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Outbreak report of p oly myx in‑ 
car bap ene m‑r esistant Klebsiella 
pneumoniae causing untreatable 
infections evidenced by synergy 
tests and bacterial genomes
Marisa Zenaide Ribeiro Gomes 1,2,3,6*, Elisangela Martins de Lima 2, 
Caio Augusto Martins Aires 3,7, Polyana Silva Pereira 3, Juwon Yim 4, Fernando Henrique Silva 1, 
Caio Augusto Santos Rodrigues 2, Thamirys Rachel Tavares e Oliveira 3, 
Priscila Pinho da Silva 1, Cristiane Monteiro Eller 1, Claudio Marcos Rocha de Souza 3, 
Michael J. Rybak 4, Rodolpho Mattos Albano 5, Antonio Basílio de Miranda 1, 
Edson Machado 1,8, Marcos Catanho 1* & Nucleus of  Hospital Research (NPH) study 
collaborators *

Polymyxin‑carbapenem‑resistant Klebsiella pneumoniae (PCR‑Kp) with pan (PDR)‑ or extensively drug‑
resistant phenotypes has been increasingly described worldwide. Here, we report a PCR‑Kp outbreak 
causing untreatable infections descriptively correlated with bacterial genomes. Hospital‑wide 
surveillance of PCR‑Kp was initiated in December‑2014, after the first detection of a K. pneumoniae 
phenotype initially classified as PDR, recovered from close spatiotemporal cases of a sentinel 
hospital in Rio de Janeiro. Whole‑genome sequencing of clinical PCR‑Kp was performed to investigate 
similarities and dissimilarities in phylogeny, resistance and virulence genes, plasmid structures and 
genetic polymorphisms. A target phenotypic profile was detected in 10% (12/117) of the tested K. 
pneumoniae complex bacteria recovered from patients (8.5%, 8/94) who had epidemiological links 
and were involved in intractable infections and death, with combined therapeutic drugs failing to 
meet synergy. Two resistant bacterial clades belong to the same transmission cluster (ST437) or might 
have different sources (ST11). The severity of infection was likely related to patients’ comorbidities, 
lack of antimicrobial therapy and predicted bacterial genes related to high resistance, survival, and 
proliferation. This report contributes to the actual knowledge about the natural history of PCR‑Kp 
infection, while reporting from a time when there were no licensed drugs in the world to treat some of 
these infections. More studies comparing clinical findings with bacterial genetic markers during clonal 
spread are needed.
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Abbreviations
AMR  Antimicrobial resistance
bla  Beta-lactamase
CC258  Clonal complex 258
CCBH  Culture collection of hospital bacteria
CFU  Colony forming unit
CRE  Carbapenem-resistant Enterobacteriaceae
CR-Kp  Carbapenem-resistant K. pneumoniae
CTX-M  Cefotaximase-Munich
CZA  Ceftazidime-avibactam
DNA  Deoxyribonucleic acid
GIS  Geographic Information System
HICC  Hospital Infection Control Committee
hvKp  Hypervirulence K. pneumoniae
ICE  Integrative conjugal elements
ICEKp10  Integrative conjugative element 10
ICU  Intensive care unit
ID-ICU  Infectious disease ICU
KPC-2  K. pneumoniae Carbapenemase 2
MDR  Multidrug resistant
MIC  Minimum inhibitory concentration
MLST  Multi-locus sequences type
MS-ICU  Medical-surgical intensive-care unit
NCBI  National Biotechnology Information Center
NDM-1  New Delhi metallo-beta-lactamase 1
ompK  Outer membrane protein K
ORION  Outbreak Reports and Intervention Studies of Nosocomial infection
OXA-48  Oxacillinase-48-like carbapenemases
PCR  Polymerase chain reaction
PCR-Kp  Polymyxin-carbapenem-resistant K. pneumoniae
PDR  Pan-drug resistant
PFGE  Pulsed field gel electrophoresis
SNP  Single nucleotide polymorphism
ST  Sequences type
USA  United State of America
VAP  Ventilator-associated pneumonia
WGS  Whole-genome sequencing
Ybt  Yersiniabactin
XDR  Extensively-drug resistant

At present, the dissemination of polymyxin-carbapenem-resistant Klebsiella pneumoniae (PCR-Kp) precludes 
treatment, posing a greater risk to human health, especially in low- and middle-income countries with limited 
access to newly developed  drugs1. The most prevalent mechanism of carbapenem resistance is the production 
of carbapenemase, in which the enzyme hydrolyzes not only carbapenems but also several other beta-lactam 
 antibiotics2. Carbapenemase-encoding plasmids are frequently vectors of resistance determinants for other anti-
microbial classes, such as aminoglycosides and  fluoroquinolones3. Resistance to polymyxins comprises chromo-
somal mutations or acquisition of the mcr-1  gene4–6, leading to extensive (XDR)- and pan (PDR)-drug resistant 
phenotypes among K. pneumoniae isolates.

Lethal outbreaks caused by PCR-Kp emerged as multilocus sequence type (MLST) 258 in the USA in  20097, 
ST437 in Brazil in 2014 and  20158, ST147 and ST101 in Greece in 2014 to  20169, ST11 in Brazil in 2015 and 
 201610 and ST307 in Germany in  201911. ST258, ST11, ST437 and ST101 belong to the world’s most common 
clonal complex 258 (CC258), while the other STs have been growing in  recognition9,11.

Factors associated with hypervirulence in PCR-Kp have recently been described in  Germany11,  India12 and 
 China13, in which characteristics related to hypermucoviscosity and enhanced iron acquisition were detected in 
the strains of the ST307  outbreak11, ST5235 case  series12 and evolved ST11  strains13. The confluence of hyper-
virulence features in carbapenemase-producing K. pneumoniae strains arose in the last decade in intensive 
care patients causing deadly outbreaks in Asia, associated with the acquisition of a large virulence plasmid or 
integrative conjugal elements (ICEs)14. On the other hand, hypervirulent K. pneumoniae (hvKp) strains have 
gained carbapenemase-encoding genes by acquiring resistance  plasmids15. The coexistence of hyperresistance 
and hypervirulence in K. pneumoniae represents a continuous tendency due to the pathogen’s ability to adapt to 
environmental conditions and exchange genetic  material11,14,15.

In this study, we report a lethal outbreak caused by K. pneumoniae with concomitant resistance to carbapenem 
and polymyxin, corroborated by antimicrobial synergy testing, in a tertiary public hospital in Rio de  Janeiro8, 
in which all K. pneumoniae complex phenotypes were prospectively followed and classified according to pub-
lished  definitions16. Phylogenetic analysis and a detailed investigation of genetic similarities and dissimilarities 
in resistance and virulence genes, plasmid structures and polymorphisms of the clinical PCR-Kp (target resist-
ance) were analyzed also considering clinical and epidemiological characteristics of infected patients, and the 
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spatial monitoring  methodology17. This approach aimed to improve the understanding of infectious processes 
and outbreaks caused by PCR-Kp.

Results
Emergence of PCR‑Kp. The distribution of the antimicrobial susceptibility profile of the K. pneumoniae 
complex among a total of 353 nonrepetitive isolates from 196 clinical samples and 157 surveillance rectal swabs 
from 258 hospitalized patients is shown in Fig. 1. Supplementary Algorithm 1 shows K. pneumoniae complex 
isolates investigated according to the type of sample (clinical or surveillance) and resistance profile to carbapen-
ems and polymyxins.

Carbapenem-resistant (meropenem, imipenem or ertapenem-intermediate/resistant) K. pneumoniae (CR-Kp) 
complex isolates were detected in 41% (64/157) of rectal swabs. In contrast, 93 (93/157, 59%) non-CR extended 
spectrum beta-lactamase (ESBL)-positive K. pneumoniae complex isolates comprised the remaining surveillance 
rectal swabs. Possible-PDR (n = 11) or possible-XDR (n = 38) patterns, according to the mentioned published 
definitions, were found in 77% (49/64) of CR-Kp complex strains from rectal swabs. Target concomitant resist-
ance (CR-Kp complex isolates screened positive for resistance to polymyxins) was detected in 9% (11/128) of 
the swabs tested for any carbapenem and polymyxin through the Vitek-2 system (Biomérieux). These isolates 
corresponded to 17% (11/64) of CR-Kp complex recovered from surveillance rectal swabs. MICs for polymyxins 
and carbapenems were greater than or equal to 16 µg/ml in 82% (9/11) and 100% (11/11) of isolates, respectively, 
and were routinely retrieved from patients admitted to the medical-surgical intensive-care unit (MS-ICU) (n = 10) 
or in a surgical ward (n = 1), between January and April 2015 (n = 10) and in August 2015 (n = 1). None of the 
rectal swab isolates were preserved for additional tests (Supplementary Algorithm 1).

Among 196 clinical K. pneumoniae complex detected in 167 patients, 21% (41/196) of isolates had: (1) a 
single susceptible profile to ceftazidime-avibactam (CZA) confirmed later (n = 2 index strains) and a possible-
PDR profile (n = 2 strains) recovered from the index cases during hospitalization in the infectious diseases ICU 
(n = 1 strain) and MS-ICU (n = 3 strains); and (2) possible-PDR (n = 3 strains) and possible-XDR (n = 34 strains) 
patterns found in isolates from other patients in the MS-ICU (n = 16 patients) and in the adult medical (n = 13) 
and surgical (n = 9) wards (Fig. 1). These strains were isolated from blood (21%, 12/58), respiratory secretions 
(46%, 6/13), urine (24%, 20/83) and other clinical samples (7%, 3/42). A high carbapenem minimum inhibitory 
concentration (MIC) ≥ 16 µg/ml was found in 94% (29/31) of all CR-Kp complex isolates detected. Phenotypic 
screening for carbapenemase production yielded positive results with boronic acid plus meropenem in 96% 
(24/25) of the tested CR-Kp complex strains. Screening for polymyxin/colistin resistance with the Vitek-2 system 
(MIC > 2 mg/L) was positive in 10% (12/117) of the isolates tested (56 isolates from blood, 13 from respiratory 
secretions, 10 from urine and 38 from other materials) with MIC values ≥ 16 mg/L in 82% (9/11) of strains (Fig. 1 
and Supplementary Table 2). In total, we found target isolates (clinical CR-Kp complex isolates screened positive 
for resistance to polymyxins) in 40% (12/30) of CR-Kp strains screened for polymyxin resistance in eight patients 
(Supplementary Algorithm 1). Only seven target strains (7/12, 58%) recovered from clinical samples of seven 
(7/8, 88%) patients were preserved and had their genome analyzed.

Figure 2 shows the monthly incidence density of all K. pneumoniae complex phenotypes and the temporal 
occurrences of laboratory-confirmed PCR-Kp strains (n = 7) detected in preserved clinical samples. Although 
CCBH17440 (case 1) and CCBH17428 (case 2) were the first noticed clinical K. pneumoniae strains with con-
comitant resistance to carbapenems and polymyxins, and initially classified as a possible PDR phenotype, a 
retrospective investigation confirmed this resistance profile screened in blood and secretion samples from a 
patient admitted to the MS-ICU 11 months earlier.

Figure 3 shows a schematic diagram representing patients infected by PCR-Kp (7 cases: 1, 2, 3, 4, 6, 7 and 
8), by unit and period of hospitalization, including case 5 information, in which the target isolate has not been 
preserved for further testing. The opportunities for transmission in ICU and non-ICU wards were investigated by 
the hospital’s geographic information system (GIS) (Fig. 4), showing the spatial distribution of CR-Kp complex 
and the flow of cases infected by PCR-Kp.

Complete report of index cases and characteristics of patients with target profiles. The com-
plete report of the first two cases, who had close spatiotemporal links (index cases), and the summary of clinical 
and epidemiological characteristics of all patients infected by target PCR-Kp complex isolate are described in 
the Supplementary file (Complete Report of Index Cases and Supplementary Table 1). Three patients (cases 2, 
3 and 6) had prior rectal colonization with K. pneumoniae complex displaying the target phenotypic profile and 
case 8 was previously colonized with carbapenem-resistant Enterobacteriaceae (CRE) (Supplementary Table 1). 
Urinary tract infection was responsible for half of the occurrences (n = 4), followed by ventilator-associated 
pneumonia (VAP, n = 2), catheter-related bloodstream infection (n = 1) and surgical site infection (n = 1). A high 
proportion of the cases presented sepsis (6/8, 75%), progressing to an early (within four days of strain detection, 
in cases 1, 3, and 5) or hospital death (5/8, 63%).

Antibiotic susceptibility phenotype, carbapenemase production, pulsed field gel electropho‑
resis (PFGE) and MLST genotypes of target PCR‑Kp. Supplementary Table 2 shows the antimicrobial 
susceptibility profile of all preserved PCR-Kp isolates (n = 7). Unpreserved K. pneumoniae complex isolates (n = 5 
strains) screened as PCR from cases 2, 4, 5 and 6 are also shown in this Table.

CCBH17440 and CCBH17428 were the only proven strains with an XDR pattern due to the susceptibility 
revealed to CZA only (single susceptible profile). The MIC values of CZA against these isolates were 0.5 mg/L. 
The MIC was highly elevated for most of the drugs tested, except for aminoglycosides (5/12, 42%) and tigecycline 
(9%, 1/11), to which few strains showed phenotypic susceptibility (Supplementary Table 2). All preserved strains 
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Figure 1.  Antimicrobial susceptibility profile of K. pneumoniae complex isolates from clinical (A) and 
surveillance samples (B), according to Magiorakos et al. (2012)  definitions16, December 2014 to August 
2015, federal tertiary hospital, Rio de Janeiro, Brazil. Target clinical polymyxin-carbapenem-resistant K. 
pneumoniae strains of distinct MLST recovered from the studied cases are presented: ST437 strains highlighted 
in red; ST11 highlighted in blue. MDR multidrug resistant, MLST multilocus sequence typing, MRSA 
methicillin-resistant Staphylococcus aureus, SSP single susceptible profile, XDR extensively-drug resistant, PDR 
pandrug resistant.
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Figure 1.  (continued)
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Figure 2.  Incidence density of K. pneumoniae complex phenotypes detected in clinical samples/1000 patient-
days, hospital-wide surveillance (n = 196 isolates; median of 22 isolates per month, range 17–26). The temporal 
occurrences of cases with polymyxin/carbapenem-resistant K. pneumoniae strains are represented with red 
circles (CCBH #/case #) over their corresponding phenotype curves. Case number in order of strain detection. 
Superscript a: not preserved K. pneumoniae complex isolate of case 5, that displayed carbapenem resistance 
and had positive screening for polymyxin resistance. CZA-SSP ceftazidime-avibactam single susceptible profile, 
MDR multidrug resistant, XDR extensively drug resistant, PDR pandrug resistant.
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Figure 3.  Timeline of infection. Gantt chart representing the unit and period of hospitalization of patients 
(cases 1–4 and 6–8) infected with polymyxin-carbapenem-resistant K. pneumoniae (PCR-Kp) of distinct 
MLST (ST437 strains, highlighted in red; ST11, in blue), during the 9 months of clinical sample surveillance 
from December 2014 to August 2015. Kp complex isolate screened as PCR profile from case 5 was not preserved 
for additional tests. Case number in order of strain detection. CRE carbapenem-resistant Enterobacteriaceae, 
ICU intensive care unit, MLST multilocus sequence typing; XDR, extensively drug-resistant.

Figure 4.  Space–time monthly distribution of patients harboring the carbapenem-resistant K. pneumoniae (CR-
Kp) species complex and flow of cases (1–8) with polymyxin-carbapenem-resistant K. pneumoniae (PCR-Kp), 
by the hospital’s Geographic Information  System17. Thematic hospital map in QGIS format (version 2.18, 
Open-Source Geospatial Foundation), federal tertiary hospital, Rio de Janeiro, December 2014 to August 
 201517. The ward number is positioned in the center of its respective physical area. Patient numbers in 
red (ST437 PCR-Kp cases) or blue circles (ST11 PCR-Kp cases) ordered by the date of strain detection. K. 
pneumoniae complex isolate screened by the Vitek-2 system as PCR phenotype from case 5 (pink circle) was 
not preserved, but its AMR pattern (see Supplementary Table 2) was compatible with ST437 strains. The blue 
and red arrows represent the transfer of PCR-Kp infected cases before and after the detection of the PCR-Kp 
isolate, respectively. The dashed red arrow indicates that this patient was likely carrying PCR-Kp, although it 
had not yet been detected (see Table 1, PCR-Kp of cases 1 and 2 forms a subcluster of transmission). The dashed 
black arrow indicates that wards pertain to the same clinic or work as the same ICU. None of the cases had the 
opportunity for direct transmission to another case, considering the hospitalization unit and period. Superscript 
a: the number of patients in each ward or unit was counted monthly for the period of hospitalization after the 
first detection of CR-Kp complex.
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had a positive carbapenemase inhibition test and amplified blaKPC, except CCBH 17724 (recovered from case 
3), which did not amplify any carbapenemase gene investigated by conventional multiplex polymerase chain 
reaction (PCR), despite being positive for phenotypic detection of carbapenemase production in both hospital 
and research laboratories. These strains comprise three PFGE profiles and two MLST, ST437 (n = 5 strains from 
cases 1, 2, 4, 6 and 8) and ST11 (n = 2 strains, from cases 3 and 7) (Supplementary Fig. 1).

Genomic features and phylogeny of clinical ST437 and ST11 PCR‑Kp. Supplementary Table  3 
provides the genomic characteristics of each isolate. Strain ST437 CCBH19496 (case 4) was excluded from the 
analysis due to experimental problems. The phylogenetic tree and Mash distance show the close evolutionary 
relationships among strains from each ST and confirmed the clonal outbreak (Fig. 5 and Table 1). All strains 
have a strong match (Mash distance ≤ 0.02), and cases indexes’ ST437 isolates forming a subcluster (Mash dis-
tance < 0.0003). Very few genetic variations were found within ST437 isolates (Tables 1 and 2), but not within 
ST11 strains (Table 1), despite time differences between the first and last isolates in each clade.

Compared to the genome sequence of the same ST, retrieved from the National Biotechnology Informa-
tion Center (NCBI, USA) (Fig. 5), our ST437 strains are closely related and have a strong match (Mash dis-
tances < 0.005) to ST437 K. pneumoniae 3111F, carrying the mcr-1 and blaKPC-2 genes, obtained from rectal swabs 
of a hospitalized patient in Porto Alegre city, southern Brazil, in July  20146. In addition, K. pneumoniae 704SK6 
encoding OXA-48 and CTX-M-15 from wastewater near Basel, Switzerland, in December 2015, has genetic 

Figure 5.  Phylogenetic inference. Neighbor-joining (NJ) distance tree representing phylogenetic relationships 
between polymyxin-carbapenem-resistant K. pneumoniae of the two distinct MLSTs, ST437 (red) and ST11 
(blue), and publicly available genomic sequences 3111F, 704SK6, HS11286 and MS6671 (GenBank assembly 
accession numbers GCA_002251715.1, GCA_002211665.1, GCA_00240185.2 and GCA_001455995.1, 
respectively). MS6671 was selected as an outgroup. Numbers displayed in internal branches correspond to 
bootstrap values. The scale represents the NJ distance.

Table 1.  Genetic variations (GV) and Mash distance between polymyxin-carbapenem-resistant K. pneumoniae 
strains (ST437 in red and ST11 in blue). Case number and respective strain in order of detection. a Index strains; 
bOndov et al.,  201639; cindex strains form a subcluster of transmission (Mash distance < 0.0003) COMPLEX 
combination of SNP and MNP, DEL deletion, INS insertion, MLST multilocus sequence typing, MNP multiple 
nucleotide polymorphism, NA not applicable, SNP single nucleotide polymorphism.

876321#esaC
CCBH Strain # 17440a 17428 17724 19867 19868 19771

MLST 437 437 11 437 11 437
Reference strain 17440 17440 NA 17440 17724 17440
GV-DEL  NA 2 NA 2 12 2
GV-INS  NA 1 NA 2 6 1
GV-MNP NA 0 NA 0 14 0
GV-SNP  NA 4 NA 15 1,218 8
GV-COMPLEX NA 0 NA 0 326 0
GV Total NA 7 NA 19 1,576 11
Mash distanceb NA 0.00005c NA 0.001 0.003 0.001
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Clinical and Epidemiological Characteristics of Patients infected/colonized by ST437 
strains Case 1 Case 2 Case 6 Case 8

Age (years) 72 25 85 70

Gender male female female female

Diabetes mellitus no no no yes

Renal failure chronic acute acute acute 
exacerbatio

n
Previous positive rectal swab Noa PCR-Kp 

13 days
PCR-Kp 
56 days

CRE
93 and 122 

days
Sample collection date 12/14/2

014
2/3/201

5
6/23/201

5
8/5/2015

Clinical sample blood tracheal 
aspirate

urine urine

Diagnosis Sepsis Sepsis Sepsis UTI

Infectious source CRBSI VAP UTI UTI

Nosocomial diarrhea during infection yes yes yes yes

Outcome ICU 
death

ICU 
death

Hospital 
discharg

e

Possible 
XDR Kp 

UTI sepsis 
/Hospital 

death
Time to outcome (days) 4 38 161 25/54

Resistance and Virulence Scores, Number of Plasmid Structures and Polymorphism 
Profiles of ST437 Strainsb

CCBH
17440

CCBH1
7428

CCBH1
9867

CCBH197
71

Resistance Score 3 3 3 3
Virulence Score 0 0 0 0
Plasmid structure, n 8 11 19 7
Genetic variation (total), n Refere

nce 7 19 11

G
V

Gen
e

Type of 
mutatio

n

Protein 
name

Predicted Function in 
Literature

Stages of 
bacterial 
infection 
possibly 
relatedc

Refer
ral 

Litera
ture

Refere
nce (R) 
strain

Amino acid substitution/Effectd

S
N
P

mae
B

missens
e

NADP-
depende
nt malic 
enzyme

bifunctional malic enzyme 
oxidoreductase/ 
phosphotransacetylase, 
malate metabolic process, 
metal binding, 
multifunctional enzyme. 
Involved in protection 
against oxidative stress 
and also in the transport 
of substrates through the 
metabolic pathways in 
Escherichia coli

Takah
ashi-
Íñigue
z et 
al.
201618

R

A:112 
C:0/

c.316G>
T 

p.Val10
6Leu

A:149 
C:0/

c.316G>
T 

p.Val10
6Leu

A:113 C:1/
c.316G>T 
p.Val106L

eu

S
N
P

exu
T_1

missens
e

hexuron
ate 
transpor
ter

transmembrane transporter 
activity. Sugar acid 
hexuronate as energy 
source implicated in the 
colonization of E. coli in 
the mammalian gut

Singh 
et al.
201919

R

A:128 
T:0/

c.759A>
T 

p.Glu25
3Asp

A:121 
T:0/

c.759A>
T 

p.Glu25
3Asp

A:131 T:0/
c.759A>T 
p.Glu253A

sp

S
N
P

virB
9

synony
mous

type IV 
secretio
n system 
protein 
virB9

P-type conjugative transfer 
protein VirB9. Role 
in horizontal gene 
transfer, conjugation, 
DNA exchange and 
delivering proteins to 
target cells

UniPr
ot 
Conso
rtium 
202120

R

- G:136 
A:6/

c.837T>
C 

p.Gly27
9Gly

-

S
N
P

ybdZ missens
e

enteroba
ctin 
biosynth
esis 
protein 
YbdZ

enterobactin biosynthesis 
protein-encoding ybdZ, 
involved in the synthesis 
of the enterobactin, 
mutations in ybdZ
missense_variant 
c.88C>T p.His30Tyr 
showed increased iron 
binding compared to 
their WT counterpart

Marsh 
et al. 
201921

R

- T:164 
G:0/

c.24C>
A 

p.Asp8G
lu

S
N
P

virB
11

synony
mous

type IV 
secretio
n system 
protein 
VirB11

mediate horizontal gene 
transfer, facilitates the 
adaptation to 
environmental changes 
and spread of antibiotic 
resistance among 
bacteria

Walld
en et 
al. 
201022

; 
UniPr
ot 
Conso
rtium 
202120

R

- T:186 
C:9/

c.843G>
A 

p.Lys28
1Lys 

-

Table 2.  (continued)
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Table 2.  Clinical, epidemiological and genetic characteristics of ST437 polymyxin-resistant carbapenemase-
producing K. pneumoniae strains and SNP variations possibly related to specific stages of bacterial infection. 
Case number and respective strain in order of detection. a Rectal swab negative for carbapenem-resistant 
Enterobacteriaceae (CRE) on 12/15/2014. b Not discriminating mutations that identify hypothetical or undefined 
proteins. c Specific stages of bacterial infection in which the mutated gene could be related, according to the 
referral literature, as: adherence and mucosal colonization (yellow), invasion and systemic infection (pink) and 
resistance, survival or proliferation (green). d Same mutation is highlighted in gray color in Table cells. OMVs 
outer membrane vesicles, PCR-Kp polymyxin-carbapenem-resistant K. pneumoniae.

S
N
P

virB
11

missens
e

type IV 
secretio
n system 
protein 
VirB11

mediate horizontal gene 
transfer, facilitates the 
adaptation to 
environmental changes 
and spread of antibiotic 
resistance among 
bacteria

Walld
en et 
al. 
201022

; 
UniPr
ot 
Conso
rtium 
202120

R

- T:167 
G:4/

c.340C>
A 

p.Arg11
4Ser

S
N
P

virB
10

synony
mous

protein 
virB10

inner membrane protein 
forms channel for type 
IV secretion of T-DNA 
complex (VirB10) in 
bacteria

Walld
en et 
al. 
201022

; 
UniPr
ot 
Conso
rtium 
202120

R

- A:188 
G:6/

c.1047C
>T 

p.Leu34
9Leu

-

S
N
P

pho
A

missens
e

alkaline 
phospha
tase

alkaline phosphatase 
activity, supply inorganic 
phosphate when the 
environment is deprived 
of this compound. Mutant 
E. coli lacking alkaline 
phosphatase survive quite 
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profiles (Mash distances varying from 0.0046 to 0.0056) similar to those of our ST437  strains30. CCBH19868 
and CCBH17724 have a strong match (Mash distance < 0.005) with a ST11 KPC-2-producing isolate (HS11286) 
collected from a sputum specimen of an inpatient in Shanghai, China, in  201131, which is closely related to the 
worldwide-dominant CR-Kp clone  ST25831.

Hyperresistance and virulence profiles of clinical ST437 and ST11 PCR‑Kp by whole‑genome 
sequencing (WGS). All organisms harbored several antimicrobial resistance (AMR) genes related to all 
antimicrobial classes (Supplementary Table 4) confirming the hyperresistant phenotype of these strains (Sup-
plementary Table 2). The blaKPC-2 gene was present in all strains except ST11 CCBH17724 (case 3), classified 
as a carbapenemase producer due to positive carbapenemase-phenotypic test. However, all strains presented 
extended-spectrum beta-lactamase genes, which along with ompK36GD or ompK35 porin mutations explain 
their high carbapenem resistance level. Polymyxin resistance was associated with mgrB truncation and the 
absence of pmrB in all isolates. See the complete AMR genetic profile and references in Supplementary Table 4 
and Excel file 1.

We reported several virulence genes and features, including SNPs, according to the main biological char-
acteristics predicted in the literature, possibly leading to specific stages of PCR-Kp infection (Supplementary 
Table 5, Excel file 1 and Table 2). The capsule (K) and O antigen loci of ST437 and ST11 isolates were predicted 
as KL36 or KL27 and O4 or O2 variant 2 (O2v2) with global identities of ≥ 99.88% and ≥ 98.43%, respectively, 
according to Kleborate(default settings). Index strains (CCBH17440 and CCBH17428) have a mucoid aspect, 
but the string-test performed only in these strains was negative, and no hypermucoviscosity genes were detected 
in the studied genomes. All strains present similar siderophores enterobactin and salmochelin (65% of sequence 
identity and 100% sequence coverage), and highly similar aerobactin receptor iutA (99–100% global identity), 
but no aerobactin gene was found. Complete yersiniabactin and incomplete genotoxin colibactin clusters (clbS 
was not detected) were found in ST11 CCBH19868 (case 7). The complete tellurite operon does not punctuate 
the virulence score but has been associated with hypervirulence, heavy metal resistance, infection, and resist-
ance to stress induced by the indigenous gut microbiota during colonization. This operon was detected in all 
ST437 strains, but was found incomplete in ST11 members (Supplementary Table 5 and Excel file 1). ST11 
CCBH19868 (case 7) has the highest virulence and resistance scores, while the other strains have zero virulence 
and maximum resistance scores.

Plasmid structures of clinical PCR‑Kp from CC258 ST437 and ST11. Plasmid types and incompat-
ibility groups, with the exception of Col440I and Col(pHAD28), which were found in all samples, differentiated 
STs but were similar within the STs (Supplementary Tables 6 and 7). Therefore, all ST437 strains shared some 
plasmid contigs of different reference types and replicons: IncFIB(pNDM-Mar), IncHI1B(pNDM-MAR) and 
IncFIB(pKPHS1). The IncN_1 group was common in the majority of ST437 strains. The IncA/C2 plasmid was 
detected only in ST437 CCBH19867 (case 6), which had the highest number of plasmid contigs, types and repli-
cons. Similarly, both ST11 strains shared some plasmid contigs of different types and replicons (Supplementary 
Table 7).

Non‑sustained antimicrobial combination synergy effect in the index strains. Meropenem 
combined with colistin decreased the bacterial burden by ≥ 2  log10 cfu/mL compared to the most active single 
agent at 24 h against both index strains tested samples. The combination failed to meet the definition of synergy 
due to achieving < 1  log10 cfu/mL reduction from the initial inoculum at 24 h. The addition of daptomycin did 
not seem to improve the bactericidal activity of meropenem plus colistin against either of the isolates (Supple-
mentary Fig. 2). Other antimicrobial combination therapies were not tested.

Untreatable infections. Both index cases (cases 1 and 2) fulfilled the criteria for untreatable infection 
caused by ST437 strains due to the unavailability of active drugs to treat their systemic infections. Similarly, case 
5 was diagnosed with an untreatable infection caused by an unpreserved K. pneumoniae complex screened as 
PCR recovered from bronchoalveolar lavage (>  106 CFU), displaying non-susceptibility to all antibiotics among 
all categories recommended to treat VAP.

Discussion
In this full report, we describe the epidemic profile of PCR-Kp in which two index ST437 strains character-
ized as a PDR profile proved later to be susceptible to one of the novel cephalosporin/beta-lactamase inhibitor 
combinations that was not licensed at the time of study. Although uncommonly  reported32, there were no drugs 
approved to treat some of these infections globally at the time of these occurrences.

These strains caused severe systemic infections, with the index ST437 strains showing non-sustained in vitro 
synergistic effects of the combination therapy most commonly used for CR-Kp8. These factors, together with the 
epidemiological context and significant genetic factors found in these representatives of CC258, contributed to 
the warning about this successful pathogen with highly resistant profiles and basic virulence, triggering rapid 
and difficult-to-treat infections, mainly fatal or incurable in a Brazilian sentinel  hospital8.

The availability of sequenced genomes was fundamental for understanding the spread of clinical PCR-Kp in 
the surveyed hospital and to conclude this  report8. During nine-months, in this endemic state of highly elevated 
MICs of meropenem among CR-Kp, it was possible to detect the clonal aspect and confirm the outbreak by a 
higher resistance profile (PCR-Kp), with a significant proportion of cases reaching the definition of intractable 
infections (38%, 3/8), early death (within four days after strain detection, 38%, 3/8) and hospital death (63%, 5/8).
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In addition to the overuse of antimicrobials to treat nosocomial infections, which are the principal drivers in 
the development of drug-resistant  pathogens33, as exemplified by the complete report of the index cases (Sup-
plementary file), the temporal and spatial occurrences between cases and the clonal relatedness between strains 
corroborate the cross-transmission of extremely resistant K. pneumoniae. All patients infected with clonal ST437 
PCR-Kp subsequently used the same bed in the infectious disease (ID)-ICU (subcluster of transmission) or the 
nearby bed at the adult MS-ICU during the same period or with an interval of days, a month or two. Patients 
infected by ST11 strains were admitted to the same clinical ward five months apart. Strains of both STs circulated 
concomitantly in the MS-ICU, surgical and general medicine wards during this study period, or could be the 
hospital reentrance of closely related ST11  strains34. In fact, ST437 and ST11 CR-Kp were previously described 
as prevalent in hospitals in Rio de Janeiro, Brazil, with low level (MIC50/90: 2/4 μg/mL) colistin co-resistance 
in 14%35, contrasting with higher MICs by 40% in our study.

Some of the cases had several opportunities for transmission due to prolonged hospital stays. However, none 
of the cases transmitted PCR-Kp directly to each other, which was demonstrated through the hospital spatial 
 methodology17. Therefore, silent colonization is likely during this  outbreak36, but these may also indicate infec-
tion control. However, the complex dynamics of K. pneumoniae transmission cannot be investigated without 
massive rectal swab surveillance and preservation of rectal swab  isolates36,37. In addition, the Vitek-2 system 
tends to underestimate MICs for polymyxin resistant isolates and is no longer recommended in clinical  settings38. 
Despite these limitations, although more occurrences would be expected, genetic tracking of clinical samples 
was enough to document the outbreak and patient-to-patient transmission, by confirming the epidemiological 
and genetic link between isolates.

ST437 genomes displayed reciprocal SNP occurrences below the threshold of 16  SNP39 for interhospital 
 transmission40,41. Therefore, we confirmed the same transmission cluster among patients infected by ST437 
PCR-Kp, which extended their occurrences throughout the entire period of surveillance. The first two ST437 
isolates even formed a subcluster with a Mash distance far below the cut-off of 0.000342, corroborating the ini-
tial epidemiological hypothesis of a common source while these patients occupied the same ID-ICU bed. The 
substantial similarity between the ST11 strains (Mash distance = 0.003) indicates a common ancestor for these 
bacteria. However, the higher genetic polymorphism among ST11 strains at five months apart, compared to the 
small genetic variability among ST437 strains over eight months, suggests a different source of ST11 PCR-Kp 
acquisition.

The comparison of our ST437 strains with the genomes from the same ST retrieved from NCBI, one recovered 
from a rectal swab sample of a patient in southern Brazil in  20146 and the other from a wastewater sampled in 
Switzerland in  201530, contributes to discussing the origin or adaptation of ST437 strains in the gastrointestinal 
tract, but possibly from our hospital  environment43. Environmental contamination is likely since some of the 
reported cases had unwieldy diarrhea while colonized and infected with ST437 and ST11 PCR-Kp. Therefore, the 
lack of sampling environmental surface and healthcare workers’ hands are significant limitations of our  study36.

Regarding diarrhea, we did not find enterotoxigenic genes encoded in the genome sequence of our samples, 
as previously detected in K. pneumoniae and other members of the Enterobacteriaceae family by primer-specific 
PCR  methods44. K. pneumoniae colonization has been implicated in chronic diseases of the gastrointestinal tract, 
including inflammatory bowel disease and colorectal  cancer45. Moreover, in animal models, the transmission of 
K. pneumoniae requires contact with feces, and the supershedder phenotype, with increased efficient transmis-
sion, occurs and persists while on antibiotic  treatment37.

Types of infection correspond to high rates of gastrointestinal colonization and the prevalence of hospital-
acquired infections caused by CR-Kp46. Although the number of cases was too low, we observed the early death 
over late or no death in patients without previous rectal colonization (67% versus 0%). This observation should 
be further investigated, as well as its relationship with the source of infection, since a more severe infection 
would be expected in patients who have direct contact with an infectious agent of exogenous origin, rather than 
endogenous origin, such as the gastrointestinal tract.

ICU admission, tracheal cannula and prior exposure to carbapenem antibiotics have been described as risk 
factors for infection with XDR CR-Kp susceptible to  polymyxin47. In turn, previous treatment with colistin, 
preceding colonization of resistant K. pneumoniae, and a Charlson score of ≥ 3 were correlated with colistin-
resistant KPC-producing K. pneumoniae  infection48. All these factors were invariably or variably present in our 
reported cases, typifying the burden of AMR, affecting primarily immunocompromised patients, but also an 
young woman who became ill and required hospitalization.

The significant variability of AMR phenotypes found in K. pneumoniae complex isolates may indicate great 
diversity in MLST types throughout the institution. In fact, among 30 unselected clinical and surveillance K. 
pneumoniae isolates from inpatients ˗ 18 CR-Kp isolates preserved during 2015–2016—we found 23 MLST (eight 
new STs), and 19 PFGE types among 20 tested (data not shown). This high genetic variability may indicate high-
level horizontal genetic  transfer49 in a pressured hospital environment due to high antimicrobial consumption.

Resistance genes detected against different antimicrobial classes corroborate the resistance profile of the 
strains. However, predicting the phenotype of antimicrobial susceptibility from bacterial genetic data is chal-
lenging, because it is based on the quality and completeness of the existing information about the genomic 
determinants of  resistance50,51. Despite the enormous advances in  bioinformatics20,50,52,53, it was noted that no 
database includes complete phenotypic profile data associated with the AMR gene  sequence50,51. The resistance 
phenotype conferred by the presence of some genes must be inferred from exhaustive searches in the literature 
(Supplementary Table 4 and Supplementary Table 4A)50,51.

The performance of WGS to predict beta-lactam, fluoroquinolone and aminoglycoside susceptibility has 
been considered excellent for K. pneumoniae50. Other carbapenemases have been described in K. pneumonia 
as  well54,55, but we were not able to confirm any carbapenemase encoded in an ST11 strain by manual curation, 
despite the evidence of positive carbapenemase screening tests, which may indicate a novel carbapenemase. 
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ST11 strains have aac(6’)Ib-cr and aadA2 genes but are reported to be inversely susceptible to gentamycin but 
nonsusceptible to  amikacin50. We did not detect the plasmidial mcr-1 gene in the analyzed genomes, but the 
genes mgrB and the component system pmrA/pmrB were truncated or absent in all strains, which are related to 
the genetic mechanisms associated with polymyxin B/E  resistance56,57. Val130 to Ala mutation in oqxR has been 
reported in both tigecycline-nonsusceptible and tigecycline-susceptible  strains58, but the lack of knowledge about 
the expression levels of the efflux pump genes detected may have precluded the identification of this resistance 
 mechanism59.

Even more challenging is choose to correlate virulence gene functions inferred from the literature as one 
of our approaches (Supplementary Table 5 and Supplementary Table 5A), because precise predictions of gene 
functions may not be possible due to the complexities in the subjacent genetic mechanisms not yet completely 
 comprehended52. Despite the limitations, our purpose was only to raise hypotheses, through the descriptive com-
parison of bacterial genomics with the clinical and epidemiological characteristics of affected patients. Despite 
the severity of infections, most of the genetic structures found in PCR-Kp are related to resistance, survival, and 
proliferation in the revised literature (Supplementary Table 5 green color). The same pattern of genetic func-
tions seems to have predominated in SNP variations among ST437 strains (Table 2, green color), although most 
mutations are missense, and the resulting protein structures and functions were not investigated in this  study60.

Virulence genes and other features found in PCR-Kp indicate several putative basic skills to invade tissue 
and persist in the hospital environment. These abilities were related in different strains to the presence of genetic 
determinants of the capsule, adhesins, surface attachment, biofilm formation, efficient bacterial gastrointestinal 
colonization, siderophores, outer membrane vesicles, signaling, secretion, transport, efflux systems, regulation, 
endotoxin, serum resistance, immune evasion, intracellular survival, heavy metal resistance and AMR (refer-
ences in the Supplementary files), imposing additional challenges for the treatment and control of nosocomial 
infections caused by PCR-Kp. Most of these factors are common to all K. pneumoniae and conserved in the 
chromosome as core  genes61,62.

Among our strains, of particular importance is the additional encoding siderophore system, namely yers-
iniabactin (Ybt)62,63, which enhances the ability to scavenge iron from its surrounding environment for rapid 
growth and subsequent invasion, and genotoxin colibactin  clusters45, detected in CCBH 19868 only. These genes 
are encoded by loci usually located within a mobilized genetic element detected in this strain (ICEKp10), which 
is a concern due to its potential of being mobilized independently between enterobacteria by horizontal gene 
transfer or being stable within K. pneumoniae lineages by vertical  inheritance63–65.

Last but not least, we would like to emphasize the importance of having in mind not only the presence or 
absence of a given gene, but also if it encodes a full-length protein and what clinical implication it may  have52. 
Published resistance and virulence scores are not intended to predict clinical virulence or antibiotic  resistance52. 
However, our findings related to the ST11 CCBH19868 strain are at least intriguing. It was ranked with a com-
paratively higher virulence score, but detected with an incomplete colibactin gene  cluster45,66, causing UTI only in 
a 65-year-old man with diabetes mellitus and chronic renal failure, who was not admitted to the ICU, discharged 
early and treated on an outpatient basis. Consequently, more studies are needed to compare the clinical and epide-
miological findings of infected patients with bacterial genetic markers of virulence, resistance, and pathogenicity.

These lineages have a selective advantage in hospitals, where antimicrobial consumption is high and the 
environment has abundant opportunities for cross-transmission of microorganisms, along with the potential 
for dissemination of resistance and virulence genes through transmissible plasmids. The ability of resistance and 
virulence plasmids to be maintained in K. pneumoniae lineages suggests that once established in clones associ-
ated with hospital outbreaks, they may become relatively  stable61. The similarities and differences in resistance, 
virulence, plasmid profiles and genetic polymorphism between our strains of the same clade over nine months 
(Supplementary Tables 4–7 and Table 1) agree with this observation. Two distinct missense mutations in the 
maeB gene (c.316G > T p.Val106Leu), encoding an NADP-dependent malic enzyme, and exuT_1 (c.759A > T 
p.Glu253Asp), coding for a hexuronate transporter, related to resistance, survival or proliferation (green color 
in Table 2) and adherence and mucosal colonization (yellow color in Table 2)18,19 are shared among all ST437 
strains (CCBH17428, CCBH19867, and CCBH19771) compared to the reference ST437 strain (CCBH17440), 
suggesting that these mutations are not random. Since the study period, these descendant lineages likely emerged 
as a persistent hyperresistant and virulent form of K. pneumonia in the study  setting17.

Increased resistance and relatively low virulence are probably the compensatory mechanisms required due to 
the burden associated with the extensive use of antibiotics in which bacteria act to increase fitness and resistance 
to the surrounding environment. Considering that hospitalized patients are generally immunocompromised with 
underlying conditions and invasive procedures, bacteria do not need to raise virulence rather than resistance to 
overcome antimicrobial damage with which these patients are usually treated. In many circumstances, bacteria 
are transported accidentally and directly into the bloodstream or the infectious focus by an invasive procedure 
and do not need to break down barriers to invasion, but only survive in the new environment. Under these 
circumstances, even previous immunocompetent patients are in danger. Therefore, in addition to the patient’s 
comorbidities, the source and route of infection and the microbial load are essential points to be considered in 
studying the genetic structure of bacteria and its association with deadly hospital infection. Moreover, many host, 
environmental, and bacterial factors affecting the virulence phenotype of K. pneumonia remain to be  identified67. 
Experimentation in animals is necessary for characterizing the invading pathogen and the host  response37; this 
type of study has begun to yield information about K. pneumoniae biology and its interaction with the  host37.

The definition of untreatable infections was arbitrary based on clinical and laboratory parameters for sur-
veillance purposes, setting up another limitation. In clinical practice, several interrelated factors of patients, the 
quality of medical care and the pharmacological properties of drugs not considered in this study may interfere 
with untreatable infection. Time-kill analysis typically provides descriptive information on pharmacodynamics 
and complicates the translation of in vitro results to the killing performance of antimicrobial  agents68,69. However, 
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the literature corroborated our findings that infection with PCR-Kp has not benefited from this  combination70. 
Therefore, regimens containing drugs with novel mechanisms of action are necessary for treatment. The inves-
tigation of the triple combination of colistin, meropenem and daptomycin, a lipopeptide agent that carries no 
Gram-negative activity, was advocated by in vitro data showing that it works synergistically against resistant A. 
baumannii71.

Among new drugs, we could assess only CZA against CCBH17440 and CCBH17428. However, it is pos-
sible that drugs such as meropenem-vaboractam, imipenem-cilastatim-relebactam, plazomicin, eravacycline, 
omadacycline, aztreonam-avibactam or cefiderocol might have an effect, or other noninvestigated combination 
 therapies72,73. Susceptibility to CZA was only tested in vitro, and the emergence of resistance to CZA during 
monotherapy mitigated the initial promising  results72. Clinical experiences of CZA combined with colistin or 
amikacin to treat infections caused by XDR Enterobacteriaceae have brought greater attention, presenting a 
clinical success  rate74,75. However, dialysis patients, accounting for 86% of our patients, were at risk of a worse 
 prognosis75.

In conclusion, this report shows what typically happens in hospitals and may help rethink infection control 
strategies, while advising on access to new antimicrobials for the treatment of PCR-Kp infection. Daily monitor-
ing of all microbiological results to detect early emerging resistant phenotypes, guiding infection surveillance and 
control, is an important strategy, but we cannot determine how this contributed to containing the intrahospital 
spread of PCR-Kp during the study. The infection control implemented was insufficient, as described in other 
outbreaks caused by PCR-Kp76, and new cases of colonization and infection have continued to be  reported17. 
The lack of drugs to treat PCR-Kp infections likely increases the risk of bacterial  spread33,37. Controlling cross-
transmission and nosocomial infection by well-equipped, developed, virulent and extensively drug-resistant 
bacteria likely requires strict antimicrobial stewardship and infection control measures beyond the  standard36. 
Hospital-acquired diarrhea in five of our PCR-Kp cases may indicate its containment as part of nosocomial infec-
tion control measures for highly resistant and virulent bacteria that usually colonize the gastrointestinal tract.

Taking everything above into consideration, in addition to the importance given in the literature to the 
confluence of known hypervirulence features in highly resistant bacteria, any K. pneumoniae with a resistance 
score of three should be taken seriously in hospitals. The general abilities to resist the bactericidal activity of 
the serum, and thus survive in the bloodstream, and proliferate under antibiotic pressure by themselves repre-
sent sufficient traces of virulence. Although most of our patients are immunocompromised, slight differences 
in bacterial genome, source and types of infection, and even in prognosis are attractive for future clinical and 
microbiological research in hospitals.

Materials and methods
Hospital‑wide surveillance of K. pneumoniae species complex with concomitant resistance to 
carbapenem and polymyxin. The surveillance was initiated in a 450-bed federal tertiary hospital, located 
in Rio de Janeiro, after the first detection of K. pneumoniae complex strains with a PDR phenotype (CCBH17440 
and CCBH17428) in index cases, who occupied the same bed in the ID-ICU with a five-day interval. During 
the investigation period, from December 2014 to August 2015, we prospectively monitored the antimicrobial 
susceptibility profiles of all K. pneumoniae species complex recovered in clinical and surveillance samples of 
hospitalized patients. Clinical samples were collected from the routine service of attending physicians guided by 
the microbiological protocol implemented throughout the institution by the Hospital Infection Control Com-
mittee (HICC)17. Active surveillance with rectal swabs was performed weekly or every two weeks on a routine 
basis in all ICU patients, and high-risk patients admitted to nonintensive care wards as described  previously17. 
We followed ORION statements in this study  report77 and all methods were performed in accordance with the 
relevant guidelines and regulations.

We classified the susceptibility profile of all K. pneumoniae complex isolates into non-multidrug-resistant 
(non-MDR), multidrug-resistant (MDR), and possible XDR or possible PDR profiles, according to the criteria 
described in Magiorakos et al.  201216. Clinical isolates of K. pneumoniae complex with an initial PDR or XDR 
profile and nonsusceptibility to carbapenems and screened positive for polymyxin resistance (target isolates) 
were preserved for additional microbiological tests. CCBH17440 and CCBH17428 were the only strains tested 
against ceftazidime-avibactam (CZA), an advanced generation cephalosporin. Target isolates from rectal swabs 
could not be preserved during the study period due to the additional workforce required in the hospital micro-
biology laboratory.

To determine the monthly incidence density of clinical K. pneumoniae complex phenotypes per 1000 patient-
days, we considered only newly detected isolates with the specific phenotype (non-MDR, MDR, possible XDR or 
possible PDR) per month, excluding K. pneumoniae complex isolates from the same biological sample collected 
on the same day and all rectal swab isolates.

The space-temporal distribution was also investigated based on patients with a specific phenotype (CRKp 
complex) counted monthly from the day of the first detection to the date of hospital discharge or death, using the 
same method described previously, in which the hospital GIS demonstrated the flow of patients with PCR-Kp17. 
Institutional review boards approved this study with a waiver of informed consent. Although the researchers did 
not interfere with the clinical investigation or hospital surveillance program, all investigations and results were 
reported to the HICC in a timely manner. The hospital infection control program was actively maintained and 
reinforced throughout the study period, following national and international  guidelines17,78,79.

Bacterial identification and susceptibility testing. The bacterial identification and antimicrobial sus-
ceptibility tests performed in the hospital microbiology laboratory were carried out using the Vitek-2 system 
(BioMérieux, France), including those recovered from rectal swabs, which were directly inoculated onto selec-



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6238  | https://doi.org/10.1038/s41598-023-31901-4

www.nature.com/scientificreports/

tive chromogenic media (CHROMagar Co., Paris, France) supplemented with meropenem for the detection of 
CRE. Rectal swabs were also plated on MacConkey agar (Oxoid, Lawrence, USA) to detect ESBL-producing 
Enterobacteriaceae, especially from pediatric units. Screening for carbapenemase production was performed 
with phenylboronic acid, ethylenediaminetetraacetic acid and cloxacillin as  recommended80,81 and previ-
ously  described17. All preserved clinical K. pneumoniae complex strains with the target antimicrobial suscep-
tibility profile (n = 7, CCBH17440, CCBH17428, CCBH17724, CCBH19496, CCBH19867, CCBH19868, and 
CCBH19771) had the species confirmed by classical biochemical tests in Laboratório de Pesquisa em Infecção 
Hospitalar, Oswaldo Cruz Institute, FIOCRUZ. Antibiotic susceptibility testing (Supplementary Table 2) was 
also confirmed using broth microdilution, Etest (Biomérieux) and disk diffusion (Oxoid; Hampshire, UK) meth-
ods according to the Clinical Laboratory Standards Institute (2016) and European Committee on Antimicrobial 
Susceptibility Testing (2016)  criteria82,83. More information on the methods used in antimicrobial susceptibility 
tests is described in the footnotes of Supplementary Table 2.

Detection of carbapenemase genes and molecular typing of target clinical PCR‑Kp. We per-
formed an in-house multiplex PCR assay to detect commonly described carbapenemase genes, blaKPC, blaNDM, 
and blaOXA-48-like, in K. pneumoniae. To assess the genetic relatedness of the isolates, we carried out PFGE of XbaI 
digestion genomic  DNA84 and MLST according to a protocol previously  described85.

Whole‑genome sequencing, genomic analysis, and phylogeny of target clinical PCR‑Kp. The 
complete genomes were extracted using a QIAamp DNA Blood Mini Kit (Qiagen, Germany) and sequenced 
using an Illumina MiSeq platform (Illumina Inc., USA). The genomic library was constructed by transposon 
tagmentation with the Nextera XT DNA Sample Prep kit (Illumina Inc). Sequence reads were then trimmed and 
filtered using a Phred score > 20. The software A5-miseq, an updated pipeline to assemble microbial genomes 
from Illumina MiSeq data, was used for de novo  assembly86.

The assembled scaffolds (CCBH17440, CCBH17428, CCBH17724, CCBH19496, CCBH19867, CCBH19868, 
and CCBH19771) and publicly available genomic sequences (HS11286, MS6671, 704SK6, 3111F) were auto-
matically annotated with rapid prokaryote genome annotation (PROKKA) < https:// github. com/ tseem ann/ 
prokka >87 as follows: prokka kingdom Bacteria genus Klebsiella—species pneumoniae. Annotated assemblies in 
GFF3 format-containing the assembled sequences (produced by Prokka) was used to predict shared orthologous 
protein-coding genes between all bacterial samples, and obtain a multiple sequence alignment of concatenated 
core genes (4,049 genes encoded in at least 99% of the analyzed genomes), with the rapid large-scale prokaryote 
pan-genome analysis (Roary) pipeline < https:// github. com/ sanger- patho gens/ Roary >88, employing MAFFT 
(https:// doi. org/ 10. 1093/ nar/ gkf436, https:// doi. org/ 10. 1093/ molbev/ mst010) to align the sequences.

In silico MLST was carried out using specific platforms (https:// cge. cbs. dtu. dk/ servi ces/ MLST)89. Phylogenetic 
tree reconstruction based on core genome of the analyzed samples was obtained with Molecular Evolution-
ary Genetics Analysis (MEGA) software version X < https:// www. megas oftwa re. net >90, applying the neighbor-
joining  algorithm91. Evolutionary distances were computed using the maximum composite likelihood  method92, 
expressed as the number of base substitutions per site, and 500 bootstrap replicates were applied for statistical 
evaluation. The distance between genomic sequences was estimated with  Mash42, and single nucleotide polymor-
phisms (SNPs) were analyzed with Snippy (Seemann T, Snippy, Github https:// github. com/ tseem ann/ snippy), 
applying default parameters.

Genomic and plasmid-mediated AMR and virulence genes in samples CCBH17440, CCBH17428, 
CCBH17724, CCBH19867, CCBH19868 and CCBH19771 were detected with ABRicate (Seemann T, Abri-
cate, Github https:// github. com/ tseem ann/ abric ate) with default parameters, employing the following data-
bases and software: NCBI AMRFinderPlus (https:// www. ncbi. nlm. nih. gov/ patho gens/ antim icrob ial- resis 
tance/ AMRFi nder)93, Comprehensive Antibiotic Resistance Database (CARD) (http:// arpca rd. mcmas ter. ca)94, 
 Resfinder95, Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT)96, Virulence Factor Database (VFDB)97, 
 PlasmidFinder98, EcOH  database99, and MEGARes 2.00 MEGARes (meglab.org)100. Additionally, samples were 
screened for resistance/virulence genes using the Institute Pasteur MLST database.

(https:// bigsdb. paste ur. fr/ klebs iella/ klebs iella. html) and  Kleborate52. Putative plasmids inferred by 
 PlasmidFinder98 were confirmed with  Platon101, by inspecting draft assemblies and characterizing contigs.

We investigated the presence of pmrA/B, phoP/Q, mgrB and mcr-1 genes related to polymyxin  resistance102. To 
confirm the absence of the phoP/phoQ regulator mgrB-gene, predicted by PROKKA, we scanned each scaffold, 
searching for genomic regions similar to K. pneumoniae strain 342’s mgrB-coding protein (SwissProt registry 
number B5XQ45) with BLAST version 2.9.0 +  < https:// ftp. ncbi. nlm. nih. gov/ blast/ execu tables/ blast + >103, with 
the following command-lines and parameters: makeblastdb -in ’scaffolds_fasta_file’ -dbtype nucl -out ’database_
name’; tblastn -outfmt 4 -query’mgrb-gene_fasta_file’ -db ’database_name’ -out104’output_file_name’. Alignment 
results were visually inspected. Resistance and virulence scores were reported according to Lam et al.,  202152. We 
also descriptively correlated resistance and virulence genes, including those related to genetic variation (SNP), 
with their respective protein names, predicted functions or main biological characteristics possibly related to 
stages of bacterial infection, according to the UniProtKB  database20 and reference literature (references in Excel 
File 1), to improve the understanding of PCR-Kp strain infection.

Antimicrobial synergy testing of index PCR‑Kp strains. Time–kill studies performed in the first two 
isolates with a profile initially classified as PDR (CCBH17440 and CCBH17428) were performed using a 24-well 
microwell plate containing cation-adjusted Muller Hinton Broth (CAMHB, Difco, Detroit, MI) as growth media. 
Each plate was inoculated with either isolate to target initial inoculums of ~ 1 ×  106 cfu/mL, and a combination 
of colistin at 16 mg/L (0.5× MIC of both organisms) and meropenem at 49 mg/L (fCmax of meropenem 1 g) was 

https://github.com/tseemann/prokka
https://github.com/tseemann/prokka
https://github.com/sanger-pathogens/Roary
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/molbev/mst010
https://cge.cbs.dtu.dk/services/MLST)
https://www.megasoftware.net
https://github.com/tseemann/snippy
https://github.com/tseemann/abricate
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder)
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder)
http://arpcard.mcmaster.ca
https://bigsdb.pasteur.fr/klebsiella/klebsiella.html
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast
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evaluated against each strain. Daptomycin at 9.39 mg/L (fCmax of daptomycin 6 mg/kg) was added to investi-
gate the potential additional benefit compared to meropenem plus colistin alone. Broth samples were taken at 
0, 4, 8 and 24 h, serially diluted in sterile normal saline, and plated on tryptic soy agar (TSA) (Difco, Detroit, 
MI) using spiral platter. The plates were incubated for 24 h at 35 °C for colony enumeration. Time-kill curves 
were generated by plotting bacterial CFU/mL against each time point. Synergy was defined as a > 2  log10 cfu/
mL reduction compared to the most active single agent of the combination while also achieving ≥ 1  log10 cfu/
mL reduction from the initial inoculum at 24 h. The method is in accordance with CLSI,  2020105 and is the same 
method used in previously published  experiments106,107. The quality control strains used were Escherichia coli 
ATCC ® 25922 and K. pneumoniae ATCC ®  700603105.

Untreatable PCR‑Kp infections. Moreover, we performed a chart review of all hospitalized patients har-
boring K. pneumoniae with the investigational antimicrobial susceptibility pattern. Untreatable infection was 
arbitrarily defined for surveillance purposes as any systemic monomicrobial infection caused by possible PDR 
or XDR K. pneumoniae with the following features: susceptible drugs are not recommended for the site of infec-
tion or not available in the country market and/or infections possibly forming biofilms, that cannot be removed 
surgically or by device withdrawal, and/or antagonism or non-synergistic action was evidenced by any combina-
tion therapy synergy testing.

Conference presentation. This study was partly presented as a poster abstract at IDWEEK 2016, which 
was published in https:// doi. org/ 10. 1093/ ofid/ ofw172. 1558.

Ethics approval and consent to participate. This study was approved by the FIOCRUZ and HFSE Eth-
ics Committees (CAAE: 60493516.6.0000.5248 and CAAE 60493516.6.3001.5252, respectively) with a waiver of 
informed consent.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request. BioProject accessions PRJNA336378 (CCBH17440) and PRJNA678746 (other strains). 
GenBank Assembly Accession: GCA_001715215.1, GCA_017565915.1, GCA_017565865.1, GCA_017565945.1, 
GCA_017566015.1, GCA_017565885.1.
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