one-per-step" approach for complex sample 
Raman spectrum decomposition. An example of bloodstain detection on blue polyester, denim, cotton fabric, 
and white polyester substrates was considered.

Both RSC and MCRAD were shown to allow for restoring a target component (body fluid) volume fraction 
from an experimental spectrum of this body fluid dried on an interfering substrate with only a priori knowledge 
of this body fluid etalon spectrum. RSC shows more reliable performance than MCRAD for the detection and 
identification of a bloodstain on interfering substrates. In complicated cases, the probability of obtaining a 
wrong result is essentially higher for MCRAD than for RSC. This conclusion is confirmed by the results of the 
decomposition of Raman spectra of bloodstains on various substrates (see Fig. 3 and Table 1). In our opinion, 
the better robustness of RSC compared to MCRAD is due to the implementation of ergodic theory in the target 
minimization function in the RSC method.

When a substrate has a rather unique Raman spectrum compared to a body fluid, both RSC and MCRAD 
are quite efficient in avoiding false positive results. In complicated cases of a substrate in which the Raman 
spectrum has a low specificity (in other words, high similarity) compared to the tested body fluid, the level of 
these errors can be up to 0.2 in volume fraction instead of zero value. Such situations were met more often for 
MCRAD compared to RSC (see Fig. 4). To test this hypothesis, we used the Soergel distance to quantitatively 
estimate the similarity of two spectra, which are preliminarily averaged over a sliding spectral window. The 
calculated dependencies of the Soergel distance between two Raman spectra on the size of the spectral window 
have evident peculiarities for the denim case, which was the largest bias in the decomposition results. For 
practical application of the developed method, we proposed a simple additional test (hierarchical approach) for 
a potential false positive using Raman spectra of a pure substrate and statistically compared them with Raman 
spectra obtained for the apparent bloodstain.

Therefore, this work offers a novel approach in Raman spectroscopy named RSC for solving one of the most 
challenging problems for the identification of bloodstains for forensic purposes using Raman spectroscopy, which 
is the interference of common substrates.

Some comments for future studies are as follows. The origin of established peculiarities in dependencies 
of the Soergel distance between two Raman spectra on the size of the spectral window should be studied in 
detail. We do not report on the sensitivity of the RSC method. The detection limit of the method needs to be 
investigated, compared with the current methods used by the law enforcement agencies and the needs of the 
practical application (for example, for DNA profiling).

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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