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A novel method for in‑situ 
extracting bio‑impedance 
model parameters optimized 
for embedded hardware
Mitar Simić 1*, Todd J. Freeborn 2, Tomislav B. Šekara 3, Adrian K. Stavrakis 1, 
Varun Jeoti 1 & Goran M. Stojanović 1

A novel method for embedded hardware‑based parameter estimation of the Cole model of 
bioimpedance is developed and presented. The model parameters R∞, R1 and C are estimated using the 
derived set of equations based on measured values of real (R) and imaginary part (X) of bioimpedance, 
as well as the numerical approximation of the first derivative of quotient R/X with respect to angular 
frequency. The optimal value for parameter α is estimated using a brute force method. The estimation 
accuracy of the proposed method is very similar with the relevant work from the existing literature. 
Moreover, performance evaluation was performed using the MATLAB software installed on a laptop, 
as well as on the three embedded‑hardware platforms (Arduino Mega2560, Raspberry Pi Pico and 
XIAO SAMD21). Obtained results showed that the used platforms can perform reliable bioimpedance 
processing with the same accuracy, while Raspberry Pi Pico is the fastest solution with the smallest 
energy consumption.

Impedance spectroscopy is a non-invasive method used in various fields, such as biology, medicine and material 
 science1 to characterize the passive electrical impedance of a material or sample. It is widely applied to charac-
terize biological tissues, where the measured impedance is often referred to as tissue  bioimpedance2. Recently 
tissue bioimpedance has been utilized for respiratory monitoring during inspiratory loading, which enabled 
development a wearable device for detection of normal and restrictive  breathing3. Further, combining bioimped-
ance with electromyography measurements have been investigated to increase the reliability of detecting muscle 
contraction with potential to support prosthetics and human–computer  interfaces4. Localized bioimpedance 
measurements have also been utilized to monitor exercise induced changes of bicep  tissues5. In addition to the 
above-mentioned applications, there are reported studies using tissue bioimpedance to non-invasively assess 
cardiac and respiratory  activity6. Bioimpedance techniques have also been reported to detect of cell morphologi-
cal changes in studies of ischemic rabbit liver  tissue7 and blood glucose  monitoring8. In recent years, significant 
efforts have been made to promote a personalized and patient-centric healthcare paradigm. The future healthcare 
will include wearable devices that will enable continuous monitoring of various parameters outside the clinics, 
including bioimpedance with real-time online data  access9. Recent examples highlighting this type of system 
the wearable devices for knee joint health monitoring reported by Hersk et al.10 and Critcher and  Freeborn11. A 
body composition analysis based on bioimpedance processing is important for monitoring of various chronic 
 diseases12. Moreover, portable human skin surface stimulators are found to be safer if bioimpedance feedback is 
included to reduce the possibility of burns and  injuries13. Further, bioimpedance based techniques are also being 
investigated as a sensing modality for implantable  devices14, which opens up new health-focused applications 
that may not be possible using portable or wearable devices.

The traditional approaches for processing bioimpedance data can be broadly sorted into two categories: 
discrete processing and equivalent circuit modeling. For discrete processing, bioimpedance data (e.g. modulus/
phase or real/imaginary data) collected at one or more discrete frequencies are investigated for their relationship 
to various health statuses of the analyzed tissue. Such an approach was used for monitoring of dialysis patients 
during  ultrafiltration15, or for detection of intraneural needle  placement16. The second approach uses equivalent 
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electrical circuits, composed of electrical elements (such as resistors, capacitors and inductors), to represent 
multi-frequency bioimpedance data and then investigates the relationship of the model/component values to 
underlying physical and electrochemical changes in the tissue. An equivalent electrical circuit using three circuit 
components based on the Cole-impedance equation is widely used for various clinical  applications17, such as body 
composition  analysis18. While there are numerous studies that present the portable and wearable bioimpedance 
measurement devices, there are few works focused on the development of the bioimpedance processing tech-
niques suitable for such  devices19. A possible reason for this limited research may be that the Cole-impedance 
model (presented later in section "Proposed estimation method") requires the use of a fractional-order differ-
ential equation 20,21. Processing techniques with the Cole-impedance model have utilized complex optimizing 
algorithms for parameter estimation, such as non-linear least squares (NLLS)22, or meta-heuristic optimization 
 algorithms23. A limitation of these techniques is that the accuracy, execution time and convergence are depend-
ent on the quality of the initial values provided by the user.

Therefore, the development of bioimpedance processing techniques for parameter estimation of the Cole-
impedance model that are suitable for deployment on portable embedded-hardware based devices is still an 
emerging topic. The aims of this paper are to formulate and evaluate a novel algorithm that is suitable for deploy-
ment on portable embedded-hardware and does not require initial-values as inputs from the user.

The rest of this work is organized as follows: The proposed estimation method is presented in section "meth-
ods and materials", as well as the characterization procedure and used hardware/software. The main experimental 
results are given in section "Results and discussion" with a specific focus on comparing the proposed algorithm 
with recent methods/hardware19. Further, a performance comparison of the proposed algorithm using three 
microcontroller-based platforms (Arduino Mega2560, Raspberry Pi Pico and XIAO SAMD21) is presented. The 
overall conclusions are given in section "Conclusion" with discussion about the achieved results and the practical 
importance of the presented method and embedded-hardware platforms.

Methods and materials
Proposed estimation method. The Cole-impedance model is composed of three circuit elements (two 
resistors and a constant phase element) with impedance represented by four parameters (R∞, R1, C and α) given 
by Eq. (1):

where the real part of impedance, resistance, is labelled as R(ωi ), while the imaginary part, or reactance, is 
labelled as X(ωi ). The constant phase element is represented by two parameters (C and α) with voltage/current 
characteristics modeled by a fractional-order differential equation (of order α). Note that when tissue bioim-
pedance is measured across a limited frequency band with a fixed number (N) of datapoints, the frequency ( ω) 
can be represented as a vector ( ωi) where i in as integer ranging from 1 to N. To simplify the presentation of 
the development of our method, the Cole-impedance model (Eq. (1)) is reduced to the compact form given by:

where a1, a2 and b1 are coefficients with values:

Our estimation method uses values of R(ωi) and X(ωi) obtained from the decomposition of Z(ωi) into its real 
and imaginary parts. All further equations assume positive values of X(ωi), which is achieved by multiplication 
of the actual X(ωi) with -1 prior to estimation. Both R(ωi) and X(ωi) are given with Eq. (6) and Eq. (7):

As there are four parameters to the Cole-impedance model (a1, a2, b1 and α) that are also represented in (6) 
and (7), an analytical solution for parameter estimation requires two additional equations. Our third equation 
is the first derivative with respect to ω of quotient R(ω)/X(ω) given by:
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While (8) is not directly measurable, on the discrete set of ωi it can be approximated using R(ωi) and X(ωi) 
by a numerical procedure (central differentiation method, for example):

In the Cole-impedance model, given by (1), the parameter α is limited to the range [0,1] and parameters 
R∞, R1, and C are limited to positive real values. Therefore, a1, a2 and b1 will be positive as well. Our estimation 
method solves the set of Eqs. (6)–(8) to extract parameters a1, a2, and b1 as a function of α, while the exact value 
of α is determined by a brute-force procedure to minimize the value of the defined error function.

To reduce equation length, the notation of Ri, Xi and Gi for R(ωi), X(ωi) and G(ωi), respectively, was used. 
From (6)-(8) the values of a1, a2, and b1 are determined at each ωi as follows:

The obtained arrays of a1 (ωi), a2(ωi), and b2(ωi) are averaged to calculate unique values ( ̂a1 , â2 and b̂1 ) for a 
fixed value of α, which is followed by a calculation of the error function value. Next, the value of α is increased by 
a defined step (a step of 0.01 is used here because it provides 1% resolution) and the procedure to solve (6)–(8) 
with averaging is repeated.

The final value of α from this estimation process is selected as that specific value that minimizes the error 
function. In this paper we will analyze two error functions for this step. The first, referred to in this work as 
Method 1, estimates the real (Rest(ωi)) and imaginary (Xest(ωi)) impedance components using the current α and 
estimated â1 , â2 and b̂1 from (10)–(12) plugged into (6) and (7). Final value of α is selected such that sum of mean 
relative error between the estimated and measured real and imaginary part is minimal:

Our second approach, referred to in this work as Method 2, selects α such that the mean absolute error 
between measured and estimated impedance modulus is minimal:

Finally, the estimated values of model parameters ( ̂R∞ , R̂1 and Ĉ ) are calculated using â1 , â2 and b̂1 , and solv-
ing the set of Eqs. (3)–(5) which gives:

For better distinction from the reference values (R∞, R1, C and α) the estimated values of model parameters 
are labeled as ( ̂R∞ , R̂1 , Ĉ and α̂).
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Hardware platforms for estimation validation. The proposed estimation method was developed and 
initially tested on a Dell G5 laptop (Core i7 9th generation) with 2.6 GHz clock speed and 16 GB of RAM. After 
development, the algorithm was ported to three embedded hardware platforms (Arduino Mega2560, Raspberry 
Pi Pico (RPi Pico) and XIAO SAMD21), shown in Fig. 1, for evaluation of parameter estimation performance.

The Arduino Mega2560 is an embedded platform that utilizes the AVR ATmega2560 8-bit microcontroller. An 
important feature of the ATmega2560 is the majority of instructions are executed in a single clock cycle, which 
can provide up to 16 Million Instructions Per Second (MIPS) at 16  MHz24. However, the ATmega2560 does not 
have built-in hardware support for floating point numbers (so floating-point operations require conversion to 
integer-order operations). There is 256 kB of on-board flash memory, 8 kB of RAM, and 4 kB of EEPROM stor-
age. Overall dimensions (width × length) are: 101.52 mm × 53.3 mm with an approximate weight of 37 g. The 
approximate retail price of the Arduino Mega2560 platform is 48.95  USD25.

The Raspberry Pi Pico is an embedded platform that utilizes dual ARM Cortex-M0 + RP2040 microcontrollers 
which support clock speeds up to 133 MHz (with a default clock configuration of 125 MHz). The on-chip SRAM 
is organized into six independent banks allowing simultaneous parallel access. The Raspberry Pi Pico does not 
support floating point arithmetic in hardware, but it has an interpolator and integer divider peripherals with pos-
sible library optimizations. A limitation of the RP2040 is the low execution speed if the program code does not fit 
into the 16 kB cache. This is noticeable at application startup when nothing is cached. With the RP2040’s default 
settings fetching a 32-bit value requires 80 SPI clock cycles (but can be improved to 3.3 MIPS at 133  MHz26). In 
terms of storage, 2 MB of on-board flash and 256 kB of RAM are available. EEPROM is not included. The width 
and length are 51 mm and 21 mm. respectively, with an approximate weight of 9 g. The approximate retail price 
of the Raspberry Pi Pico is 4  USD27.

The XIAO SAMD21 is an embedded platform that utilizes the SAM D21 family of 32-bit Cortex-M0 + ARM 
microcontrollers. The default clock speed of XIAO SAMD21 board is 8 MHz, but can be configured to 48 MHz 
with the implementation of the digital frequency-locked loop. The XIAO SAMD21 does not support floating 
point arithmetic in  hardware28. In terms of storage 256 kB of flash and 32 kB of RAM are available. Similar to 
the Raspberry Pi Pico an EEPROM is not included for XIAO SAMD21. The width and length are 23.5 mm and 
17.5 mm, respectively, with an approximate weight of 9 g. The approximate retail price of the XIAO SAMD21is 
5.40  USD29.

Comparing the specifications of the three embedded platforms, the Raspberry Pico board has the lowest 
price (as of accessed date from their online store), fastest clock speed, and highest amount of RAM and flash 
memory. However, ArduinoMega2560 board offers a greater number of available analog-to-digital (ADC) chan-
nels (but with lower resolution than RPi Pico and XIAO SAMD21) and the highest number of general-purpose 
input/output (GPIO) pins. Moreover, the Arduino Mega2560 has built in Electrically Erasable Programmable 
Read-Only Memory (EEPROM) which is useful for storing coefficients and look-up tables available after reset 
or powering off the device. In terms of size, the smallest area is occupied by the XIAO SAMD21 which can be 
very important for the wearable applications.

Software environments. For developing and testing the estimation algorithm on the laptop computer, the 
MATLAB R2013b programming/computing platform was used. No additional toolboxes or toolbox functions 
were utilized in the development of the algorithm to support porting of the algorithm to other software tools 
and programming environments.

For the testing of the algorithm on the embedded hardware, the Arduino IDE 1.8.5 programming platform 
was used. The algorithm code for the embedded hardware used the math library to access the mathematical func-
tions for manipulating floating-point numbers necessary for the algorithm. The same source code was compiled 
for each of the embedded platforms without any modifications.

Figure 1.  Used embedded-hardware platforms: Arduino Mega2560, Raspberry Pi Pico and XIAO SAMD21.
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Synthetic datasets for performance evaluation. For the algorithm performance evaluation in terms 
of accuracy and execution time multiple impedance datasets were generated. Ten synthetic datasets were cre-
ated using (6) and (7) with randomly chosen reference values of model parameters within the ranges: 100 
Ω < R∞ < 1000 Ω, 10 Ω < R1 < 1000 Ω, 1 µF < C < 10 µF and 0.5 < α < 1.0). The specific ranges for parameters were 
chosen to represent values typical of bioimpedance applications. The total number of datapoints in each dataset 
was N = 256 and datapoints were logarithmically spaced in the frequency range from 3 kHz to 1 MHz (selected 
to represent the range and number of datapoints generated by measurements with an ImpediMed SFB7 device, 
widely used in bioimpedance applications). The ideal datasets had 1% random noise added to both parts of 
impedance (R and X) to represent bioimpedance data more accurately from tissues. For reference, these syn-
thetic datasets are shown in Fig. 2 as solid blue lines. It is important to note that the resistance and reactance 
in Fig. 2 capture a wide range of values across the generation space, which ensures that the evaluation of the 
proposed method reflects a realistic range and not a unique or single case.

An additional synthetic dataset was created using (6) and (7) with reference values R∞ = 84.40 Ω, R1 = 39.20 
Ω, C = 2.31 µF and α = 0.747 also with N = 256 datapoints, frequency range of 3 kHz–1 MHz, and 0.25% random 
noise level to replicate a test case from  reference19 for comparison. Freeborn evaluated the performance of a 

Figure 2.  The Nyquist plots of reference and estimated values.
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least-squares parameter estimation method on both desktop/laptop and Raspberry Pi 3  platforms19 providing 
values to compare the performance of the proposed algorithm against.

To also evaluate the effect that noise has on the proposed algorithm, synthetic datasets using the reference 
values (R∞ = 84.40 Ω, R1 = 39.20 Ω, C = 2.31 µF and α = 0.747) were generated with: 0%, 0.25%, 1%, 5% and 10% 
random noise.

After that, initial dataset defined with R∞ = 84.40 Ω, R1 = 39.20 Ω, C = 2.31 µF, α = 0.747, N = 256 and frequency 
range (3 kHz–1 MHz) was divided in which lower frequency range (3 kHz–53 kHz) was used for estimation of 
â1 , while the part from 43 to 68 kHz was used for estimation of â2 and b̂1.

To evaluate the effect of the number of frequency points (within a fixed frequency band) on the algorithm 
performance, datasets using R∞ = 84.40 Ω, R1 = 39.20 Ω, C = 2.31 µF and α = 0.747 with N = 256, 100, 20, 10, 6, 
and 3 were generated using the fixed frequency band from 3 kHz to 1 MHz.

Results and discussion
The PC‑based evaluation of the estimation method. The first evaluation of the estimation algorithm 
compared the execution time and parameters using the two error function definitions given by (13) and (14) 
when implemented in MATLAB and executed on the study laptop. These error functions are referred to as 
“Method 1” for (13) and “Method 2” for (14). The estimated and reference values for the synthetic 10 datasets 
(with 0.25% noise) are given in Table 1 for both methods. The execution time (texe), as determined using the 
stopwatch timer embedded in MATLAB software (tic and toc functions), is also given in Table 1.

As it can be seen from Table 1, both methods estimated values with very high accuracy, however Method 1 
required smaller execution times with smaller errors. Method 1 was, in average faster for 3.5%. Therefore, Method 
1 is utilized for the remainder of evaluations in this work because of its better performance. The greater execu-
tion time of Method 2 is attributed to the greater number of complex calculations in the procedure, requiring 6 

Table 1.  Performance comparison of the proposed method in case of data with 1% of noise.

Dataset number texe Model parameters

1

Reference R∞ = 122.00 Ω R1 = 96.00 Ω C = 1.90 µF α = 0.72

Method 1 0.143 s R̂∞ = 121.98 Ω R̂1 = 95.97 Ω Ĉ = 1.90 µF α̂ = 0.72

Method 2 0.151 s R̂∞ = 121.98 Ω R̂1 = 95.97 Ω Ĉ = 1.90 µF α̂ = 0.72

2

Reference R∞ = 652.00 Ω R1 = 734.00 Ω C = 1.50 µF α = 0.58

Method 1 0.097 s R̂∞ = 651.89 Ω R̂1 = 733.83 Ω Ĉ = 1.50 µF α̂ = 0.58

Method 2 0.097 s R̂∞ = 651.89 Ω R̂1 = 733.83 Ω Ĉ = 1.50 µF α̂ = 0.58

3

Reference R∞ = 352.00 Ω R1 = 134.00 Ω C = 3.20 µF α = 0.63

Method 1 0.096 s R̂∞ = 351.94 Ω R̂1 = 133.97 Ω Ĉ = 3.20 µF α̂ = 0.63

Method 2 0.101 s R̂∞ = 350.15 Ω R̂1 = 139.92 Ω Ĉ = 3.55 µF α̂ = 0.62

4

Reference R∞ = 222.00 Ω R1 = 74.00 Ω C = 1.20 µF α = 0.75

Method 1 0.142 s R̂∞ = 221.96 Ω R̂1 = 73.98 Ω Ĉ = 1.20 µF α̂ = 0.75

Method 2 0.147 s R̂∞ = 221.96 Ω R̂1 = 73.98 Ω Ĉ = 1.20 µF α̂ = 0.75

5

Reference R∞ = 312.00 Ω R1 = 91.00 Ω C = 2.02 µF α = 0.70

Method 1 0.098 s R̂∞ = 311.94 Ω R̂1 = 90.98 Ω Ĉ = 2.02 µF α̂ = 0.70

Method 2 0.099 s R̂∞ = 310.67 Ω R̂1 = 95.15 Ω Ĉ = 2.24 µF α̂ = 0.69

6

Reference R∞ = 712.00 Ω R1 = 87.00 Ω C = 2.12 µF α = 0.69

Method 1 0.097 s R̂∞ = 711.87 Ω R̂1 = 86.98 Ω Ĉ = 2.12 µF α̂ = 0.69

Method 2 0.101 s R̂∞ = 710.48 Ω R̂1 = 90.71 Ω Ĉ = 2.34 µF α̂ = 0.68

7

Reference R∞ = 326.00 Ω R1 = 107.00 Ω C = 1.18 µF α = 0.73

Method 1 0.146 s R̂∞ = 325.99 Ω R̂1 = 106.99 Ω Ĉ = 1.18 µF α̂ = 0.73

Method 2 0.151 s R̂∞ = 325.94 Ω R̂1 = 106.97 Ω Ĉ = 1.18 µF α̂ = 0.73

8

Reference R∞ = 376.00 Ω R1 = 139.00 Ω C = 1.98 µF α = 0.66

Method 1 0.098 s R̂∞ = 375.93 Ω R̂1 = 138.97 Ω Ĉ = 1.98 µF α̂ = 0.66

Method 2 0.100 s R̂∞ = 375.93 Ω R̂1 = 138.97 Ω Ĉ = 1.98 µF α̂ = 0.66

9

Reference R∞ = 996.00 Ω R1 = 139.00 Ω C = 6.98 µF α = 0.56

Method 1 0.097 s R̂∞ = 995.82 Ω R̂1 = 138.97 Ω Ĉ = 6.98 µF α̂ = 0.56

Method 2 0.101 s R̂∞ = 992.08 Ω R̂1 = 149.15 Ω Ĉ = 8.58 µF α̂ = 0.54

10

Reference R∞ = 107.00 Ω R1 = 23.00 Ω C = 2.28 µF α = 0.79

Method 1 0.144 s R̂∞ = 106.98 Ω R̂1 = 22.99 Ω Ĉ = 2.28 µF α̂ = 0.79

Method 2 0.154 s R̂∞ = 106.98 Ω R̂1 = 22.99 Ω Ĉ = 2.28 µF α̂ = 0.79
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multiplications of real numbers and calculation of three square roots. The Nyquist plots of the Cole impedance 
using the reference and estimated values with Method 1 are shown in Fig. 2. As it can be seen from Fig. 2, there 
is good visual agreement between the reference and estimated values for all 10 datasets.

Comparison with  reference19. The comparison of reference values and estimated values using our esti-
mation method  and19 is given in Table 2. As it can be seen from Table 2, our method estimated values with lower 
relative errors for all parameters except R∞.

When compared to the CNLS-method19, the main advantages of the proposed method are the elimination 
of initial values of model parameters (to initiate the least squares search approach) and the elimination of the 
need for specific functions or toolboxes. For example, the initial values  in19 are generated with 100 random sets 
followed by monitoring of the estimation accuracy and selection of the optimal initial values. This approach is 
time consuming, and it is not optimized for wearable devices based on embedded hardware. Moreover, CNLS-
based method required specific the SciPy library for the Python  implementation19.

The impact of noise in EIS data. All impedance measurement devices will have different levels of accu-
racy (based on their underlying design) and different levels of noise (based on both design and operating envi-
ronment). Since noise will always be present in a bioimpedance dataset, the performance of the estimation 
algorithm in terms of parameter accuracy was evaluated using the reference dataset (R∞ = 84.40 Ω, R1 = 39.20 Ω, 
C = 2.31 µF and α = 0.747)19 with five noise levels: 0%, 0.25%, 1%, 5% and 10%. Using the proposed method with 
these datasets, the estimated and reference impedances are shown in Fig. 3. The estimated values for the cases 
with 0% and 0.25% were: R̂∞=84.62 Ω, R̂1=38.65 Ω, Ĉ=2.25 µF and α̂=0.75. With increased noise to 1%, there 
is a very small increase in the estimation errors: R̂∞=84.60 Ω, R̂1=38.64 Ω, Ĉ=2.25 µF and α̂=0.75. Most impor-
tantly, even in cases of higher noise levels (5% and 10%), the estimated values are still close to the reference: R̂∞
=84.55 Ω, R̂1=38.61 Ω, Ĉ=2.25 µF and α̂=0.75 and R̂∞=84.48 Ω, R̂1=38.57 Ω, Ĉ=2.25 µF and α̂=0.75, respectively. 
This supports the assumption that even with a noisy dataset the proposed algorithm can accurately estimate the 
Cole-impedance parameters.

Table 2.  Performance comparison of our estimation method and CNLS  method19.

Parameter Reference
19, (MATLAB 2016a on
Dell Precession 3240)

RE (%)
Ref.19

This work
(MATLAB 2013b on Dell G5)

RE (%)
This work

R∞ (Ω) 84.40 84.56 0.193 84.62 0.255

R1 (Ω) 39.20 38.65 1.412 38.65 1.402

C (µF) 2.31 2.01 12.84 2.25 2.65

α 0.747 0.759 1.558 0.75 0.40

Figure 3.  The Nyquist plots of reference and estimated values for five different noise levels: (a) 0%, (b) 0.25%, 
(c) 1%, (d) 5% and (e) 10%.
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The frequency distribution of the estimated parameters â
1
, â

2
 and b̂

1
. The parameters of the 

Cole-impedance model have different frequency ranges over which they dominate the overall impedance. For 
example, R∞ is the theoretical resistance at high (e.g. infinite) frequency, while R1 is equal to R0-R∞, where R0 
is the theoretical resistance at low (e.g. ω = 0 rad/s) frequency. This results from the impedance of the constant 
phase element (C) which is very high at low frequency (resulting in the majority of the applied current for an 
impedance measurement to flow through R1), while it has very low impedance at high frequency (resulting in 
the majority of the current flowing through it and not R1). The contribution of C to the overall impedance is 
expected to be most recognizable around the characteristic frequency (inverse of the time constant (R1C)1/α). 
Therefore, it can be expected that elements of the arrays a1(ωi), a2(ωi) and b1(ωi) will also have different fre-
quency distributions.

Our initial analysis of this effect utilizes the reference dataset (R∞ = 84.40 Ω, R1 = 39.20 Ω, C = 2.31 µF and 
α = 0.747)19 with 0.25% noise, 3 kHz–1 MHz frequency band, and N = 256 logarithmically spaced points. Esti-
mated values of the Cole-model parameters using Method 1 applied to this dataset are: R̂∞=84.62 Ω, R̂1=38.65 
Ω, Ĉ=2.25 µF and α̂=0.75. The frequency distributions of elements of arrays a1(fi), a2(fi) and b1(fi) are presented 
with blue dots in the Fig. 4 (a)-(c). These values are calculated at different frequencies but for the final estimated 
value of α = 0.75. The average value (µ) of all presented values is shown as a red solid line in each graph. The 
standard deviation (σ) and ratio of σ/µ in % are also indicated with text labels on those figures. As it can be seen 
in Fig. 4a, the deviation of estimated values of a1(fi) from the average (µ) is increasing at higher frequencies. 
Observing the deviations of estimated values of a2(fi) and b1(fi) in Fig. 4b and c, the deviations are the smallest 
in the central frequency band; approximately 30–100 kHz for a2(fi) and 60–100 kHz for b1(fi).

In the next step only lower frequencies (from i = 1 to N/2–1) are used for a1(fi) estimation and central fre-
quencies (from i = N/2–10 to N/2 + 10) for a2(fi) and b1(fi). These specific frequency ranges are chosen based on 
the subjective analysis of results shown in Fig. 4a–c. Further analysis is needed for a generalized approach to the 
selection of frequency-points, however the bands selected here do illustrate how reducing the frequency band 
to subsets where the behavior is dominated by that parameter improves its estimation. To illustrate, estimated 
values of model parameters using these reduced frequency bands are: R̂∞=84.47 Ω, R̂1=39.10 Ω, Ĉ=2.23 µF and 
α̂=0.75. Note this improves the estimation accuracy with reduction of relative errors from 0.255% to 0.088%, 
and from 1.412% to 0.26% for R̂∞ and R̂1 , respectively. The frequency distributions of elements of arrays a1(fi), 
a2(fi) and b1(fi) from the reduced frequency estimation process are presented with blue dots in the Fig. 4d–f. 
Ratios of σ/µ for a1(fi), a2(fi) and b1(fi) are decreased from 0.38%, 2.45% and 2.15% to 0.15%, 0.23% and 0.12% 
respectively, indicating much more stable estimations. Therefore, there is a possibility that the complete set of 
measured frequencies are not needed to estimate all parameters which can reduce the computational cost of the 
algorithm. But further development of this approach is required to develop approaches to identify the optimum 
frequency band based on the collected measurements (which is planned for future works).

Estimation with reduced datapoints. The parameter estimation with the proposed algorithm was ana-
lyzed using datasets with a frequency range from 3 kHz to 1 MHz with 256 logarithmically spaced points to 
facilitate direct comparison with  reference19. However, reducing the number of frequency points in dataset may 
improve the performance of portable/wearable devices with constrained resources in terms of both memory 

Figure 4.  The frequency distribution of estimated values with Eqs. (10)–(12) in complete frequency range: 
(a) parameter a1, (b) parameter a2, (c) parameter b1; and in reduced frequency range: (d) parameter a1, (e) 
parameter a2, (f) parameter b1.
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and power. To evaluate the effect of reducing datapoints on the algorithm performance, the proposed estimation 
method was applied to the reference dataset (R∞ = 84.40 Ω, R1 = 39.20 Ω, C = 2.31 µF and α = 0.747)19 with 0.25% 
noise, while number of points initially was N = 256, and then was decreased to 100, 20, 6, and 3. The estimated 
parameters for each case were: N = 256 ( ̂R∞=84.63 Ω, R̂1=38.65 Ω, Ĉ=2.25 µF, α̂=0.75), N = 100 ( ̂R∞=84.63 Ω, R̂1
=38.65 Ω, Ĉ=2.25 µF, α̂=0.75), N = 20 ( ̂R∞=84.15 Ω, R̂1=39.99 Ω, Ĉ=2.49 µF, α̂=0.74), N = 10 ( ̂R∞=84.58 Ω, R̂1
=38.81 Ω, Ĉ=2.54 µF, α̂=0.74), N = 6 ( ̂R∞=84.80 Ω, R̂1=39.50 Ω, Ĉ=2.94 µF , α̂=0.73), and N = 3 ( ̂R∞=84.56 Ω, 
R̂1=39.03 Ω, Ĉ=2.21 µF , α̂=0.75). The N = 3 case is presented because it represents the theoretical minimum for 
the parameter estimation because three points are needed using the central difference approximation of the first 
derivative. Frequency range from 10 to 500 kHz was used for N =  630. The Nyquist plots of the reference and esti-
mated impedance for each value of N are shown in Fig. 5a–f. Each case shows very good agreement with the ideal 
reference values confirming that reducing datapoints (even down to the theoretical limit) did not significantly 
impact the algorithm accuracy.

Embedded hardware‑based estimations. The noisy datasets used in subsection "Comparison with 
reference" 19 to test the proposed algorithm on a laptop computer were also used to test the algorithm on three 
embedded hardware platforms. The reference values of resistance and reactance were stored as arrays in the flash 
memory of the microcontrollers. Identical program code was compiled for each of the three platforms (Arduino 
Mega2560, Raspberry Pi Pico and XIAO SAMD21) using the Arduino IDE. After successful compiling and pro-
gramming, the algorithm was executed on each platform. The comparison of estimated parameter values using 
our method deployed on the laptop, our method deployed on the embedded hardware platforms, and the CNLS-
based method  from19 deployed on laptop and Raspberry Pi 3 board are given in Table 3. The proposed method 
was optimized for execution on the embedded hardware by altering the brute-force search/step of α (originally 
proposed as a search from 0 to 1 in steps of 0.01). Here, a course search was performed with an α-step of 0.1 
(from 0.1 to 0.9) with a second fine search performed with an α-step of 0.01. The fine search was performed using 
the course search value with the lowest error (α1) for the precise search in the range from α1 − 0.1 to α1 + 0.1. This 
approach slightly increases the utilized flash and RAM resources, but reduces the number of iterations to find 
optimal value of α. Consequently, the consumed energy is reduced which is a very important consideration for 
portable and wearable devices. For example, with a fixed step of 0.01 to sweep the range from 0 to 1 requires 101 
iterations. But if the two-step estimation is performed, then 11 iterations are needed for the 0.1 step course sweep 
and 21 steps for the precise sweep (32 iterations total). Therefore, total execution time and energy consumption 
are reduced by approximately one-third.

From the results provided in Table 3, our method deployed on the Raspberry Pi Pico (operating on clock 
speed of 133 MHz) required slightly higher texe than the more powerful Raspberry Pi 3 board with clock speed of 
1.2  GHz31. This highlights the benefit of using the proposed algorithm which did not require Python (an inter-
preted language) and supporting libraries. Note that the estimation accuracy is similar for all analyzed methods, 
confirming that the proposed algorithm has similar performance to established methods.

Figure 5.  The Nyquist plots of reference and estimated values for different number of measurement points: (a) 
256, (b) 100, (c) 20, (d) 10, (e) 6 and (f) 3.
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For each of the three tested embedded platforms, the default configuration was used during program execu-
tion. This approach was adopted so that results represented performance for users using the platforms “as it is” 
without specialized configuration. We hypothesize that further improvements in the algorithm performance 
can be achieved by optimizing the configuration of the each platform, but future research is needed to confirm.

An interesting observation is that the compiled programs for each of the embedded platforms required 
different program code size and SRAM. This is expected because of the different microcontroller families and 
architectures (8-bits and 32-bits). Almost 66 kB of flash was required for the deployment on the Raspberry Pi 
Pico, but only 55kB and 16 kB of flash were required for the XIAO SAMD21 and Arduino Mega2560, respectively. 
Deployment on the Raspberry Pi Pico needed a lower percentage of available RAM (12%) when compared to 
67% for the Arduino Mega2560. By default, the compiler does not provide usage of RAM in case of XIAO boards 
preventing its comparison here.

Because current draw and power consumption are important considerations for portable/wearable systems 
(with aims to reduce hardware size and increase battery life) the current/energy consumption of each hardware 
platform executing the proposed algorithm was measured. The current consumption of each embedded platform 
was obtained using a Siglent SPD3303C DC power supply and Sanwa CD770 multimeter. The Siglent SPD3303C 
was set to output 5 V and the Sanwa CD770 was connected in series (as an ammeter) with the SPD3303C and 
embedded platform. The current consumption was consistent across program execution and estimation of the 
parameters. The XIAO SAMD21 had the lowest input current (13.29 mA), followed by the Raspberry Pi Pico 
(22.18 mA) and Arduino Mega2560 (53.3 mA). Using the current measurements, the energy consumption to 
perform the estimation (obtained by multiplication of the measured current consumption and estimation time 
given in Table 3) was 1.11 J for the Raspberry Pico. 5.97 J for the Arduino Mega2560, and 8.73 J for the XIAO 
SAMD21.

Conclusion
In this work, we proposed a novel method for estimation of the Cole-impedance model parameters from bioim-
pedance datasets that does not use complex least squares methods. The proposed method showed a very good 
estimation accuracy, with improvements in terms of estimation speed when compared to related work from the 
literature. Further, increases in dataset noise and reductions in the number of datapoints in a dataset did not 
significantly degrade the accuracy of the algorithm.

This method is developed to support portable/wearable bioimpedance instruments with on-board processing 
requirements and limited computational hardware. As such, the performance of the algorithm was evaluated on 
three embedded platforms, the Arduino Mega2560, Raspberry Pi Pico and XIAO SAMD21. All platforms were 
shown capable of executing the proposed algorithm with accuracy comparable to laptop-based implementations 
(validating the algorithm for use on embedded hardware). Overall, the Raspberry Pi Pico was the platform with 
both the fastest execution time and smallest energy consumption.

Overall, the novelty and contributions of our work are: (1) a method for parameter estimation of the Cole-
bioimpedance model suitable for deployment on low-complexity units (such as 8-bits microcontrollers), and 
(2) performance comparison of three embedded hardware-based platforms for identification of an appropriate 
system for future portable bioimpedance systems using the proposed algorithm.

Our future work will be directed towards the development of an integrated system for bioimpedance meas-
urements and in-situ Cole-model parameter estimation. Moreover, we plan to use the presented method with 
experimentally obtained bioimpedance to resolve a limitation of the current work. Bioimpedance data collected 
from real tissues (and not synthetically generated datasets) is influenced by factors including electrode impedance 
(impacting low frequency measurements) and parasitic capacitances (impacting high frequency measurements). 
These factors can degrade the "fit" of the impedance data to the Cole-impedance model and is expected to degrade 
performance of the proposed algorithm. To resolve, future methods that identify features of data degradation 
and either correct or remove (prior to estimation of the Cole-impedance parameters) are needed. Further efforts 
will also investigation how to develop algorithms to fit more generalized and complex models beyond the Cole-
impedance model to increase the possible range of bioimpedance datasets to which it can be applied.

Table 3.  Comparison of estimated values of model parameters using different hardware platforms. NA Not 
applicable.

R∞ (Ω) R1 (Ω) C (µF) α texe (s)

Reference 84.40 39.20 2.31 0.747 NA∙

CNLS19, (MATLAB 2016a on Dell Precession 3240) 84.56 38.65 2.01 0.759 14.76

CNLS19, (Python 3 on Raspberry Pi 3) 84.47 38.98 2.21 0.751 31.18

Our method
(MATLAB 2013b on Dell G5) 84.62 38.65 2.25 0.75 0.15

Our method
(Arduino Mega2560) 84.62 38.65 2.25 0.75 22.11

Our method
(Raspberry Pi Pico) 84.62 38.65 2.25 0.75 10.05

Our method
(XIAO SAMD21) 84.62 38.65 2.25 0.75 124.67
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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