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A comparison of machine learning 
models’ accuracy in predicting 
lower‑limb joints’ kinematics, 
kinetics, and muscle forces 
from wearable sensors
Shima Mohammadi Moghadam , Ted Yeung  & Julie Choisne *

A combination of wearable sensors’ data and Machine Learning (ML) techniques has been used 
in many studies to predict specific joint angles and moments. The aim of this study was to 
compare the performance of four different non‑linear regression ML models to estimate lower‑
limb joints’ kinematics, kinetics, and muscle forces using Inertial Measurement Units (IMUs) and 
electromyographys’ (EMGs) data. Seventeen healthy volunteers (9F, 28 ± 5 years) were asked to walk 
over‑ground for a minimum of 16 trials. For each trial, marker trajectories and three force‑plates 
data were recorded to calculate pelvis, hip, knee, and ankle kinematics and kinetics, and muscle 
forces (the targets), as well as 7 IMUs and 16 EMGs. The features from sensors’ data were extracted 
using the Tsfresh python package and fed into 4 ML models; Convolutional Neural Networks (CNN), 
Random Forest (RF), Support Vector Machine, and Multivariate Adaptive Regression Spline for 
targets’ prediction. The RF and CNN models outperformed the other ML models by providing lower 
prediction errors in all intended targets with a lower computational cost. This study suggested that a 
combination of wearable sensors’ data with an RF or a CNN model is a promising tool to overcome the 
limitations of traditional optical motion capture for 3D gait analysis.

Three-dimensional gait analysis (3DGA) provides quantitative information on the locomotion system and lower-
limb functionality level during gait. 3DGA is an effective way to monitor changes in gait and is commonly used 
in hospitals and gait clinics. However, due to the optical motion capture (OMC) system cost and the time needed 
for pre- and post-processing of the data, gait clinics are sparse, and the waiting time to get assessed can become 
quite high. Moreover, OMC systems and force plates need to be set up in a controlled environment, such as a lab 
or a clinic, which has been shown to affect human  gait1,2.

With the emergence of lightweight and inexpensive wearable sensors, collecting human gait data outside the 
clinic has been made feasible. Inertial Measurement Unit (IMU) and Electromyography (EMG) are two types 
of wearable sensors that are becoming widely used in 3DGA. IMUs are made of a single electronics module 
combining three accelerometers and three gyroscopes which respectively collect linear acceleration and angular 
velocity in 3  dimensions3. EMG electrodes are placed on the person’s skin at the muscle’s belly location and indi-
rectly measure the electrical signals transmitted by motor neurons that cause muscles to  contract4,5. Although 
wearable sensors are very promising in motion analysis, barriers exist to their widespread clinical adaptation. 
First, the integration of acceleration data to determine the IMUs’ position and orientation causes numerical drift 
errors over  time6. Second, scaling the EMG signal to the patient’s maximum voluntary muscle contraction to 
determine muscle activation is not always feasible in patients with impaired muscle forces, such as stroke patients 
or children with Cerebral  Palsy7,8.

To overcome challenges associated with wearable sensors’ data processing limitations, regression-based 
machine learning (ML) techniques can be used. ML models can establish a direct relationship between wear-
able sensors’ data and intended targets; such as joint kinematics, joint kinetics, and muscle forces in this study. 
Training an ML model would enable us to predict targets for either (1) a specific patient at a different time point/
session (intra-subject model) or (2) additional unseen patients (inter-subject model). Furthermore, data-driven 
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models will enable joint kinetics calculations without ground reaction force data (from force plates) and eliminate 
the need for expensive motion capture equipment. It is worth mentioning that for the intra-subject model, one 
session of data collection in a lab with an OMC system would be required to build a specific ML model for each 
participant. After one session of data collection in the lab (OMC + IMUs + EMGs), the IMU and EMG sensors’ 
data can be collected during rehabilitation and outside the clinic without the need for an OMC system to enable 
clinicians to quantify the patient’s recovery progress until the end of the treatment/procedure.

Neural Networks (NN), Random Forest (RF), and Support Vector Machines (SVM) are powerful ML algo-
rithms that can be used for regression even when non-linearity exists inside the targets. In recent years, a few 
research groups have implemented these algorithms to estimate gait time series from wearable sensors. Some have 
looked at joint  kinematics9–22, others at joint  kinetics12,23–25 but also gait parameters such as stride length, velocity, 
and toe  clearance26–30. To date, NNs are the most used ML model to predict joint kinematics and kinetics from 
 IMUs10,16,18,20,23,25,27,28,31,32. Most of the mentioned  studies10,18,23,25,31,32 used classic feedforward neural networks 
and achieved correlation coefficients higher than 0.86. However, it has been shown that convolutional neural 
networks (CNN) outperform classic NN models in gait time-series prediction, especially for joint  kinematics33,34. 
To the best of our knowledge, there is only one  research35 in which neural networks are implemented to predict 
muscle activations from EMG data to estimate joint kinetics in a forward dynamics model. Unfortunately, they 
did not determine muscle forces based on the predicted muscle activations. Bolam et al.36 developed an RF model 
to predict maximum knee flexion angle and provided a reliable workflow to remotely monitor post-operative 
progress in knee arthroplasty patients. Estimation of hip, knee, and ankle joint angles in the sagittal plane (but 
not joint kinetics and muscle forces) was performed in another  study17 using five ML algorithms (multiple 
linear regression, RF, SVM, back propagation neural network and eXtreme gradient boosting). SVM models 
have been used mainly to predict gait parameters (stride length and width, stride time, and foot clearance)26,29,30 
rather than the prediction of joint kinematics and kinetics. Multivariate Adaptive Regression Splines (MARS) 
is another powerful ML method that is an extension of linear models and automatically models non-linearities 
and interactions between variables. It seems that MARS has not been investigated to predict joint kinematics, 
kinetics, and muscle forces during 3D gait analysis yet.

Although the performance of different ML models has been investigated in some  studies10–19,23–32,35,36, there 
is a lack of consensus on which ML algorithm is the most accurate for predicting joint kinematics, kinetics, and 
muscle forces. Most studies focused on specific joint angles or joint moments of the lower limbs in one plane. 
Furthermore, only a few studies used automatic feature extraction and selection to train each ML  model36–38.

Therefore, the aim of this study was two-fold: (1) Extract features automatically and determine the most 
important features for the estimation of each target and (2) Compare the performance of four non-linear regres-
sion ML models (CNN, RF, SVM, and MARS) to estimate pelvis, hip, knee, and ankle joint angles, moments, and 
muscle forces in both intra-subject and inter-subject examinations. To this end, we employed a python package 
called  Tsfresh39 to extract features from EMGs and IMUs data and developed each ML model by using the most 
important features. Finally, each ML model’s performance was evaluated based on its prediction accuracy and 
computational time.

Methodology
The workflow to develop the ML models is represented in Fig. 1. The procedure of data collection, calculating 
targets from marker trajectories and ground reaction forces, extracting features from sensors’ data, and building 
ML models are explained in detail in the next paragraphs.

Data collection. Seventeen healthy adults (9F, 28 ± 5 years, 1.70 ± 0.08  m, 66 ± 10  kg) with no recently 
reported injuries voluntarily participated in this study. Inclusion criteria were adults aged 18 years and older, 
and exclusion criteria were previous lower limb surgery, joint pain, osteoarthritis, or any other form of arthritis 
that would alter gait and any injury to the lower limbs in the past six months prior to the data collection. Each 
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Figure 1.  The workflow for developing ML models. The solid lines represent the process of generating desired 
outputs for ML models, and the dashed lines are related to the process of extracting and selecting features as 
models’ inputs.
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participant signed an informed consent form prior to collecting data in accordance with the World Medical 
Association Declaration of Helsinki (1964, last updated in 2013) and was approved by the University of Auck-
land (New Zealand) human participant ethics committee (reference number 019911).

Participants were assessed in one session with at least one static, one squat, one squat jump, one heel raise, 
and sixteen over-ground walking trials with their self-selected speed. Each participant completed about ten gait 
cycles in each trial but only one gait cycle was used per trial in this study (the gait cycle that occurred over the 
force plates to calculate joint moments). The gait cycles used in the analysis were defined as the period of time 
from one heel strike of one foot to the next heel strike of the same foot. The steps in which the participant’s feet 
were outside the force plates were removed. After this initial data cleaning step, a different number of gait cycles 
remained for each participant (min = 8 and max = 24). The gait cycle duration for each participant varied based 
on their self-selected walking speed and step length. The minimum and maximum time for gait cycles were 0.75 
and 1.25 s, respectively. In each trial, marker trajectories from a 12-camera optical motion capture system (Vicon 
Motion Systems Ltd., UK), ground reaction forces from three gound embedded force plates (Bertec, Columbus, 
Ohio), EMG (Mini-Wave, Italy), and IMUs (Vicon IMeasureU Ltd., NZ) were recorded. Twenty-seven reflec-
tive markers were placed on participants, as shown in Fig. 2, to determine the three-dimensional position and 
orientation of each body segment. Sixteen EMG surface electrodes were used to record lower limb muscles’ 
activity on both legs (Gluteus maximus, Rectus femoris, Vastus lateralis, Biceps femoris, Semimembranosus, 
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Figure 2.  IMUs, EMGs, and OMC markers placement for data collection. The markers that their name starts 
with a * were only used for static trials and model scaling.
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Medial gastrocnemius, Soleus, and Tibialis anterior). Three-dimensional acceleration and angular velocity were 
recorded from 7 IMUs attached to each segment of the lower limbs (one on the pelvis, one on each foot, shank, 
and thigh). With the exception of marker trajectories data, which was captured at a sampling frequency of 200 Hz, 
all data were recorded at 1 kHz. For each participant, maximum voluntary contraction (MVC) of lower limb 
muscles were also collected. During the MVC collections, the lab operator held the participant’s leg in a fixed 
position and asked them to move their leg with maximum effort to activate the group of muscles of interest. For 
each participant, the IMUs were taken off and repositioned in the middle of the session to account for the effect 
of small displacement in the IMUs’ position. Therefore half of the data captured was collected before and the 
other half after that extra step of removing and reattaching the IMUs on the participant’s skin. These trials were 
used randomly for training and testing for the intra-subject examination.

Data post‑processing. All captured data was synchronized, and marker trajectories were reconstructed 
through Vicon Nexus software (Version 2.12). The  MOtoNMS40 (Matlab Motion data elaboration toolbox for 
neuromusculoskeletal applications) was used to filter 3D marker positions and force plate data (Butterworth 4th 
order, 10 Hz low pass filter) and rotate them according to the OpenSim coordinate system (X is perpendicular 
to the frontal plane pointing forward, Y is perpendicular to the transverse plane pointing upward, and Z is per-
pendicular to the sagittal plane pointing to the right). MOtoNMS was also used to process the EMG recording to 
determine muscles’ activations; (1) a zero-lag band-pass filter (4th order Butterworth 30–300 Hz), (2) full-wave 
rectification, and (3) a low pass filter (4th order Butterworth 4–10 Hz). Finally, the signals were normalized to 
the maximum value of EMG recorded during the MVC trials to scale underlying muscles’ excitations as a num-
ber between 0 and 1.

An OpenSim model (gait2392)41 was scaled using the MAP-client  workflow42 based on marker data using 
Principal Component Analysis to build a personalized musculoskeletal model for each participant. Pelvis, hips, 
knees, and ankles kinematics and kinetics were computed using the OpenSim inverse kinematics (IK) and 
inverse dynamics (ID) tools, respectively (version 3.3). The Calibrated EMG-Informed Neuromusculoskeletal 
Modelling (CEINMS)43 toolbox was used to estimate muscle forces. To calibrate musculotendon units (MTUs), 
we used three walking, one heel raising, and one squat trial in the CEINMS calibration step to adjust musculo-
tendon parameters like tendon slack length, optimal fiber length, and strength coefficient. The objective function 
for calibration was defined by minimizing the differences between the joint moments estimated by the EMG-
driven model and those derived from inverse dynamics during multiple calibration trials. Once calibration was 
completed, all MTUs activation and forces were predicted using the EMG-assisted approach (hybrid mode) 
of CEINMS. Finally, IMU, EMG, joint angles, joint moments, and muscle forces data were down-sampled to 
100 Hz to decrease the computational cost of feature extraction and ML models construction. Joint moments 
were normalized to each participant’s body weight.

Models’ development. The development process of each ML model to predict the targets (joint angles, 
joint moments, and muscle forces) from wearable sensors’ data is explained below. To increase the predictive 
power and facilitate the ML process, we identified all features from raw IMU (acceleration and angular velocity 
in three directions) and EMG data by using an open-source python package called Tsfresh (Time Series FeatuRe 
Extraction on basis of Scalable Hypothesis tests)39. In order to prepare the IMU and EMG data for Tsfresh, we 
put them into sequences of consecutive and overlapping windows, where a window is shifted across the data 
points to create smaller segments of time series signals per target value. In this study, the window size was one 
second, as recommended by Banos et al.44.

Feature extraction and selection. The minimum and maximum number of gait cycles for participants were 8 
and 24, respectively. The length of gait cycles was also different (between 0.75 and 1.25 s) based on participants’ 
self-selected walking speed and step length, as mentioned in 2.1. However, the total number of data points was 
37,579 for all participants. Each participant’s data was split into training (70% of gait cycles) and testing (the 
remaining 30% of gait cycles) sets. All participants’ training data (26,298 data points) were used for feature 
extraction and selection procedure. Tsfresh extracted 788 features from each channel of IMU and EMG data. A 
total of 58 channels were available from all IMUs and EMGs; 42 channels from seven IMUs (each IMU had six 
components: triaxial gyroscope and triaxial acceleration data), and 16 channels of EMGs. From these 58 chan-
nels, 45,704 features were extracted. In order to increase the prediction power of ML models, we eliminated 
irrelevant features that were not providing information to predict our targets. Removing unnecessary features 
will also decrease computational cost and time, which is crucial for real-world applications. First, for each target, 
a primary selection step took place to retain features with non-zero variance (31,487 features remained). Then 
extra feature selection procedures were performed to find the most important features related to each target by 
removing non-significant features in predicting target values. Then, the rank of each feature was determined 
based on Gini  Importance45 for predicting each target using an RF regressor. Finally, the top ten features related 
to each target were selected. All top features were put together to build a super feature set, including 500 features 
(10 for each of the 50 targets). The final feature set was further reduced by removing repeated features to avoid 
redundancy, resulting in a total of 441 features.

Non‑linear regression ML models. The most important features extracted by Tsfresh were used as inputs to 
the ML models (CNN, RF, SVM, and MARS) to predict the targets (joint kinematics, joint kinetics, and muscle 
forces) in over-ground walking. All ML models were multi-output, which predicted all targets simultaneously. 
Scikit-learn (a python library for ML) was used to set up the CNN, RF, and SVM models, while the MARS model 
was built using the py-earth python library. To optimize the performance of the models, the hyperparameters 
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were tuned using the following approach. The data from all participants were divided into two sets: a training 
and validation set (80% of the data) and a testing set (20% of the data). We used a five-fold cross-validation on 
the first set to determine a combination of parameters that resulted in the lowest error. It involved splitting the 
data into five equally sized subsets, or "folds." The model was then trained on four of the folds and evaluated on 
the fifth fold. This process is repeated five times, with each fold being used as the evaluation set once. Finally, the 
testing set was used to evaluate the final performance of the model. To perform the hyperparameter search, the 
GridSearchCV method was utilized, which searches over the hyperparameters defined in the parameter grid. 
This approach ensures that the model’s hyperparameters are optimized while minimizing the risk of overfitting, 
ultimately leading to a robust and accurate model. The tunned hyperparameters found for each ML are described 
below.

CNNs are a specialized type of NN model that has shown remarkable performance in various tasks, including 
gait time-series prediction. This study used a multi-output CNN model with five hidden layers to estimate joint 
kinematics, joint kinetics, and muscle forces. First, we used the StandardScaler function from the sklearn library 
for scaling features to ensure all variables are in the same range (between zero and one). It was also necessary 
to scale targets as we used a multi-output CNN model. Targets were scaled back to their original scale using the 
same scaler after predictions. Then, the model’s architecture was defined with an input layer size of 441. Then 
two convolutional layers were added, each followed by a max pooling layer. Both convolutional layers had 256 
filters with a kernel size of three and a “relu” activation function. The max-pooling layers had a pool size of two. 
These layers helped reduce the data’s dimensionality and identify the most prominent features of the previous 
feature map. After the max-pooling layers, the data was flattened and passed through the output layer, which was 
a dense layer with a linear activation function. The number of units in the output layer was equal to the number 
of targets (50). The ’Adam’ solver (with a learning rate of 0.01), a stochastic gradient-based optimizer, was used 
for weight optimization, and the loss function was “mean squared error”. The EarlyStopping function was used 
to monitor the validation loss and stop the training if the loss did not improve after five epochs. The batch size 
was set to 32, and the model was trained for a maximum of 100 epochs. Supplementary Fig. 1 represents the loss 
versus the number of epochs for training and validation. In this model, the optimal activation function (among 
’relu’, ’sigmoid’, and ’tanh’) in hidden layers, the optimizer (among ’adam’, ’rmsprop’, and ’sgd’) and its learning 
rate (among ‘0.1’, ‘0.01’, and ‘0.001’), and the number of neurons (among 64, 128, and 256) in each convolutional 
layer were found through grid search.

RF is a flexible and easy to use ML model for regression. RF builds forest (ensemble of decision trees) trained 
with the bootstrap aggregating (bagging) method and outputs the average of prediction of individual decision 
 trees46. The RF model’s tunned hyperparameters in this study were the number of trees (among: 100, 200, 300, 
400, and 500), the maximum number of randomly selected variables in each tree (among ’auto’, ’sqrt’, and ’log2’), 
and the maximum depth of each tree (among 15, 20, 25, and 30). Based on the grid search, the final combination 
of hyperparameters that provided the lowest error was as follows: 500 for the number of trees (Increasing the 
number of trees can improve the model’s performance, but it may also increase the computational complexity 
and training time which might not be ideal for using the model in real applications), ‘sqrt’ for the number of 
randomly selected features which means the root square of the number of inputs (in this study, this number was 
equal to 21 as the number of input variables was 441), and the maximum depth of 25 for each tree.

Another powerful supervised learning model for non-linear regression is  SVM47. In this model, a threshold (ε) 
is set by the user to control the maximum allowable error for the regression setting. When there is non-linearity 
in the dataset, a kernel function is used to map the input feature vectors to a higher dimensional feature space. 
As SVMs are sensitive to the scale of features, we performed feature scaling to improve this model’s performance. 
In this study, after hyperparameters tunning, we set ε = 0.01 (among 0.001, 0.01, 0.1, and 1), cost parameter 
C = 10 (among 0.1, 1, 10, and 100), and radial basis function ‘rbf ’ as the kernel function (among ’linear’, ’rbf ’, 
and ’sigmoid’).

The last model developed in this study was a MARS which is well suited for high-dimensional problems. 
MARS is an extension of linear models by modeling non-linearities in target values. This model aggregates a 
set of simple linear functions’ results to perform well in predicting any kind of target vector. MARS algorithm 
automatically discovers the number and type of basis functions to use. We set the number of input variables 
considered by each piecewise linear function (max_degree) to two (among 1, 2, and 3). The maximum number 
of basis functions (max_term) was 100 (among 100, 200, and 300).

Performance evaluation. Intra‑subject examination. To investigate each ML model’s performance for 
predicting the targets for the same participant, the intra-subject examination was performed. In the intra-subject 
examination, we used 70% of one participant’s gait data to train the ML model, and we tested the model on the 
remaining 30% of the same participant’s data. This examination was done for all participants (creating 17 differ-
ent models, 1 per participant).

Inter‑subject examination. The inter-subject examination evaluated the ML models’ performance to predict 
targets for an unseen participant. Leave-one-out (LOO) cross-validation was performed to investigate ML mod-
els’ generalizability. A LOO analysis consists of splitting the training (N-1 participants) and testing (1 partici-
pant) dataset N times, with N = number of participants. Therefore we created 17 training/testing combinations 
of partcipants data to build 17 ML models. Each time 16 participants’ data were used for training the ML model, 
and the model was tested on the remaining participant’s data.

Performance metrics. To compare the performance of the ML models in the testing datasets, the Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination ( R2 ) between the com-
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puted and predicted targets were calculated for each gait cycle and each participant for both intra and inter-sub-
ject examinations. In order to make a better interpretation of muscle forces errors for each muscle, we reported 
NRMSE (RMSE normalized to the range of data). The reported RMSEs, NRMSEs, and MAEs are the average 
of cross-validation for all participants. The R2 values are presented in percentages and calculated for each target 
using predicted data from all participants to have a single value.

To identify the most computationally efficient model and investigate the effect of feature selection on the 
ML model’s performance, an additional examination was performed. All models were trained (on 16 randomly 
selected participants’ data) and tested (on the remaining participant’s data) twice. The first time, we used all 
features with non-zero variance (31,487 features), while the second time, we only utilized the selected features 
(441 features). For both cases, the prediction accuracy and computational time were recorded. This examina-
tion enabled us to identify the model that can be effectively applied in a practical setting across various systems 
and clinics.

Results
The most important features selected to predict each target are available in the Supplementary Table S1. The top 
features were extracted from the IMU signals for kinematics and kinetics prediction. In contrast, most of the top 
features were extracted from EMG signals for muscle forces prediction. According to Supplementary Table S2, 
the highest and lowest computational times for testing the models were related to SVM and CNN models respec-
tively. The testing time for the CNN and RF models using only the selected features (441 features) took less than 
a second, while the testing time for the SVM was 945 s. Using all non-zero variance features (31,487 features) 
to train and test the models increased computational time, especially for SVM and MARS models. While the 
prediction accuracy improved slightly for the CNN model, the performance of other models worsened by using 
all non-zero variance features instead of the selected features (Supplementary Table S3).

The following results represent the performance of each ML model, CNN (pink), RF (blue), SVM (yellow), 
and MARS (green), for the prediction of intended targets (joint kinematics, joint kinetics, and muscle forces).

Joint kinematics. Although CNN, RF, and SVM models’ performance were in the same range for most joint 
angles, the RF model provided the lowest RMSEs in all joints and planes of motion compared to other models 
for the intra-subject examinations (Fig.  3). The most accurate estimations for the inter-subject examination 
were provided by the RF and CNN models. The CNN model outputted the lowest prediction errors in pelvic tilt, 
hip rotation, and ankle inversion/eversion angles. The best performance for knee flexion/extension angle was 
related to the SVM model, and for the rest of the joint angles, RF provided the lowest error. The highest RMSE 
was related to MARS predictions in most joint angles in both intra and inter-subject examinations. The lowest 
joint angles RMSE in the RF model were related to pelvic obliquity (RMSE = 0.74◦ for intra-subject examina-
tion and 2.95◦ for inter-subject examinations), and the highest error was found for ankle inversion/eversion 
(RMSE = 2.58◦ for intra-subject examination and 8.32◦ for inter-subject examinations). The same trend can be 
seen by investigating other evaluation metrics, such as MAE and the R2 values presented in the Supplementary 
Table S4.

Examples of the hip, knee, and ankle sagittal plane ROM during a gait cycle for the best participants (based 
on RF results) for the intra and inter-subject examinations are displayed in Fig. 4. The worst participant’s results 
and other joint kinematics are shown in Supplementary Figs. S2 and S3 for one gait cycle. As can be seen, the RF 
model (dashed blue line) provided the best predictions by following OpenSim inverse kinematics output (solid 
grey line) better than other models.

Joint kinetics. The RF model consistently provided lower RMSE than other ML models in all joints 
moments’ predictions, analogously to the kinematics results (Fig. 5). The MARS model produced the maximum 
RMSE in most joints for the intra-subject examinations, with the worst predictions provided the by SVM and 
MARS models for the inter-subject examination. RF model’s RMSE in joint kinetics prediction ranged between 
0.023 Nm/kg (hip rotation moment) and 0.191 Nm/kg (pelvic tilt moment) in the intra-subject examination. 
The minimum and maximum joint kinetics RMSE were 0.047 Nm/kg (hip rotation moment) and 0.269 Nm/
kg (pelvic tilt moment) in the inter-subject examination for the RF model. MAE and R2 values are presented in 
Supplementary Table S5 for joint kinetics predictions by all models.

The best participant predictions for all ML models for one gait cycle for ankle, knee, and hip moments in the 
sagittal plane are displayed in Fig. 6. The worst participant predictions and other joints kinetics are presented in 
Supplementary Figs. S4 and S5 for a gait cycle. The RF model (dashed blue line) provided better predictions of 
the OpenSim inverse dynamics outputs (solid grey line) compared to the other models.

Muscle forces. To predict muscle forces, the RF and CNN models displayed the lowest NRMSE between 
CEINMS outputs and prediction output from ML models, while the highest NRMSEs came from the MARS 
model (Fig. 7). In the inter-subject examination, the CNN model outperformed the RF model for the tibialis 
anterior and gastrocnemius muscles prediction. The maximum average NRMSE value occurred when predicting 
the semitendinosus muscle force (NRMSE of 14.1%) for the intra-subject examination and biceps femoris short 
head muscle (NRMSE of 36.2%) in the inter-subject examination. The average RMSE for the biceps femoris long 
head muscle force prediction was the lowest among all muscles for all ML models in both intra-subject (NRMSE 
of 2.6%) and inter-subject (NRMSE of 4.5%) examinations. MAE and R2 values between models’ predictions and 
CEINMS output are presented in Supplementary Table S6 for the muscle forces predictions.

Muscle forces predictions by all models can be seen in Fig. 8 for the soleus (ankle plantar flexor muscle), 
semitendinosus (knee flexor muscle), and rectus femoris (hip flexor muscle) across one gait cycle for the best 
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participants in each examination. Figures demonstrating the worst participant’s results and other muscle forces 
are available in Supplementary Figs. S6 and S7. The best match between the ML models’ prediction and CEINMS 
output came from the RF model for both intra-subject and inter-subject examinations.

Discussion
This study aimed to compare the performance of ML models for the prediction of important lower-limb gait time 
series (joint kinematics, joint kinetics, and muscle forces) from wearable sensors’ data with the aid of automatic 
feature extraction. The first objective of this study was to extract features automatically and determine the most 
important features for the estimation of each target. To extract all possible features from raw EMG and IMU data, 
we used a python package called  Tsfresh39. Tsfresh’s ability to extract a high number of features and determine 
their significance makes it more suitable than manual feature extraction methods. Furthermore, the most impor-
tant features that are essential for predicting a particular target might be neglected when extracted  manually48. 
As a result, the top features to predict joint kinematics and kinetics were extracted from the IMU data, and the 
top features for most of the muscle forces were extracted from EMG data. These results were predictable, as the 
joint angles are closely related to the angular velocity (gyroscope data), joint moments are associated with linear 
acceleration (accelerometers data) and angular velocity, and EMG data are correlated with muscle activation 
and, therefore, muscle forces. Interestingly, the most important features for some targets appeared unrelated. 
For example, we found that a feature extracted from the z-axis of gyro data from the thigh sensor was the most 

Figure 3.  RMSE values across joints and planes of motion between OpenSim inverse kinematics and ML 
models’ joint angles predictions in intra-subject (a) and inter-subject (b) examinations for all participants.
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informative feature for predicting hip flexion/extension angle and hip abduction/adduction. It may suggest that 
the sensors’ axes may not be perfectly aligned with the joint axes of rotation in the body.

Despite the parallelization of the extraction and selection tools in tsfresh, the memory consumption of parallel 
calculations can be high. Tasks with a high number of processes may be limited to machines with low memory. 
Therefore, reducing the number of features enable the use of our workflow on any system. Although feature 
selection can extend the time required to train models, it can significantly reduce the time needed for model’s 
inference. Our experiments showed that including all non-zero variance features could increase testing time for 
all models. This is especially important for real-world clinical applications, where efficient models with lower 
computational costs are essential. However, our findings also suggest that including all non-zero variance features 
does not necessarily improve model performance. In fact, using all features can actually worsen the performance 
of the RF, SVM, and MARS models by including many unrelated features. While the use of all non-zero variance 
features slightly improved the performance of the CNN model, the improvements were not substantial. Therefore, 
careful feature selection is important for developing accurate and efficient models. The second objective of this 
study was to compare the performance of four non-linear regression ML models (CNN, SVM, RF, and MARS) 
to estimate pelvis, hip, knee, and ankle joint angles, moments, and muscle forces in both intra-subject and inter-
subject examinations. The ML models’ performance were compared based on their resulting RMSE, MAE, and 
 R2 against the OpenSim and CEINMS output (used here as ground truth). The computed OpenSim joint angles 
and moments waveforms found in this study were similar to the  literature49,50. Muscle forces computation were 
validated by comparing them to the experimental EMG recordings.

Figure 4.  Joint angles predictions by ML models compared to joint angles derived from OpenSim IK tool (solid 
grey line) across one gait cycle for ankle dorsi/plantar flexion (a for intra and d for inter-subject), knee flexion/
extension (b for intra and e for inter-subject), and hip flexion/extension (c for intra and f for inter-subject) 
angles.
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We found that the RF and CNN models performed best in predicting joint kinematics and muscle forces for 
the intra and inter-subject examinations, as they provided the lowest prediction errors and computational time 
to be trained and tested. The SVM model also provided prediction errors in the range of the RF and CNN models 
in some joint angles and muscle forces; however, its high inferring time makes it inappropriate for some applica-
tions. The RF model provided the best joint moments’ prediction results in the intra and inter-subject exami-
nations. Based on the figures representing the models’ predictions for one gait cycle, the RF models provided 
smoother outputs, in addition to having lower prediction errors compared to other models. The RF algorithm 
is less prone to overfitting than other  models46, which might explain its higher performance. Moreover, RF is a 
tree-based model and naturally ranks features by how well they improve the model’s performance and only uses 
the most important features to build trees. The good performance of the CNN models is due to their ability to 
automatically recognize relevant features, learn spatially correlated features, and create hierarchical representa-
tions of the input data. The lowest inferring time was related to the CNN model (0.23 s), making it suitable for 
real-time prediction by leveraging the power of parallel processing. Regardless of the ML model’s type, the level 
of prediction accuracy decreased (lower  R2 and higher RMSE and MAE) for the inter-subject examination (when 
the training dataset did not include any of the testing subjects’ trials). This can be partially explained by the fact 
that individuals’ joint motion characteristics are  distinct51. By including more participants’ data for training 
the ML models, better predictions would be expected. Most outliers in Figs. 3 and 5 are related to two specific 
participants for whom the models provided poor estimations. This might be because of their particular walking 

Figure 5.  RMSE values across joints and planes of motion between OpenSim inverse dynamics and ML models’ 
joint moments’ predictions in intra-subject (a) and inter-subject (b) examinations for all participants.
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patterns compared to other participants in inter-subject examination or walking unnaturally with diverse gait 
patterns in different trials in the intra-subject examination due to lab’s constraints.

To avoid the limitations of the traditional OMC systems, like the need for expensive equipment in a con-
trolled environment and time-consuming data processing, previous studies have developed different algorithms 
to estimate joint kinematics from  IMUs51–62. One of these algorithms used filtering approaches to cope with 
IMU sensor noise and integration  drift51,59–62. While these algorithms succeeded in reproducing a similar joint 
angle waveform, the offset between IMU results and OMC systems is considered relatively high compared 
to our results. The RMSE ranging from 5◦ to 10.14◦ in the hip joint angle in the sagittal plane was previously 
 reported52,53,55–58,60,62, while the present study achieved an RMSE of 1.38◦ and 4.79◦ for intra and inter-subject 
examinations, respectively. Our model produced lower RMSEs in knee joint flexion/extension ( 1.85◦ and 5.46◦ 
for intra and inter-subject examinations, respectively), compared to other studies with reported RMSE between 
4.1

◦ to 11.22◦52,53,55–58,62. The accuracy of our model for ankle joint dorsi/plantarflexion angle prediction (2.14 ◦ 
and 6.52◦ for intra and inter-subject examinations) was comparable to previous studies with an RMSE of 1.9◦ to 
9.75

◦52,53,55,57,62. Other research groups achieved good accuracy by combining wearable sensors’ data with ML 
techniques for joint kinematics  prediction11–17,19. The better performance of this approach (IMUs + ML model) 
provided low estimation errors in previous studies, especially in the intra-subject examinations with an RMSE 
ranging from 1.72◦ to 3.58◦ in hip flexion/extension11,14,15, from 2.21◦ to 3.96◦ in knee flexion/extension11,12,14,15 
and from 1.81◦ to 3.58◦ in ankle dorsi/plantarflexion  angle11,12,14,15. The performance of our RF model in the 
intra-subject examination was better than previous studies in the hip ( 1.38◦ ) and knee ( 1.85◦ ) and was in the 
range of these studies for ankle angle ( 2.14◦ ) in the sagittal plane. The higher prediction error for inter-subject 
examination is provided in some of the previous studies with hip flexion/extension angle RMSE ranging from 

Figure 6.  Joint moments predictions by ML models compared to joint moments derived from OpenSim ID 
tool (solid grey line) across one gait cycle for ankle dorsi/plantar flexion (a for intra and d for inter-subject), 
knee flexion/extension (b for intra and e for inter-subject), and hip flexion/extension (c for intra and f for inter-
subject) moments.
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5.37
◦ to 8.85◦14,21,22 (4.79◦ in the present study) and knee flexion/extension angle RMSE of 5.6◦ to 7.41◦14,22 ( 5.46◦ 

in the present study). However, the prediction error for the ankle dorsi/plantar flexion angle was lower in the 
previous studies with RMSE of 4.6◦ to 5.5◦14,21,22 ( 6.53◦ in the present study). In another  study19, only the average 
RMSE of 7◦ for all joint angles is reported, which is a higher prediction error compared to our results ( 5.31◦ ). Ren 
et al.17 developed five different ML models to predict hip, knee, and ankle joint angles in the sagittal plane and 
achieved MAE = 4.6◦ , 7.38◦ , and 4.74◦ , respectively, by using the RF model. They illustrated that the RF model 
outperforms other ML models (SVR, NN, multiple linear regression (MLR), and eXtreme gradient boosting 
(XGboost)) for joint kinematics prediction. The RF model in the current study carried out lower error than their 
model in hip and knee angles prediction by having MAE = 4.2◦ and 4.59◦ , respectively, while we had higher errors 
than Ren et al.17 in predicting ankle dorsi/plantar flexion angle (MAE of 5.28◦ ) for inter-subject examination. 
Long short-term memory neural network models were used in a  recentstudy20 to estimate hip and knee joint 
angles in all planes of motion. The authors developed their models by using both measured and synthetic IMU 
data. When they used measured IMU data to train their models, RMSEs of 7.2◦ for hip flexion/extension, 2.1◦ for 
hip adduction/abduction, 4.2◦ for hip rotation, and 2.9◦ for knee flexion/extension angles were achieved. Their 
model outperformed our RF and CNN models in all of their targets except for hip flexion/extension ( 4.79◦ in 
our study). However, they didn’t perform any kind of cross validation to investigate the generalizability of their 
model. By changing training and testing datasets, different results may be found. Accurate results were achieved 
in another  study16, in which 70 participants’ data were used to examine the model. They reported the MAE of 

Figure 7.  RMSE values between CEINMS muscle forces and ML models’ predictions in intra-subject (a) and 
inter-subject (b) examinations for all participants. Biceps femoris short heat and biceps femoris long head 
muscles are shown asBiceps femoris_sh and Biceps femoris_lh, respectively.



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5046  | https://doi.org/10.1038/s41598-023-31906-z

www.nature.com/scientificreports/

3.73, 5.41, and 3.58 for hip, knee, and ankle angles in the sagittal plane, respectively. However, we had more accu-
rate estimation for knee flexion/extension angle (MAE = 4.59◦ ). While most of the previous studies concentrated 
on joint range of motion in the sagittal plane, our study additionally included the pelvis in all planes, hip int/ext 
rotation and abd/add and ankle inv/eversion.

Fewer studies were conducted to investigate the performance of different ML models for joint kinetics 
 estimation12,23–25 compared to joint kinematics. All previous studies would focus on specific lower-limb joint 
kinetics (e.g. knee and ankle moments in the sagittal  plane12, knee adduction/abduction  moment23, medial and 
lateral knee contact  forces24, knee flexion/extension and adduction/abduction  moments25), while the present 
study investigated the prediction accuracy for the pelvis (in three planes of motion), hip (in three planes of 
motion), knee (in the sagittal plane) and ankle (in sagittal and frontal planes) joint moments during gait. The RF 
model presented in our study achieved an RMSE of 0.066 Nm/kg for ankle moment prediction in the intra-subject 
examination, which is more accurate compared to previous studies with an RMSE of 0.119 Nm/kg12. For the knee 
flexion/extension moment, we had lower accuracy in intra-subject examination compared to other studies (RMSE 
of 0.089 versus RMSE ranging from 0.042 to 0.068 Nm/kg12,23). However, our model outperformed another study 
in inter-subject examination (RMSE of 0.187 versus 0.27 Nm/kg)25. Higher prediction errors (BWBH%: Nm/
bodyweight.bodyheight) compared to our results are  reported21 for hip (1.78 BWBH%), knee (1.28 BWBH%), 

Figure 8.  Muscle forces predictions by ML models compared to CEINMS outputs (solid grey line) across one 
gait cycle for soleus (a for intra and d for inter-subject), semitendinosus (b for intra and e for inter-subject), and 
rectus femoris (c for intra and f for inter-subject).
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and ankle joint moments (1.39 BWBH%) in the sagittal plane. While we achieved %BWBH of 1.23 for the hip, 
1.16 for the knee, and 1.08 for ankle joint moments.

To the best of our knowledge, there is no other study using wearable sensors’ data to estimate muscle forces. 
Ardestani et al.63 used an NN model to estimate muscle activations from EMG signals. They used muscle activa-
tions in a forward dynamic model to estimate lower-limb joint moments, but unfortunately, they didn’t report 
any prediction error for muscle activation or forces. In another  study64, a Gaussian Mixture Regressor was 
employed to estimate muscle kinematics (fiber elongations and moment arms) and muscle activations from 
IMUs. They reported NRMSE lower than 30% of muscle activation for all muscles. In the present study, the 
lowest muscle forces prediction errors were associated with the biceps femoris long head muscle (NRMSE of 
2.6% in intra and 4.5% inter-subject examinations). The highest NRMSEs were related to the semitendinosus 
muscle (NRMSE of 14.1%) in the intra-subject examination and biceps femoris short head muscle (NRMSE of 
36.2%) in the inter-subject examination. A higher offset between actual and predicted values for muscle forces 
prediction compared to joint kinematics and kinetics can be seen in the figures depicting actual and predicted 
values. The lower accuracy in the estimation of muscle forces compared to other targets (joint kinematics and 
kinetics) was predictable. Data showed different muscle recruitment during walking between individuals and 
even between trials for the same participant, leading to less consistency in muscle forces across the population. 
Overall, compared to previous research, we predicted more targets at the same time with a multi-output RF 
model and achieved prediction errors within the range of what is reported in the literature.

Despite the number of participants (17 total), our RF model resulted in low prediction errors (comparable 
to the literature) in joints kinematics and kinetics estimation. We will investigate if increasing the number of 
participants to include a variety of gait profiles and self-selected speed provides more accurate estimations, spe-
cifically for muscle forces prediction. One limitation of the current study is the use of a multi-output RF model 
to predict many targets at the same time. A multi-output model helps us to improve the management of a high 
number of targets and allows us to decrease computational cost and monitor all intended targets simultaneously 
in real time. However, it may result in lower prediction accuracy by feeding many unrelated features to the model 
for some targets. The differences between the performance of a multi-output and a single-output model for the 
prediction of specific gait time series should be explored in a future study. Using separated single-output ML 
models would be more efficient in case we want to monitor a specific target.

The personalised musculoskeletal model for each participant was built using the gait 2392 OpenSim model, 
which lacks the degrees of freedom on the knee adduction/abduction, knee rotation, and ankle int/ext rotation, 
which does not allow us to study other planes of motion at the knee and ankle. The other limitation of this study 
was using an RF regressor to determine the rank of each feature. This can be a bias in favor of the RF model when 
comparing it with other ML models. However, we’ve shown that using selected features instead of all features is 
more efficient in the case of computational time, and its’ effect on the prediction accuracy of the CNN model is 
negligible. A further point to highlight is that we cannot guarantee that estimations using data from other labs will 
be as accurate as our own; this is largely due to differences in the equipment and sensors used. However, incorpo-
rating data from multiple labs into the training data set for our models can improve the models’ generalizability.

Although the findings of this study are very promising to benefit the community, more research is required 
to investigate the optimum number of IMUs needed to achieve these results. Looking back at the top features, it 
appears that some IMU data are not needed for 3D gait analysis. The optimal number and combination of IMUs 
can eliminate the need for seven sensors reducing data processing time and sensor cost. Reducing the number 
of sensors on the subjects’ bodies will also facilitate workflow implementation in the real world.

Conclusion
This study showed that a combination of wearable sensors and ML techniques is an accurate and promising 
approach for improving traditional methods of gait time-series prediction. We also demonstrated that the higher 
performance of the RF and CNN models compared to other ML models make them more appropriate for pre-
dicting the lower limb’s joint kinematics, kinetics, and muscle forces, especially in the intra-subject prediction. 
Successful implementation of an intra-subject model enables us to remotely monitor changes in patients’ gait 
outside the clinic. While by having a precise inter-subject model, a gait analysis will be possible where an optical 
motion capture system is not available.

Data availability
The post-processed data (joint kinematics, joint kinetics, and muscle forces) along with the raw IMU and EMG 
data used in this study to build machine learning models are available on the open-source platform SimTK.org 
(https:// simtk. org/ proje cts/ ml_ senso rs).
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