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Composition and function 
of the Galapagos penguin gut 
microbiome vary with age, 
location, and a putative bacterial 
pathogen
Sage D. Rohrer 1*, Gustavo Jiménez‑Uzcátegui 2, Patricia G. Parker 1,3 & Lon M. Chubiz 1

Microbial colonization plays a direct role in host health. Understanding the ecology of the resident 
microbial community for a given host species is thus an important step for detecting population 
vulnerabilities like disease. However, the idea of integrating microbiome research into conservation 
is still relatively new, and wild birds have received less attention in this field than mammals or 
domesticated animals. Here we examine the composition and function of the gut microbiome of 
the endangered Galapagos penguin (Spheniscus mendiculus) with the goals of characterizing the 
normal microbial community and resistome, identifying likely pathogens, and testing hypotheses 
of structuring forces for this community based on demographics, location, and infection status. We 
collected fecal samples from wild penguins in 2018 and performed 16S rRNA gene sequencing and 
whole genome sequencing (WGS) on extracted DNA. 16S sequencing revealed that the bacterial 
phyla Fusobacteria, Epsilonbacteraeota, Firmicutes, and Proteobacteria dominate the community. 
Functional pathways were computed from WGS data, showing genetic functional potential primarily 
focused on metabolism—amino acid metabolism, carbohydrate metabolism, and energy metabolism 
are the most well‑represented functional groups. WGS samples were each screened for antimicrobial 
resistance, characterizing a resistome made up of nine antibiotic resistance genes. Samples were 
screened for potential enteric pathogens using virulence factors as indicators; Clostridium perfringens 
was revealed as a likely pathogen. Overall, three factors appear to be shaping the alpha and beta 
diversity of the microbial community: penguin developmental stage, sampling location, and C. 
perfringens. We found that juvenile penguins have significantly lower alpha diversity than adults based 
on three metrics, as well as significantly different beta diversity. Location effects are minimal, but one 
site has significantly lower Shannon diversity than the other primary sites. Finally, when samples were 
grouped by C. perfringens virulence factors, we found dramatic changes in beta diversity based on 
operational taxonomic units, protein families, and functional pathways. This study provides a baseline 
microbiome for an endangered species, implicates both penguin age and the presence of a potential 
bacterial pathogen as primary factors associated with microbial community variance, and reveals 
widespread antibiotic resistance genes across the population.
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Pfam  Protein family database
KEGG  Kyoto encyclopedia of genes and genomes
PCoA  Principal coordinates analysis
PERMANOVA  Permutational multivariate analysis of variance

Resident microbes diversely affect animal health. Some long-term members of the microbiome may facilitate 
digestion or provide immune system training for the  host1. Colonization resistance is an important benefit, as 
mutualistic microbes may out-compete a pathogenic invader for space and nutrients or even release toxins as a 
 deterrent2. Some community members may also be opportunistically pathogenic, occupying an inconspicuous 
position in the microbiome until a disruption occurs, then infecting the  host3,4.

Characterizing the normal microbiome for species of concern provides an essential baseline from which to 
measure changes. This has the potential to help zoos improve their level of care for collection animals as well 
as to increase reintroduction success by mimicking a species’ normal  microbiome5,6. However, microbial com-
munity assessments can also improve management of wild populations in a number of ways. Dysbiosis in the 
microbiome (i.e. disruption of the normal bacterial community) can be an indicator of health problems and is 
associated with a number of  diseases1,7. Metagenomic assessments can reveal potential pathogens that may pose 
a threat to the  population8. Sequencing data can additionally be used to assess the level of antimicrobial resist-
ance in the community, known as the “resistome,” which at high levels can indicate a potentially dangerous level 
of connectivity between humans and  wildlife9. Thus, microbiome research may provide a critical perspective 
for conservation efforts.

Factors structuring these resident microbial communities are complex and can vary substantially between 
taxa. Diet is known to be a primary driver of microbiome composition and taxa with atypical diets tend to have 
distinct  microbiomes10–12. For instance, the vampire finch (Geospiza septentrionalis) supplements its diet in an 
unusual way by eating eggs, guano, and the blood of larger birds, and the species also exhibits a unique microbi-
ome profile compared to the other Darwin’s  finches13. These dietary changes can be rapid—one study of human 
diet found that switching from a plant- to animal-based diet resulted in reduced carbohydrate fermentation and 
increased protein fermentation by gut microbes in a matter of days, with corresponding abundance changes in 
bacteria associated with those  activities14. Environmental factors such as season and habitat are known to affect 
gut microbiomes as well, though these differences are largely attributed to changes in food availability between 
 seasons15,16. However, diet is a better predictor for microbiome composition and function in mammals than it 
is for birds, and the effect of diet is weakest in the microbiomes of both bats and flying birds, possibly due to the 
shorter intestines associated with flight  adaptation17.

Demographic factors such as the host’s sex or developmental stage can also play a role in shaping the 
 microbiome18,19. One study found that cloacal microbiomes differed between male and female rufous-collared 
sparrows (Zonotrichia capensis) during breeding seasons, with the male microbiome becoming more diverse at 
the onset of the breeding  season19. Hormonal differences or immune variation between sexes may be responsible 
to some  degree19–21. Many taxa also undergo microbiome changes throughout development; for example, little 
penguins (Eudyptula minor) exhibit increased abundances of Firmicutes and Bacteroidetes as they  mature22. 
Microbial community differences based on sex and age are not consistent across taxa, and in some cases the 
effect size is quite small compared to other factors, indicating a continued need to assess community drivers on 
a case-by-case basis in wild  populations23,24.

Once the normal microbiome is understood for a given species, monitoring the microbiome using fecal sam-
ples may be a valuable non-invasive assay for wild populations of  concern25,26. Scat microbiome assays are being 
developed to provide insights into population demographics and host health. For example, one study in Rocky 
Mountain elk (Cervus canadensis) determined microbial predictors for host age, sex, body fat, and biogeography, 
reliably classifying individuals based on fecal microbiome  samples25. Microbiome diversity (i.e. the number of 
species in a microbial community) can also indicate vulnerability to disease—for example, juvenile ostriches 
with initially low bacterial diversity can be more likely to develop pathogen-associated dysbiosis and later suc-
cumb to enterocolitis  mortality7. Testing the fecal microbiome can also reveal anthropogenic influence on a wild 
population, often through dysbiosis in the microbial composition and  abundance26,27. Human influence may also 
be detected through the increased presence of antibiotic resistance genes in the microbiome; human-associated 
factors such as wastewater or livestock can introduce resistance genes to new environments, where the resistance 
genes can be rapidly disseminated through microbial communities via horizontal gene  transfer9,28. However, 
many wild microbiome studies rely solely on 16S rRNA gene sequencing instead of shotgun sequencing, which 
provides little indication of pathogenicity or antibiotic resistance genes in a  microbiome29. Widespread use of 
high-resolution metagenomic data across wild microbiome studies and the validation of microbial assays are 
necessary steps before microbiome-based tools can be used to make management recommendations for wild 
 populations5,25.

This study examines the gut microbiome of the Galapagos penguin (Spheniscus mendiculus), a highly range-
restricted species which occurs only in the Galapagos  Islands30. The Galapagos penguin forages near the shore, 
consuming schooling fish (such as mullets and sardines) and  crustaceans31–33. This penguin faces regular popu-
lation bottleneck events when the nutrient-rich Cromwell Current is disrupted periodically by warm El Niño 
weather patterns, leading to reduced fish availability and ultimately penguin  starvation33. The species is classi-
fied as endangered by the International Union for Conservation of Nature (IUCN) due to the severe declines 
associated with these events as well as their highly restricted  range30,33. The frequent population bottlenecks 
are likely the reason for the genetic homogeneity found in this species—both microsatellite markers and major 
histocompatibility complex (MHC) sequences demonstrate a low degree of genetic  variation34–36.
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The low genetic variation may leave the penguin population vulnerable to introduced  diseases37,38. Previous 
studies have found evidence of prior infections by Chlamydophila psittaci and Toxoplasma gondii39,40, as well as 
infections by microfilariae (species unknown) and a lineage of Plasmodium (Lineage A)38,41. However, micro-
biome characterization and a thorough assessment of enteric pathogens using high-throughput sequencing 
tools has not been completed and would provide valuable insight into the health of this species. Furthermore, 
widespread antibiotic resistance genes have been found previously in the Galapagos  Islands9,42,43, but the extent 
to which antibiotic resistance is associated with the Galapagos penguin was unknown as we began this study.

This research thus has four goals: (1) establish a baseline for gut microbiome taxonomy and function in the 
Galapagos penguin, (2) identify putative enteric pathogens, (3) characterize the resistome; and (4) explore driv-
ers of community structure. We hypothesized that hormonal variation and contrasting foraging habits may lead 
to distinctive microbiomes, and so microbial community structure would vary depending on both sex and age, 
respectively. Due to the largely homogeneous environment of the western coast of Isabela Island, we hypothesized 
that different locations may be a minimal factor in gut microbiome communities, particularly since the penguin 
population shows significant movement between sites and the penguins tend to forage near the  coast32,36. Finally, 
we hypothesized that gut pathogens -if found- may be associated with community changes facilitated through 
either disruptive or opportunistic invasion.

Methods
All Galapagos penguin fecal samples used in this study were collected in July of 2018 from Isabela Island and the 
Marielas Islets in Galapagos, Ecuador. Sample collection methods were performed in accordance with relevant 
guidelines and regulations; this study was approved by the University of Missouri-St. Louis Institutional Ani-
mal Care and Use Committee, United States Department of Agriculture, Galapagos National Park Directorate, 
the Agency for the Regulation and Control of Biosecurity and Quarantine for Galapagos, and the Ecuadorian 
Ministry of the Environment and Water. Penguins were sampled at three sites on Isabela and the Marielas, with 
two sample days per site. To collect samples, wild penguins were safely captured on land at each site using long-
handled nets and brought to a large boat for processing. Processing included morphological measurements and 
opportunistic fecal collection. The fecal collection procedure involved harvesting feces from clean plastic sheets 
placed beneath the penguins during transport and handling, immediately following capture. Fecal samples 
were preserved in 95% ethanol at room  temperature44. Males and females were identified based on bill depth 
measurements and  size45,46. Each penguin was tagged with a Passive Integrated Transponder tag in the web of 
one foot (as part of a separate study), enabling the identification of recaptured individuals. For this study, each 
sample corresponds to an individual penguin. Fecal DNA was extracted within four weeks of sample collection 
using Qiagen PowerFecal DNA extraction kits (Qiagen, LLC, Germantown, Maryland). Manufacturer instruc-
tions were followed for the extraction protocol. DNA was extracted from 0.1 g of feces from each sample (total 
feces for each sample ranged from 0.25 to 1000 g) based on manufacturer suggestions for avian fecal samples, 
and homogenization was performed using a vortex adapter at maximum speed for 10 min. DNA was quantified 
using a Qubit fluorometer. Many samples had low DNA yield (less than 20 ng of total DNA), despite multiple 
extraction attempts, and only 40 samples with total yield higher than 20 ng were used for sequencing. Extracted 
DNA was stored at − 20 °C.

Targeted sequencing. Sequencing of the 16S rRNA gene V4 region was performed with Illumina MiSeq 
on 40 of the DNA samples, excluding samples with insufficient DNA (< 20 ng), at the University of Michigan 
Medical School Microbiome Core. The Microbiome Core used the dual indexing sequencing strategy and prim-
ers described in Kozich et al.  201347. The V4 region was selected because its length of 250 bp allows forward 
and reverse reads to fully overlap when sequenced with the cost-efficient Illumina platform, reducing the error 
 rate47. Method standardization also facilitates comparisons between microbiome studies, and the V4 region has 
widespread use, notably through the Earth Microbiome Project and the Mothur Standard Operating Procedure 
(SOP)47,48. Negative sampling and extraction controls were included to assess contamination during processing, 
and a water sample and a mock community (ZymoBIOMICS Microbial Community Standard) were added by 
the Microbiome Core prior to library preparation as negative and positive PCR amplification and sequencing 
controls, respectively. Seven penguin samples were later resequenced alongside a ZymoBIOMICS Gut Micro-
biome Standard, which had been stored in 95% ethanol prior to extraction to serve as a positive control for the 
preservation/extraction methods. The resequenced samples were examined to ensure bacterial composition was 
comparable to the originally sequenced samples; however, all data included in the downstream analysis was 
generated from the first sequencing run to avoid any potential batch effects. The ZymoBIOMICS Microbial 
Community Standard was also added to this second sequencing run by the Microbiome Core as a sequencing 
positive control.

Read analysis was conducted in Mothur, following the Schloss MiSeq standard operating  procedure47,49. 
Reads were filtered by base quality and length, aligned with the SILVA 132 reference  database50 and filtered for 
alignment quality and chimeras. Samples with less than 10,000 reads following data cleaning steps were excluded, 
leaving 34 samples. Operational taxonomic unit (OTU) clustering was based on a 97% similarity threshold. 
Unclassified reads and reads that matched mitochondria, chloroplasts, or archaea were filtered out. Filtered reads 
were subsampled in Mothur to match the sample with the lowest read count (11,295 reads). Community data 
were imported into R version 3.6.3 to analyze alpha and beta  diversity51.

Whole genome sequencing. Whole genome sequencing (WGS) was performed on 20 of the extracted 
fecal samples by the University of Michigan Microbiome Core using the Illumina Nextera DNA Flex  kit52. Four 
of these samples were later resequenced with the ZymoBIOMICS Gut Microbiome Standard (Zymo Research, 
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Irvine, CA) included in the same run as a positive control to ensure comparable results—the resequenced sam-
ples were examined to make sure the bacterial compositions were similar to the original sequence results, but 
downstream analysis included only data generated in the initial sequencing run. Quality control was performed 
by trimming reads using Trimmomatic with a sliding window of 4, minimum quality score of 20, and minimum 
length of  7053. These cleaned reads were used directly for read mapping with KMA (k-mer alignment) against 
two databases, VFDB (Virulence Factor Database) and CARD (Comprehensive Antibiotic Resistance Database), 
on the platform PATRIC (Pathosystems Resource Integration Center)54–56. They were categorized taxonomically 
using the k-mer based program Kraken 2, also available on  PATRIC57.

The trimmed reads were also assembled with SPAdes, using the recommended K-mer lengths of 21, 33, 55, 
77, 99, and 127, with the BayesHammer module for error correction  enabled58,59. SPAdes output was assessed 
with  MetaQuast60. Compared to single genome assemblies, lower quality is expected for metagenomic assem-
blies, but two samples with the worst assemblies were ultimately excluded from much of the functional analysis 
due to poor downstream annotation results; alternate tools relying on reads rather than contigs were similarly 
problematic for those two samples. The contigs from the SPAdes assembly were classified taxonomically using 
Kraken 2 on PATRIC.

Finally, parallel read-based and assembly-based approaches were used to achieve a robust picture of the func-
tional profile in these communities. Cleaned reads were categorized functionally using the program HUMAnN 
3.0, while contigs were annotated using the program  MetaErg52,61. Pfam (Protein Family Database) annotations 
were obtained through both pipelines, which notably annotated virulence-associated proteins in addition to 
the virulence factors obtained via  PATRIC62. Pathways were only computed for a minority of gene families 
in both HUMAnN 3.0 and MetaErg, leaving a majority unclassified. Protein families and metabolism-related 
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways detected from the metagenomic assemblies 
were imported to R to examine differences in metabolic profiles between groups (sex, age, and sampling loca-
tion)51,63–65. Protein family abundances and pathway abundances were subsampled to match the lowest sample 
(22,259 and 19,684 reads, respectively), after excluding one sample with insufficient protein families and two 
samples with insufficient pathway results, to allow comparisons between samples without depth-biased results.

Control assessment. Since negative controls contained ≤ 30 reads following batch filtering steps for the 16S 
dataset, and < 15 classified fragments following Kraken 2 classification of trimmed shotgun sequencing reads, 
potential contamination (from sampling, extraction kits, sequencing crossover, etc.) was considered negligi-
ble. 16S sequences from the Zymo preservation/extraction control (ZymoBIOMICS Gut Microbiome Standard) 
were mapped to manufacturer-provided reference sequences using the “seq.error” function in Mothur, which 
calculated an error rate of 0.0079%. Sequences from the Zymo sequencing control (ZymoBIOMICS Microbial 
Community Standard) were mapped to 16S reference sequences provided by the University of Michigan Micro-
biome Core, with an error rate of 0.015% and 0.005% for the first and second sequencing runs. All expected 
bacterial species with theoretical abundances > 0.01% were detected in the mock communities following pro-
cessing; some abundance skew was apparent, but this is unlikely to affect the reported results as all study samples 
were processed in the same batch and comparable to each other. Shotgun sequences of the ZymoBIOMICS Gut 
Microbiome Standard were directly mapped to the whole genome reference sequences provided by the manufac-
turer using  Bowtie266. Reads successfully mapped to all expected bacteria, archaea, and yeasts.

Diversity calculations and statistical analysis. Alpha diversity was calculated for each sample from 
the subsampled 16S rRNA gene sequencing data using the R package phyloseq for three metrics: observed rich-
ness, Simpson’s Index, and Shannon Diversity  Index67. Significant differences based on alpha diversity values 
were assessed between groups using Kruskal Wallis  tests51. Two common measures of beta diversity are Jaccard 
distance, which relies on presence/absence data, and Bray–Curtis dissimilarity, which includes abundance  data68. 
Both Jaccard distance and Bray–Curtis dissimilarity were initially used to calculate beta diversity, with similar 
results; Jaccard distance was ultimately used for this analysis. Beta diversity (Jaccard distance) was calculated 
in the phyloseq package for both 16S and WGS datasets, and differences in beta diversity were assessed using 
permutational multivariate analysis of variance (PERMANOVA) in the R package  vegan67,69,70. Potentially con-
founding variables were listed first in the model, with the variable of interest listed last. The dispersion assump-
tion for PERMANOVA, PERMDISP, was tested for significant values using the vegan  package69–71. Welch’s t-tests 
were used to examine body condition variation (measured by weight:wing ratio) between groups with and with-
out detected virulence factors. Kruskal Wallis tests were used to assess significant differences between relative 
abundances of metabolic pathways and groups from the WGS dataset, and false discovery correction was applied 
with the Benjamini–Hochberg  method72.

Ethical approval. Sampling procedures and sample export were approved by the University of St. Louis´s 
Institutional Animal Care and Use Committee (Protocol #1211796), USDA (Permit #47418), Galapagos National 
Park Directorate (#PC-05-18), the Agency for the Regulation and Control of Biosecurity and Quarantine for 
Galapagos (#ABG-CT-2019-0019-O), and the Ecuadorian Ministry of the Environment and Water (Contract 
#MAE-DNB-CM-2016-0043, Export Authorization #128-2019-EXP-CM-MBI-DNB/MA).

Results
The primary bacterial phyla found in the Galapagos penguin fecal samples were Fusobacteria, Epsilonbacte-
raeota, Firmicutes, and Proteobacteria, and the most common families were Fusobacteriaceae, Helicobacteraceae, 
Clostridiaceae, Pasteurellaceae, and Peptostreptococcaceae (Fig. 1). WGS samples were profiled functionally 
using level II of the KEGG pathway classification hierarchy. Most identified KEGG pathways were involved 
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in metabolic activity, primarily amino acid metabolism, carbohydrate metabolism, energy metabolism, and 
nucleotide metabolism (Fig. 1).

Alpha and beta diversity were calculated to assess diversity within and between communities, respectively. 
Overall, alpha diversity was low; no raw sample exceeded 100 identified OTUs and most contained fewer than 
50 OTUs. Alpha diversity was significantly lower in juveniles compared to adults in each of the three diversity 
measures used (Fig. 2, observed richness P = 0.0068, Simpson’s P = 0.0046, Shannon P = 0.0071). Beta diversity 
significantly differed between age classes after controlling for location and sex in the model (PERMANOVA, 
 R2 = 0.06427, P = 0.019, Supplementary Information; PERMDISP, P = 0.816). Adult penguins did not vary by sex 

Figure 1.  Bacterial phyla and families detected in 16S rRNA sequencing data (A, B), and metabolic KEGG 
pathway groups computed from shotgun sequencing data (C). Figure created in R using tidyverse (v. 1.3.1)96 and 
cowplot (v. 1.1.1)97.
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when comparing either alpha or beta diversity. No functional differences based on age or sex were apparent in 
the WGS dataset with either metabolic pathways or protein families.

We also examined the importance of location for microbiome composition. Due to the uneven sample distri-
bution across sites, single samples from El Muñeco (at the northern end of Isabela Island) and Playa Perros (near 
Puerto Pajas) were first excluded. The remaining three sites—Caleta Iguana, Puerto Pajas, and Marielas—rep-
resent the largest penguin colonies. Caleta Iguana is only represented by four samples following filtering steps, 
constraining our ability to compare between all three sites.

Slight clustering by location was apparent using Principal Coordinates Analysis (PCoA) (Fig. 3). Compared to 
the more exposed sample sites, Marielas was slightly different (PERMANOVA, 999 permutations,  R2 = 0.05970, 
P = 0.038, Supplementary Information; PERMDISP, P = 0.293). However, when the sites were limited to Marielas 
and Puerto Pajas there was no significant difference (PERMANOVA, 999 permutations,  R2 = 0.06588, P = 0.061, 
Supplementary Information). Shannon Diversity Index values significantly differed between the three sites 
(P = 0.03857), with the lowest Shannon Diversity seen at Marielas, but observed richness and Simpson’s Index 
did not significantly vary (Fig. 3).

Antibiotic resistance screening. Screening shotgun sequencing reads from each sample with the CARD 
database revealed a total of nine putative antibiotic resistance genes (Table 1). Two resistance genes correspond-
ing to Helicobacter pylori reference genomes were particularly widespread, occurring in almost all samples 
(19/20); these genes confer resistance to Tetracyclines and Macrolides. Genes resistant to Aminoglycosides and 
Lincosamides were also common in this small sample set, and one Peptide-resistant gene corresponding to C. 
perfringens SM101 was found in six samples.

Pathogen screening. WGS samples were screened for virulence factors using three tools with two data-
bases: PATRIC (VFDB), HUMAnN 3.0 (Pfam), and MetaErg (Pfam). Virulence factors across all three tools 
were associated with a single bacterium, Clostridium perfringens. Most of the reference genome matches from 
the VFDB were from strain 13, classified as type A (Table 2). C. perfringens virulence factors from the VFDB 
were detected in 12/20 penguins, though the taxonomic search using Kraken 2 showed the presence of the 
bacterium in an additional seven penguins (19/20). The virulence-associated BrkB protein family was also clas-
sified with C. perfringens in both HUMAnN 3.0 and MetaErg (BrkB Pfam accession: PF0361), though to vary-
ing degrees—read-based HUMAnN 3.0 detected BrkB with C. perfringens in 8/20 samples, while contig-based 
MetaErg detected it in 10/20 samples. All eight of the samples with virulence factors detected by HUMAnN 3.0 
were also highlighted by MetaErg, and all ten of the samples with virulence factors detected by MetaErg were 
also found by PATRIC.

Additional bacterial taxa were associated with virulence factors in Pfam, though none appeared in the 
VFDB search. Cetobacterium ceti, Clostridium baratii, Clostridium thermobutyricum, Paeniclostridium sordellii, 
and Photobacterium damselae were detected with virulence-associated protein families by both HUMAnN 3.0 
and MetaErg. The contig-based approach, MetaErg, found an additional 28 virulence-associated species; the 
most common were Helicobacter brantae, Gallibacterium anatis, Helicobacter sp. 002,287,135, Helicobacter sp. 
001,693,335, and Fusobacterium sp. 900,015,295. Most taxa were associated with the Pfam virulence factor BrkB, 
but others matched with a haemolysin (SMP_2), virulence-associated protein E, or virulence protein RhuM 
family, among others.

Since C. perfringens was the only bacterium consistently highlighted as a pathogen by all pipelines, the 
presence of C. perfringens virulence factors was examined as a potential structuring force for the microbial 
communities. Samples grouped by C. perfringens virulence factors from the VFDB revealed signals of dysbiosis 
(Fig. 4). Beta diversity was calculated from protein families and from metabolic pathway abundances, and in 
both cases samples with virulence factors clustered away from samples without virulence factors on a PCoA. 
After controlling for location and including age and sex in the models, both protein families (PERMANOVA, 

Figure 2.  Alpha diversity was significantly lower in juveniles compared to adults when measured as observed 
richness (A), Simpson’s Diversity Index (B), and Shannon Diversity Index (C). Figure created in R using 
tidyverse (v. 1.3.1)96, cowplot (v. 1.1.1)97, and ggpubr (v. 0.4.0)98.
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Figure 3.  Alpha and beta diversity showed minor variation between samples from the three primary sampling 
sites on Isabela Island: Caleta Iguana (CI), Puerto Pajas (PP), and Marielas (M). Observed richness and 
Simpson’s Index were similar between sites (A, B), but Shannon Diversity Index significantly differed (C). 
Principal Coordinates Analysis illustrated slight clustering between locations (D). Sample sites are shown along 
the western coast of Isabela Island, with the Galapagos Archipelago in the map inset (E). Figure created in R 
using tidyverse (v. 1.3.1)96, phyloseq (v. 1.40.0)67, cowplot (v. 1.1.1)97, ggpubr (v. 0.4.0)98, ggmap (v. 3.0.0)99, ggsn 
(v. 0.5.0)100, and  ggrepel101 (v. 0.9.1).

Table 1.  Antibiotic resistance genes detected in Galapagos penguin samples.

CARD Accession Function # Samples Reference Genome Antibiotic Class

ARO:3,003,510 Helicobacter pylori 16S rRNA mutation
conferring resistance to tetracycline 19 Helicobacter pylori 26,695 Tetracycline

ARO:3,004,134 Helicobacter pylori 23S rRNA with mutation
conferring resistance to clarithromycin 19 Helicobacter pylori Macrolide

ARO:3,003,493 Pasteurella multocida 16S rRNA mutation
conferring resistance to spectinomycin 9 Pasteurella multocida 36,950 Aminoglycoside

ARO:3,004,149 Escherichia coli 23S rRNA with mutation
conferring resistance to clindamycin 9 Escherichia coli CFT073 Lincosamide

ARO:3,003,773 Clostridium perfringens mprF 6 Clostridium perfringens SM101 Peptide

ARO:3,001,219 Clostridium difficile EF-Tu mutants
conferring resistance to elfamycin 6 Clostridium difficile Elfamycin

ARO:3,003,512
Salmonella enterica serovar Typhimurium 16S
rRNA mutation in the rrsD gene conferring
resistance to spectinomycin

5 Salmonella enterica
subsp. salamae Aminoglycoside

ARO:3,004,058 Staphylococcus aureus 23S rRNA with
mutation conferring resistance to linezolid 1 Staphylococcus aureus Oxazolidinone

ARO:3,003,403 Escherichia coli 16S rRNA mutation in the rrsB gene conferring resistance to paromomycin 1 Escherichia coli K-12 Aminoglycoside
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999 permutations,  R2 = 0.14156, P = 0.020, Supplementary Information; PERMDISP, P = 0.076) and metabolic 
pathways (PERMANOVA, 999 permutations,  R2 = 0.22465, P = 0.014, Supplementary Information; PERMDISP, 
P = 0.081) were significantly different based on the presence of C. perfringens virulence factors. Three metabolic 
groups and 17 metabolic KEGG pathways significantly differed between samples divided by virulence factors 
(adjusted P-values < 0.05). This pattern held true in the 16S dataset, revealing taxonomic clustering based on 
the presence of C. perfringens virulence factors (PERMANOVA, 999 permutations,  R2 = 0.17409, P = 0.001; 
PERMDISP, P = 0.27, Supplementary Information). However, alpha diversity did not significantly vary between 

Table 2.  Clostridium perfringens virulence factors detected in PATRIC.

Template Gene Product Virulence factor # Samples Reference Genome

VFDB|VFG002274 plc Phospholipase C alpha-toxin 9 C. perfringens str. 13

VFDB|VFG002277 nagH Hyaluronidase mu-toxin 8 C. perfringens str. 13

VFDB|VFG002276 colA Collagenase kappa-toxin 7 C. perfringens str. 13

VFDB|VFG002284 nanJ Exo-alpha-sialidase sialidase 7 C. perfringens str. 13

VFDB|VFG002285 nanH Sialidase sialidase 7 C. perfringens ATCC 13124

VFDB|VFG002275 pfoA Perfringolysin O theta-toxin 6 C. perfringens str. 13

VFDB|VFG002282 cloSI Alpha-clostripain alpha-clostripain 6 C. perfringens str. 13

VFDB|VFG002283 nanI Exo-alpha-sialidase sialidase 6 C. perfringens str. 13

VFDB|VFG002278 nagI Hyaluronidase mu-toxin 6 C. perfringens str. 13

VFDB|VFG002279 nagJ Hyaluronidase mu-toxin 6 C. perfringens str. 13

VFDB|VFG002280 nagK Hyaluronidase mu-toxin 5 C. perfringens str. 13

VFDB|VFG002281 nagL Hyaluronidase mu-toxin 5 C. perfringens str. 13

VFDB|VFG002286 cpe Enterotoxin Cpe CPE (C. perfringens enterotoxin) 2 C. perfringens SM101

Figure 4.  The penguin microbiome varied with C. perfringens virulence factors (VFs). Principal Coordinates 
Analysis showed distinct clustering based on OTUs from 16S rRNA gene sequencing data (A), protein families 
from shotgun sequencing data (B), and KEGG metabolic pathways from shotgun sequencing data (C) when 
separated by Jaccard distance and sorted by the presence of C. perfringens virulence factors from the VFDB. 
Relative abundance of three metabolic groups significantly varied in the presence of C. perfringens (D). Figure 
created in R using tidyverse (v. 1.3.1)96, phyloseq (v. 1.40.0)67, and cowplot (v. 1.1.1)97.
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groups. No significant relationship was found between C. perfringens status with age, sex, location, or body 
condition.

Discussion
Overall, our study indicates that developmental stage, location, and pathogen presence are structuring the gut 
microbiome in the Galapagos penguin. The taxonomic profile of this community was similar to previously pub-
lished penguin microbiomes, though the gut microbiome of the Galapagos penguin was notably dominated by 
Fusobacteria and lacking in  Bacteroidetes22,73,74. We found adult Galapagos penguins had significantly higher 
alpha diversity (observed richness, Shannon Diversity, and Simpson’s Index) in their gut microbiomes compared 
to juvenile penguins. Differences in foraging behaviors and movement between adults and juveniles may be 
an explanatory  factor31,32. Non-breeding adults and juveniles tend to travel longer distances as they forage for 
schooling fish and crustaceans in shallow water along the shore, while breeding adults travel shorter distances 
and stay near the nesting  sites31,32. However, juveniles may return to the nest area as they gradually learn how 
to forage, and adults occasionally demonstrate extended parental care during this learning period by feeding 
fully-fledged juveniles, complicating movement-based interpretations of the reduced microbial diversity found 
in  juveniles31,75. Hormonal differences could also play a role since some adults were in breeding condition—this 
is known to increase alpha diversity in males in other avian species—but surprisingly, no sex-based differences 
were  found19. The lack of sex-based differences may again be related to foraging habits, as males and females 
exhibit similar foraging behaviors and are likely exposed to similar dietary and environmental  microbes32. It is 
important to understand how factors such as developmental stage can influence the avian microbiome, as this 
could indicate a varied degree of vulnerability to disease depending on host age.

Though location did not appear to be a strong force structuring the microbiome, both alpha and beta diver-
sity showed some differences at the Marielas Islets compared to the other primary sampling sites. The similar 
environment along the coast of Isabela and the movement of penguins between sites are likely factors behind the 
general homogeneity of microbiomes between  locations31,32. The small differences observed may be explained by 
unique diets between sites or exposure to different environmental microbes. While sociality can also influence 
microbiomes, determining relatedness or pair bonds within the sample set was beyond the scope of this  study76. 
Perhaps significantly, the Sierra Negra shield volcano on Isabela Island was erupting during the 2018 sampling 
trip. Lava flowed down the volcano’s northwestern flank and reached the sea near the Marielas sampling  site77. 
This contributed to warmer water temperatures at that site and likely altered pH levels as  well78. Changes in pH 
can influence aquatic microbial communities, and this proximity to volcanic activity may have led to the slight 
variation in microbial signatures found between  sites79. Differing amounts of environmental heavy metal may 
also play a role, as this is known to alter microbiome compositions in some systems—a previous study found 
variation in heavy metal concentrations in Galapagos penguin feathers from different sites, with significantly 
higher levels of lead in feathers from  Marielas80,81. An additional factor may be the relatively exposed position 
of the southern sites compared to the more sheltered location of the Marielas away from the primary current.

We determined that the putative resistome for this species contains at least nine resistance genes. Two resist-
ance genes associated with Helicobacter pylori were almost ubiquitous, detected in all but one penguin. Antibiotic 
resistant genes have been previously found in the Galapagos Islands in marine water, tortoise feces, and both 
land iguana and marine iguana feces, but this is the first time to our knowledge that they have been detected 
in Galapagos  penguins9,42,43. Some antibiotic resistance occurs naturally, in areas as remote as Antarctica, and 
resistance genes could potentially be found in Galapagos even in the absence of human  activity82. However, the 
increasing amount of antibiotic resistance found in the wild is broadly attributed to selection from the heavy 
use of antibiotics in modern agricultural and clinical  settings83. In one example of likely anthropogenic effects, 
a study in Galapagos found that proximity to humans (e.g. ports, towns) was generally associated with the anti-
biotic resistance found in seawater and reptile feces, with increased resistance detected in most populated areas 
and no resistance detected at certain isolated  sites9.

The exchange of antibiotic resistance genes happens readily among bacteria through horizontal gene transfer, 
making it challenging to prevent resistance genes from spreading. Antibiotic resistance is found at high levels 
in bacteria from human waste, and even after waste treatment sewage remains a potent source of antibiotics or 
resistance  genes84. Resistance genes can even be transferred by wildlife across large distances, such as through 
resident bacterial flora of migratory  birds82. In Galapagos, sewage contamination from towns and boats is a 
likely way in which antibiotics and/or bacteria with resistance genes could be introduced into the environment 
(which can also be detrimental to human health), though resistance genes may also arrive from other  sources42. 
Increased wastewater control is thus an essential factor to limit the spread of antibiotic resistance in wild com-
munities. Finding antibiotic resistance consistently in the penguin samples indicates that it is present even in 
more isolated areas along Isabela Island, emphasizing a need for further investigation into the extent of resist-
ance genes associated with anthropogenic activity (such as cruise ships) and whether wastewater management 
changes should be considered in the islands. Collecting water samples in parallel with penguin fecal samples 
in future studies would provide greater insight into where environmentally derived antibiotic resistance genes 
may have originated.

Finally, our pathogen screening highlighted a few potential enteric pathogens—Clostridium perfringens, Pae-
niclostridium sordelli, Clostridium baratii, Gallibacterium anatis, and Photobacterium damselae were among the 
most common bacteria linked with virulence-associated protein families in this microbiome. The class Clostridia 
contains some of the primary agents of enteric disease in birds, and C. perfringens, P. sordellii and C. baratii have 
all been associated with enteric  disease85,86. Gallibacterium anatis (previously Pasteurella anatis) has also been 
implicated as a pathogen in several avian species and is considered an emerging poultry  disease87. However, the 
detection of virulence-associated factors is by itself no guarantee that a microbe is actually pathogenic to the 
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host, and microbes such as Gallibacterium anatis are also commonly found as members of the normal bacterial 
 flora88. Further, several bacteria in the microbiome were associated with virulence proteins but are unlikely to 
be pathogenic to penguins—for example, Photobacterium damselae was linked to several different virulence-
associated protein families in this microbiome, though this bacterium is recognized as a pathogen in taxa such 
as fish and marine mammals rather than  birds89.

Clostridium perfringens was the only putative pathogen detected with the Virulence Factor Database in addi-
tion to the Protein Family Database (Pfam). C. perfringens is an extremely widespread bacterium and a normal 
member of many microbiomes, but it is also notorious for causing necrotic enteritis in poultry and other birds 
(as well as enteric diseases in humans, dogs, and a number of other taxa)90,91. In poultry, C. perfringens injects 
toxins into the intestines, resulting in intestinal lesions and a range of clinical signs including lethargy, loss of 
appetite, and mortality (though lethal cases may also occur without any observable symptoms)86. Outbreaks of C. 
perfringens leading to fatalities have also been documented in captive penguin  populations92. The pathogenicity 
of the detected strain of C. perfringens in Galapagos penguins is unknown, and we notably did not detect the netB 
gene encoding a pore-forming toxin which is associated with most occurrences of necrotic enteritis in  poultry93. 
However, the detected virulence factors correspond to type A and the genes plc and cpe, which are associated 
with toxin production and avian enteric  disease91. Coupled with the apparent dominance of C. perfringens in 
the observed microbial communities and the strong structural changes observed in the presence of virulence 
factors, this suggests a level of pathogenicity at the time of sampling. While pathogen presence was not signifi-
cantly associated with body condition in this study, a larger sample size would provide more conclusive results. 
Resampling the population is necessary to shed light on the role C. perfringens plays in this species’ microbiome.

The Galapagos penguin faces many threats, largely from anthropogenic sources. Climate change may lead to 
increased frequency of El Niño events, which would significantly increase the species’ odds of  extinction31,33,94. 
Overfishing in the area surrounding the Galapagos National Park could influence food  availability31. Introduced 
predators such as cats have been known to kill Galapagos penguins in the  archipelago31. The low genetic variation 
found in these penguins may also increase their vulnerability to introduced diseases, and the small population 
size and limited range leave little room for species resilience in the event of an invading  pathogen30,31,35,38. This 
study contributes to disease surveillance in this species and to understanding the degree of human influence 
reaching isolated penguin breeding sites. Future studies would benefit from parallel environmental microbiome 
samples, a larger sample size, and seasonal sampling to quantify temporal patterns of bacterial pathogens in this 
population.

Conclusions
This work establishes a baseline microbiome for an endangered penguin, identifies two primary drivers of 
microbial community structure, and emphasizes the importance of minimizing interaction between wildlife and 
humans. Even in a site as remote and well-protected as the Galapagos Islands, human influence is still visible 
through factors such as antibiotic resistance genes. The human-inhabited islands also have some domesticated 
animals, which increases the possibility of disease spillover occurring between domestic and wild species—the 
apparent pathogenicity of C. perfringens found in Galapagos penguins is concerning when considering the prox-
imity of the penguin population to domestic  chickens95. Thus, monitoring and limiting anthropogenic effects on 
wildlife is critical to the continued long-term preservation of Galapagos endemic species.

Data availability
The raw sequencing files corresponding to this article are available in the NCBI Sequence Read Archive (SRA) 
repository under BioProject ID PRJNA794207 (https:// www. ncbi. nlm. nih. gov/ sra/ PRJNA 794207). R scripts and 
associated files are available at https:// github. com/ sd784/ Rohrer_ etal_ GAPEm icrob iome.
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