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Building a second‑opinion tool 
for classical polygraph
Dmitri Asonov 1, Maksim Krylov 2*, Vladimir Omelyusik 1, Anastasiya Ryabikina 2, 
Evgeny Litvinov 1, Maksim Mitrofanov 2, Maksim Mikhailov 2 & Albert Efimov 1,3

Classical polygraph screenings are routinely used by critical businesses such as banking, law 
enforcement agencies, and federal governments. A major concern of scientific communities is that 
screenings are prone to errors. However, screening errors are not only due to the method, but also due 
to human (polygraph examiner) error. Here we show application of machine learning (ML) to detect 
examiner errors. From an ML perspective, we trained an error detection model in the absence of 
labeled errors. From a practical perspective, we devised and tested successfully a second-opinion tool 
to find human errors in examiners’ conclusions, thus reducing subjectivity of polygraph screenings. 
We report novel features that uplift the model’s accuracy, and experimental results on whether people 
lie differently on different topics. We anticipate our results to be a step towards rethinking classical 
polygraph practices.

Safety of clients’ money and data (e.g. transactions) is at the heart of banking culture and reputation. As one 
of the instruments to safeguard clients, banks use polygraph screenings (PS). These are performed when hir-
ing candidates to prevent the hiring of untrustworthy people. To detect an infringement early, employees with 
sensitive roles are screened regularly. The PS topics include drug abuse, gambling addiction, insider trading, 
disclosure of confidential information, bribery, corruption, and misappropriation and fraud (sample screening 
questions are in Suppl. Table 2). The finance industry is not alone in applying PS; other examples being critical 
sectors such as aviation, manufacturing companies, and federal law enforcement agencies throughout the world1,2.

The classical polygraph is a device that records cardiovascular activity (such as heart rate), thoracic and 
abdominal respirations, galvanic skin response (a.k.a. electrodermal activity, or EDA), and tremor. An examiner 
asks questions of, and accepts «yes» or «no» answers from, the person being screened (examinee). There are many 
good overviews of classical polygraph and questioning methods3–5.

Unorthodox lie detection studies analyze video and audio6 (including facial expressions7,8, pupil reaction9, and 
delays between question and answer10), electromyography (EMG)11, electroencephalogram (EEG)12, magnetic 
resonance tomography (MRT)13,14, or writing pattern (keystroke dynamics)15 in addition to or instead of classi-
cal polygraph data. Some of these studies even get a chance to pilot in the new fields, such as the iBorderCtrl lie 
detector pilot in EU airports16,17 or the VeriPol deception detection pilot by Spanish police on written insurance 
claims18,19. Yet, in the traditional fields, we are unaware of any cases where classical polygraphs are substituted 
with unorthodox systems. Classical polygraph remains the instrument of choice in the traditional areas, such as 
hiring screening, and criminal and internal investigations.

Polygraph has a long history of drawing criticism from psychology20,21 and law scientists22, as well as from 
the public and state1,23. A major concern is that this method does not detect lie and truth reliably. And yet, 
“paradoxically, although Congress expressed deep concerns about the efficacy of the technology, the EPPA permits 
the use of lie detectors in circumstances in which the accuracy of the results is of paramount importance: national 
defense, security, and legitimate ongoing investigations”22.

Critical related work provides many arguments for why polygraph screening may fail at detecting a lie or 
mark a truthful answer as a lie. For example: “Polygraph tests do not assess deceptiveness, but rather are situations 
designed to elicit and assess fear”24. A truthful junior manager may fear being called a corruptor more than a 
coldblooded, corrupted senior manager fears being caught lying by a polygraph examiner. Another example of 
constructive critique is a grounded call for standardization of polygraph screening procedures and examiner 
education25. Of all concerns, in this paper we tackle only one: the need for quality assessment (QA) of examiner 
work. Examiner errors happen, for example, when an examiner is inexperienced, exhausted or distracted, or 
biased26.
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A simple QA solution exists: always have another examiner review the screening and confirm or disprove 
the conclusions of the original examiner27. To QA a polygraph examiner report, another examiner needs to 
review the recording of the screening, including the polygram (a graphical representation of recorded sensor 
data coupled with the examiner’s questions and the examinee’s answers), sometimes audio and video recording, 
and to compare his conclusions with the original report. In our experience, QA takes at least half the time it took 
to perform the screening. An average screening takes at least two hours. Thus, QAs are costly in terms of both 
time and money. For this reason, and to the best of our knowledge, industrial internal security departments QA 
screenings infrequently or not at all. We also note that having other examiners to QA all screenings is not a bul-
letproof solution. Some examiners mistakes come not from the examiner’s bias or fatigue, but from the fact that 
the case is hard. In hard cases, the second examiner may make just the same mistake the original examiner did.

The overview of our experimental framework is as follows. Our main approach is to train a binary classifier 
model and apply it to each of the real 2094 screenings in our possession to see if the model score contradicts the 
examiner conclusion. To avoid applying the model to screenings that it saw during the training, we use standard 
stratified fivefold validation. Here we hypothesize that the model will not train to make the errors that human 
examiners do because the share of examiner errors is minor. We also decide to deviate from related work by not 
implementing polygraph examiner rules as features. We do this to avoid our model being trapped in the same 
way that human examiners are trapped, when some rules are disputable and have exceptions. Our secondary 
experimental goals are as follows:

a.	 Ideate and test novel features that would uplift the AUC of the models. In particular, consider features of 
novel (not physiological) nature, such as job description and magnetic storms.

b.	 Build models for each screening topic individually, to see if this uplifts the quality and if the AUCs of models 
differ from topic to topic.

The primary success benchmark of our experiments is the success in finding real examiner errors in the 
screenings marked by the models we trained. We implement this primary benchmark by handing the screenings 
flagged by the model as examiners’ errors to the human examiners for verification. The secondary benchmark 
that we used during the modelling process is the AUC of the models. This secondary benchmark reflects only 
indirectly how good the models are at catching the examiners’ errors because AUC is calculated on noisy targets 
containing these unknown errors. The third benchmark is the best AUC of most related work (0.85 by Slavcovic4). 
This AUC can be considered an upper bound, because it is obtained on criminal investigation polygraph data, 
known to have much more predictive power than job screenings3.

Here we report devising and testing in the field an ML tool to QA the examiner reports for PS performed 
on classical polygraph. A small number of reports, marked suspicious by this tool, will be handed to another 
examiner for QA. Such a tool would allow for semi-automatic double-checking of all new and historical reports, 
without hiring additional examiners. An additional advantage of such a tool is that if examiners are sure all their 
work will be QA-ed, they will make decisions more carefully.

Our results neither justify nor solidify the practice of classical polygraph screenings. Rather, we consider 
our results as a temporary and partial patch that helps to eliminate a specific type of error of this method, until 
better methods are devised and put into practice. More broadly, we believe we make a step towards rethinking 
classical polygraph practices.

Below we describe the steps, from a basic model to a validation of the final model, that succeeded at exposing 
real examiner errors in historical field screenings.

Results
Basic second‑opinion model on examiner conclusions.  We built a basic second-opinion model by 
training a model on the historical data of 2094 field polygraph screening recordings (PSRs) including Deception 
Indicated (DI) attributes set by the examiners who conducted the screenings. The intended use is to raise a red 
flag whenever an examiner conclusion contradicts the conclusion inferenced by the model.

We present the quality metrics of the basic model in Table 1a, in column «all topics». Our major quality met-
rics are ROC AUC, and TPR for an FPR at 0.05. We note that we are forced to use these indirect quality metrics, 
because they measure how the model mimics the conclusions of the examiners. In fact, counter-intuitively, and 
contrary to the goals of related work, we do not want a perfect model predicting examiner conclusions in up to 
100% screenings, because then we would flag no candidates for examiner errors. In practice, we are interested 
in validating that the model detects erroneous examiner conclusions, of which at this stage we had absolutely 
no knowledge. Tables 2 and 3 present the importance of each of the features based on 10 raw polygraph signals 
and age and sex of the examinees; the details of second-level feature construction are described in the section 
on “Methods”. Figure 1 depicts where the model and an examiner’s conclusions agree and disagree, depending 
on the model score.

We also decided to measure the quality of the model applied to each of seven screening topics (Table 1a). 
To the best of our knowledge, we are the first to report the model quality on separate topics within a standard 
employee screening, and this approach will help us as shown below.

Using alternative data to improve the model quality.  Measuring the performance of a model 
involves spending approx. 100 examiner hours, because it involves a real examiner QA-ing thoroughly dozens of 
PSRs flagged by the model. In case of failure, i.e. in the case of finding no examiner errors in the flagged screen-
ings, no second chance would be given to waste another 100 h of the limited resource. We tried to maximize our 
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Table 1.   Three models inference each of seven screening topics, measured using stratified K-fold cross-
validation. (a) Basic model (features based on 10 raw polygraph signals, age and sex of the examinees). (b) 
Basic model with alternative data. (c) Basic model with job position data.

All topics Drug abuse Corruption
Conf. info 
leak Debt

Unrep. 
income

Crime 
history

IRD 
violation

ROC AUC 
(Std.)

a. 0.75 (0.02) 0.79 (0.02) 0.71 (0.04) 0.73 (0.05) 0.64 (0.03) 0.81 (0.03) 0.83 (0.06) 0.69 (0.03)

b. 0.80 (0.01) 0.85 (0.02) 0.81 (0.03) 0.77 (0.05) 0.74 (0.07) 0.80 (0.09) 0.90 (0.03) 0.7 (0.03)

c. 0.79 (0.01) 0.84 (0.02) 0.82 (0.01) 0.76 (0.05) 0.69 (0.06) 0.80 (0.02) 0.90 (0.03) 0.69 (0.04)

Recall (Std.)

a. 0.28 (0.01) 0.34 (0.01) 0.27 (0.10) 0.30 (0.08) 0.12 (0.06) 0.26 (0.09) 0.16 (0.08) 0.2 (0.07)

b. 0.30 (0.02) 0.42 (0.03) 0.25 (0.09) 0.15 (0.07) 0.20 (0.05) 0.27 (0.09) 0.54 (0.19) 0.13 (0.05)

c. 0.29 (0.02) 0.40 (0.03) 0.22 (0.05) 0.24 (0.07) 0.15 (0.04) 0.37 (0.06) 0.47 (0.14) 0.09 (0.05)

Precision 
(Std.)

a. 0.14 (0.01) 0.32 (0.06) 0.14 (0.04) 0.10 (0.03) 0.04 (0.02) 0.08 (0.02) 0.05 (0.03) 0.10 (0.04)

b. 0.19 (0.02) 0.45 (0.08) 0.17 (0.06) 0.06 (0.03) 0.12 (0.03) 0.10 (0.04) 0.12 (0.04) 0.09 (0.04)

c. 0.18 (0.02) 0.41 (0.06) 0.16 (0.02) 0.11 (0.04) 0.08 (0.03) 0.12 (0.02) 0.11 (0.03) 0.06 (0.03)

F1_score 
(Std.)

a. 0.19 (0.01) 0.32 (0.04) 0.18 (0.06) 0.14 (0.04) 0.06 (0.03) 0.12 (0.03) 0.08 (0.04) 0.14 (0.05)

b. 0.23 (0.02) 0.43 (0.05) 0.2 (0.07) 0.09 (0.04) 0.14 (0.04) 0.14 (0.05) 0.18 (0.06) 0.1 (0.04)

c. 0.22 (0.02) 0.40 (0.04) .18 (0.03) 0.15 (0.05) 0.10 (0.03) 0.18 (0.02) 0.16 (0.04) 0.07 (0.04)

Accuracy 
(Std.)

a. 0.92 (0.00) 0.90 (0.01) 0.93 (0.00) 0.94 (0.00) 0.93 (0.01) 0.94 (0.01) 0.93 (0.01) 0.92 (0.01)

b. 0.93 (0.01) 0.92 (0.01) 0.94 (0.00) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.93 (0.01) 0.91 (0.01)

c. 0.93 (0.01) 0.92 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.93 (0.01) 0.92 (0.01)

TNR (Std.)

a. 0.95 (0.00) 0.94 (0.01) 0.95 (0.00) 0.95 (0.00) 0.95 (0.01) 0.95 (0.01) 0.94 (0.01) 0.94 (0.01)

b. 0.95 (0.01) 0.96 (0.01) 0.96 (0.00) 0.95 (0.01) 0.96 (0.01) 0.95 (0.01) 0.94 (0.01) 094 (0.01)

c. 0.95 (0.01) 0.96 (0.01) 0.96 (0.00) 0.96 (0.01) 0.96 (0.01) 0.96 (0.01) 0.94 (0.01) 0.95 (0.01)

FPR (Std.)

a. 0.05 (0.00) 0.06 (0.01) 0.05 (0.00) 0.05 (0.00) 0.05 (0.01) 0.05 (0.01) 0.06 (0.01) 0.06 (0.01)

b. 0.05 (0.01) 0.04 (0.01) 0.04 (0.00) 0.05 (0.01) 0.04 (0.01) 0.05 (0.01) 0.06 (0.01) 0.06 (0.01)

c. 0.05 (0.01) 0.04 (0.01) 0.04 (0.00) 0.04 (0.01) 0.04 (0.01) 0.04 (0.01) 0.06 (0.01) 0.05 (0.01)

Number of DI 261 137 48 36 32 24 24 47

Table 2.   Feature importance of the first-level basic model.

Feature Importance

1 ABS_BLOOD_VOLUME_min_min_mean 0.89

2 PLE_mean_diff_mean 0.83

3 ABS_BLOOD_VOLUME_min_mean_mean 0.75

4 ABS_BLOOD_VOLUME_max_max_mean 0.72

5 ABS_BLOOD_VOLUME_max_max_max 0.70

6 OPTIONAL_std_max_max 0.68

7 ABS_BLOOD_VOLUME_min_mean_max 0.66

8 ABS_BLOOD_VOLUME_mean_mean_mean 0.65

9 ABS_BLOOD_VOLUME_mean_max_mean 0.61

10 EDA_std_mean_max 0.57

11 ABS_BLOOD_VOLUME_mean_max_max 0.56

12 OPTIONAL_std_mean_max 0.54

13 EDA_mean_diff_max 0.52

14 OPTIONAL_std_mean_mean 0.50

15 ABDOMINAL_RESP_mean_diff_max 0.49

16 OPTIONAL_std_max_mean 0.48

17 TREMOR_mean_max_max 0.47

18 TREMOR_min_mean_mean 0.47

19 TONIC_EDA_amplitude_mean_max 0.47

20 TONIC_EDA_std_mean_max 0.46
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one chance by doing our best to increase the quality of the basic model before flagging suspicious conclusions 
for manual QA.

We hypothesized that information about geomagnetic storms on Earth28 and weather conditions in the city 
on the date of the screening may help the model to predict. The intuition behind this assumption is that, during 
storms and under different weather conditions, humans might behave slightly differently, resulting in slightly 
different raw physiological measurements or the sensors might provide slightly shifted measurements, or both.

We also collected examiner ID, hoping that these data may be of help to the model, because different examin-
ers might provoke slightly different physiological reactions in examinees, or the polygraph devices assigned to 
each examiner might have slightly different signal measurement deviations. We also collected roles (e.g. job posi-
tions) of the examinees, because people of different education and training may tell the truth and lie differently.

Table 1b presents a basic model re-trained with these alternative data and Table 4 shows the importance of 
these features (full description of all features is in Suppl. Table 6). The uplift each data source is providing to the 
model based only on physiological signals is shown in Table 5.

All alternative data types uplifted the quality of the model; however, we decided to keep only age, sex and job 
roles for production (Table 1c). Weather showed anomalously high uplift and importance, and we feared that 
this is because, for technical reasons, our dataset is highly unbalanced by the percentage of DI labels per city. To 
exclude city bias, we cut the dataset to one city but weather still was high in feature importance. Thus, we believe 
weather is significant alternative data. However, on the full dataset, weather could leak city information, and the 
model could get the city bias from the unbalanced dataset. While examiner ID provided a moderate uplift, the 
nature of this feature requires further investigation before relying on it in production. For example, if it is not 

Table 3.   Feature importance of the second-level basic model.

1 Feature Importance

2 subject_age 28.56

3 pred_proba_min 19.53

4 pred_proba_max 17.53

5 pred_proba_mean 16.50

6 pred_proba_diff 8.96

7 subject_sex 8.93

Figure 1.   Distribution of basic model scores for topics: (a) “Drug abuse”; (b) “Corruption”.
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the examiner ID but the examiner’s polygraph device ID that helps inferencing, then we will have wrong scoring 
when an examiner changes his device.

A model built for one topic performs marginally better.  Here we investigate if training a separate 
model for each topic will result in even better quality as compared to the basic model with job position. We had 
DI labels enough for training for one topic only, i.e. for drug abuse (137 DI labels). Table 6 shows that we gain 
a + 2% ROC AUC (6% relative uplift) if we train a model for the drug abuse topic only. This allows us to speculate 
that people may lie differently on different topics, and thus separating the topics makes it easier for the model to 
learn and to inference. More data and research are needed to confirm this hypothesis.

A model built on one topic can handle other topics with varying quality.  We applied the Drug 
Abuse model from the previous paragraph to inferencing the other six topics (Table 6). Compared to the uni-
versal model, the performance of the Drug Abuse model varies from topic to topic. We conclude that a model 
trained on one topic can handle other topics, albeit with insignificant quality degradation for some topics.

Vague questions are hard not only for people and examiners, but for models too.  In Table 1 we 
observed that the basic model performs on some topics (such as drug abuse and criminal history) significantly 
better than on other topics (such as unreported income or IRD violation). This observation is in line with a 
long-standing issue in the screenings: people just cannot confidently answer questions when they are not sure 
about the answer. At the bank, we have hundreds of IRDs, dozens of pages each, not to mention the versioning, 

Table 4.   Feature importance of the second-level basic model with alt data.

Feature Importance

1 subject_age 8.52

2 pred_proba_min 6.98

3 pred_proba_max 6.64

4 examiner_id 6.59

5 pred_proba_mean 6.26

6 Pressure 5.83

7 current_position 5.55

8 Wind 5.25

9 Dew Point 4.83

10 accepted_position 4.75

11 Humidity 4.62

12 pred_proba_diff 4.24

13 current_department 4.18

14 Condition 4.17

15 Temperature 4.00

16 Time 3.63

17 accepted_department 3.08

18 Wind speed 3.04

19 subject_sex 2.41

20 subject_type 2.31

Table 5.   Uplifts of AUC from each alternative data source for entire dataset, and for each topic. Significant 
values are in bold.

Without alt. data Examinee age Examinee sex Job position Weather Geomagn. storms Examiner id

Overall 0.75 (0.02)  + 4%  + 2%  + 8%  + 4% 0%  + 3%

Drug abuse 0.79 (0.02)  + 6%  + 3%  + 11%  + 9% 0%  + 5%

Corruption 0.71 (0.04) − 2%  + 1%  + 7% − 3%  + 1%  + 5%

Conf. info leak 0.73 (0.05)  + 5%  + 4%  + 7%  + 4%  + 3%  + 1%

Debt 0.64 (0.03) 0% − 2%  + 6%  + 3% − 2%  + 1%

Unrep. income 0.81 (0.03)  + 6%  + 6%  + 8%  + 3% − 1%  + 6%

Criminal history 0.83 (0.06)  + 3%  + 5%  + 11%  + 6%  + 4%  + 3%

IRD violation 0.69 (0.03)  + 5% − 1%  + 2% 0% 0%  + 3%
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so some people are not sure if they never violated a single IRD. Similarly with unreported income: some people 
start asking themselves questions like «if I got cash from a relative, is this an income?», etc. As with any common 
knowledge without quantitative proof, there were heated debates whether topics like «IRD violation» are effec-
tive or need to be more specific. Our finding helped to end this never-ending discussion in our organization.

We also could use this observation to improve the quality of the basic model. If we found a couple of topics 
that confuse people, the basic model must be confused training on these. We tried to remove these confusing 
labels from the trainset all together. However, and counter-intuitively, in Table 7 we can see that this idea did not 
improve the quality of the model significantly, and the quality of the inferencing for confusing topics dropped 
or did not change. We presume we did not observe a significant positive effect because the share of confusing 
topic DI labels in the trainset is insignificant.

Topic as alternative data.  The universal model we built and described above does not use topics as fea-
tures for training and inference. The reason is that we sought a model that can score any screening topic, not 
just the seven topics we have training data for. In Suppl. Table 5 we report how topics used as additional data for 
building a universal model reflect on the quality of the model. We can see that knowing topics helps the model 
to better score «confusing» IRD topic whereas other topic quality remains unchanged.

Before adding topic labels as alternative data, we balanced the dataset with regard to topics. This balancing 
resulted in cutting the drug abuse topic with DI labels fourfold. We observed in Suppl. Table 5 that this cut 
decreased the inferencing quality of the DA topic, which had always been an unexplained leader before. The 
quality of the DA topic became on par with a couple of the forerunning topics, such as corruption and criminal 
history. This observation explains the previous domination of the DA topic; it was because it benefited from a 
significantly larger minority class (DI label) than other topics.

Table 6.   A model built for “Drug abuse” topic inferences each of seven screening topics, measured using 
stratified K-fold cross-validation. Significant values are in bold.

All topics Drug abuse Corruption Conf. info leak Debt Unrep. income Criminal history IRD violation

ROC AUC​ 0.80 (0.01)
∆ =  + 1%

0.86 (0.02)
∆ =  + 2%

0.80 (0.04)
∆ = − 2%

0.80 (0.04)
∆ =  + 4%

0.72 (0.06)
∆ =  + 3%

0.81 (0.04)
∆ =  + 1%

0.90 (0.03)
∆ = 0%

0.69 (0.03)
∆ = 0%

Recall 0.25 (0.02)
∆ = − 4%

0.31 (0.02)
∆ = − 9%

0.19 (0.07)
∆ = − 3%

0.25 (0.09)
∆ =  + 1%

0.17 (0.05)
∆ =  + 2%

0.18 (0.09)
∆ = − 19%

0.46 (0.16)
∆ = − 1%

0.17 (0.03)
∆ =  + 8%

Precision 0.16 (0.02)
∆ = − 2%

0.37 (0.04)
∆ = − 4%

0.17 (0.08)
∆ =  + 1%

0.11 (0.05)
∆ = 0%

0.10 (0.04)
∆ =  + 2%

0.06 (0.03)
∆ = − 6%

0.09 (0.02)
∆ = − 2%

0.08 (0.02)
∆ =  + 2%

F1_score 0.22 (0.02)
∆ = − 3%

0.33 (0.04)
∆ = − 7%

0.17 (0.07)
∆ = − 1%

0.15 (0.06)
∆ = 0%

0.12 (0.04)
∆ =  + 2%

0.09 (0.04)
∆ = − 9%

0.14 (0.04)
∆ = − 2%

0.11 (0.02)
∆ =  + 3%

Accuracy 0.93 (0.01)
∆ = 0%

0.91 (0.01)
∆ = − 1%

0.93 (0.01)
∆ = − 1%

0.95 (0.00)
∆ =  + 1%

0.94 (0.01)
∆ = 0%

0.95 (0.01)
∆ =  + 1%

0.93 (0.01)
∆ = 0%

0.91 (0.01)
∆ = − 1%

TNR 0.95 (0.01)
∆ = 0%

0.96 (0.01)
∆ = 0%

0.96 (0.01)
∆ = 0%

0.96 (0.01)
∆ = 0%

0.96 (0.01)
∆ = 0%

0.96 (0.01)
∆ = 0%

0.94 (0.01)
∆ = 0%

0.93 (0.01)
∆ = − 2%

FPR 0.05 (0.01)
∆ = 0%

0.04 (0.01)
∆ = 0%

0.04 (0.01)
∆ = 0%

0.04 (0.01)
∆ = 0%

0.04 (0.01)
∆ = 0%

0.04 (0.01)
∆ = 0%

0.06 (0.01)
∆ = 0%

0.07 (0.01)
∆ =  + 2%

Number of DI 261 137 48 36 32 24 24 47

Table 7.   Basic model without “IRD violation” and “Unreported income” topics in the train set. Significant 
values are in bold.

All topics Drug abuse Corruption
Conf. info 
leak Debt

Unrep. 
income

Criminal 
history

IRD 
violation

ROC AUC​ 0.81 (0.01)
∆ =  + 2%

0.87 (0.01)
∆ =  + 3%

0.82 (0.03)
∆ = 0%

0.76 (0.04)
∆ = 0%

0.74 (0.06)
∆ =  + 5%

0.81 (0.03)
∆ =  + 1%

0.93 (0.02)
∆ =  + 3%

0.67 (0.03)
∆ =  + 2%

Recall 0.34 (0.02)
∆ =  + 5%

0.43 (0.03)
∆ =  + 3%

0.29 (0.06)
∆ =  + 7%

0.27 (0.09)
∆ =  + 3%

0.29 (0.04)
∆ =  + 14%

0.25 (0.11)
∆ = − 12%

0.6 (0.05)
∆ =  + 13%

0.21 (0.04)
∆ =  + 12%

Precision 0.18 (0.02)
∆ =  + 1%

0.42 (0.07)
∆ =  + 1%

0.2 (0.04)
∆ =  + 4%

0.09 (0.03)
∆ = − 2%

0.14 (0.03)
∆ =  + 6%

0.06 (0.03)
∆ = − 6%

0.13 (0.06)
∆ =  + 2%

0.09 (0.02)
∆ =  + 3%

F1_score 0.23 (0.02)
∆ =  + 5%

0.42 (0.05)
∆ =  + 2%

0.23 (0.04)
∆ =  + 5%

0.13 (0.04)
∆ = − 2%

0.18 (0.03)
∆ =  + 8%

0.09 (0.04)
∆ = − 9%

0.20 (0.06)
∆ =  + 4%

0.12 (0.03)
∆ =  + 5%

Accuracy 0.93 (0.01)
∆ = 0%

0.92 (0.01)
∆ = 0%

0.94 (0.00)
∆ = 0%

0.93 (0.00)
∆ = − 1%

0.94 (0.01)
∆ = 0%

0.94 (0.00)
∆ = 0%

0.93 (0.01)
∆ = 0%

0.90 (0.01)
∆ = − 2%

TNR 0.95 (0.01)
∆ = 0%

0.95 (0.01)
∆ = − 1%

0.96 (0.00)
∆ = 0%

0.95 (0.01)
∆ = − 1%

0.95 (0.01)
∆ = − 1%

0.95 (0.01)
∆ = − 1%

0.94 (0.01)
∆ = 0%

0.92 (0.01)
∆ = − 3%

FPR 0.05 (0.01)
∆ = 0%

0.05 (0.01)
∆ =  + 1%

0.04 (0.00)
∆ = 0%

0.05 (0.01)
∆ =  + 1%

0.05 (0.01)
∆ =  + 1%

0.05 (0.01)
∆ =  + 1%

0.06 (0.01)
∆ = 0%

0.08 (0.01)
∆ =  + 3%

Number of DI 261 137 48 36 32 24 24 47
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Ensembling and extra data.  We measured the uplift from adding fresh 189 DIs and also experimented 
with various model ensembling architectures. The results are displayed in Table 8. Cumulatively, ensembling 
and extra data lifted AUC by 5% on all topics, and up to 11% on selected topics. Ensembling is explained in 
“Methods”.

Validating ML‑based second‑opinion in the field.  We now have two advanced models: a Universal 
model (ensemble with alternative data), and a Drug Abuse model (one topic model with alternative data). Here 
we report the summary of the test to find examiner errors among 2094 field historical screenings. We selected 
screenings where the examiner concluded NDI, but a model voted for DI strongly.

Based on Drug Abuse model top scores, we selected 15 NDI examiner conclusions as candidates for examiner 
errors on drug abuse topic. Similarly, based on Universal model top scores, we selected 15/5/5 NDI conclusions 
on corruption/confidential information leak/criminal history topics. Thus, we ended up with 40 conclusions 
(candidates for examiner errors) in 36 screenings.

We handed these 36 screenings for thorough blind QA to two examiners. The examiners did not know the 
results of the screenings, and did not share their QA results with each other. The reason for performing two QAs 
is because if it happened that there was a discrepancy between the original conclusions and one QA, we would 
have the word of one examiner against the word of another examiner, which would not constitute an original 
examiner error per se. One screening (one conclusion on corruption topic) was later removed from QA proce-
dure for technical reasons.

We have extremely experienced examiners, and there is a common assumption at the bank that the examiner 
error rate might be anywhere between 0.0 and 1.0% of all screenings. An examiner error is an extraordinary and 
critical situation that nobody remembers happening once during QAs performed from time to time for years. 
Thus, our test success criteria was to find at least one examiner error in 39 conclusions inside 35 screenings.

The summary of the two QAs is presented in Table 9. The distributions of scores for two relevant topics are 
shown in Fig. 2.

By QA-ing 39 examiner conclusions in 35 screenings (out of 2094 screenings) we identified 30 problematic 
conclusions, where either plain examiner errors are confirmed by two QAs (13 conclusions) or where QAs do 
not agree (17 conclusions). The remaining 9 conclusions are model errors, where an original examiner did not 
make a mistake as confirmed by both QAs. We expected that there would be some cases of QAs not concurring 
because some examiner mistakes could be hard calls where a decision is not obvious. For such hard cases, usually 
a concilium is called where examiners discuss their conflicting conclusions and come to an agreement. In this 
context, we are satisfied that a significant portion of the test (17 of 39 conclusions) has ended up in a concilium. 
It is dangerous to rely on hard call conclusions that require a concilium, without a concilium. We do not publish 
the results of the concilium since the results do not contribute towards the results of the paper.

We note that in several problematic screenings (DI set by one or both manual QAs), the examiners who 
conducted the QA made side notes that an examinee practiced counter-measures. Thus we conclude that our 
models catch some counter-measures. Missing a counter-measure is an examiner error by definition, but we 
were not sure we would catch anything beyond trivial errors.

We conclude that our models are fit for a one-year pilot, where 100% inflow of new screenings (approx. one 
hundred a day) will be scored. Manual QAs will be mandated in case of conflict between examiner conclusions 
and model scores on the topics. The exact model threshold will vary during the pilot, in part depending on the 
current load of the examiner team. The pilot will start at the end of 2022, after interfacing with a production 
polygraph report system is completed.

Table 8.   The impact of ensebling and extra data on AUC. Significant values are in bold.

Universal model Base model Ensembling  + 189 DIs Ensembling and  + 189 DIs

All topics 0.79 (0.01) 0.83 (0.01)
∆ =  + 4%

0.84 (0.01)
∆ =  + 5%

0.84 (0.01)
∆ =  + 5%

Drug abuse 0.84 (0.02) 0.88 (0.01)
∆ =  + 4%

0.84 (0.01)
∆ = 0%

0.88 (0.01))
∆ =  + 4%

Corruption 0.80 (0.03) 0.82 (0.04)
∆ =  + 2%

0.88 (0.02)
∆ =  + 8%

0.86 (0.02)
∆ =  + 6%

Conf. info leak 0.72 (0.05) 0.79 (0.05)
∆ =  + 7%

0.85 (0.01)
∆ =  + 13%

0.83 (0.02)
∆ =  + 11%

Debt 0.75 (0.03) 0.80 (0.05)
∆ =  + 5%

0.84 (0.06)
∆ =  + 9%

0.82 (0.06)
∆ =  + 7%

Unrep. income 0.79 (0.07) 0.83 (0.05)
∆ =  + 4%

0.85 (0.04)
∆ =  + 6%

0.83 (0.04)
∆ =  + 4%

Criminal history 0.90 (0.01) 0.90 (0.01)
∆ = 0%

0.91 (0.04)
∆ =  + 1%

0.91 (0.04)
∆ =  + 1%

IRD violation 0.69 (0.02) 0.71 (0.03)
∆ =  + 2%

0.75 (0.02)
∆ =  + 6%

0.73 (0.03)
∆ =  + 4%
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Discussion
Slavcovic’s work on analyzing raw polygraph data twenty years ago remains the most relevant to our work. 
Similarities are that: (i) both studies work with raw classical polygraph data, (ii) both sets of data are collected 
in the field as opposed to data collected from volunteers instructed to lie, and (iii) accuracies of our models are 
roughly equivalent.

We differ in the following:

	 i.	 Slavcovic warned that data may contain examiner errors; we aimed at finding such errors and succeeded 
at catching examiner mistakes in historical records.

	 ii.	 We experimentally drew the lower bound of examiner error rate in the field (≈1.5%). This bound did not 
previously exist to the best of our knowledge. We believe this finding will provide factual motivation for 
QA.

	 iii.	 We showed the promise of novel data sources for accuracy of lie detection models, including examiner 
ID, examinee job role, wind, atmospheric pressure, and geomagnetic storms.

	 iv.	 We make part of the data accessible by reasonable request to facilitate academic research.

Table 9.   Results of two QAs of the top candidates for examiner error (EE) in 2094 screenings. ME is model 
error (the suspicion in EE is disproven), CN is concilium needed (where QA1 and QA2 do not agree).

Screening

Drug abuse Corruption Conf. info leak Crim. history

TotalScore Result Score Result Score Result Score Result

1 0.959 ME 0.769 CN 0.840 ME

2 0.933 CN

3 0.932 CN

4 0.931 EE

5 0.903 CN 0.767 CN

6 0.900 EE

7 0.896 ME

8 0.893 EE

9 0.891 CN

10 0.883 CN

11 0.867 EE

12 0.860 EE

13 0.858 EE

14 0.857 ME

15 0.853 CN 0.838 ME

16 0.888 CN

17 0.826 CN

18 0.804 EE

19 0.798 CN

20 0.787 CN

21 0.765 ME

22 0.739 EE

23 0.734 ME

24 0.732 EE

25 0.729 CN

26 0.729 ME

27 0.728 EE

28 0.727 EE

29 0.817 CN

30 0.803 EE

31 0.769 CN

32 0.767 CN

33 0.813 EE

34 0.808 CN

35 0.799 ME

Examiner errors 6 5 1 1 13

Concilium needed 6 6 4 1 17

Model errors 3 3 0 3 9
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	 v.	 Data are of very different nature. Our data are hiring and regular screenings of civil personnel as opposed 
to Slavcovic’s data from army criminal investigations.

	 vi.	 Distributions of classes (lie detected/not detected) differ significantly; our number of records is an order 
of magnitude higher; the classical polygraphs are of different manufacturers and decades; data sampling 
rates are 31 Hz vs 60 Hz (ours vs Slavkovic’s).

	 vii.	 Neither Slavkovic nor any work we know of looked into differentiating topics at training and at inferencing 
times. We showed that one can profit from both.

Differences v and vi make it hard to compare model accuracies; the nature of the data is very different. Even 
so, we were surprised that we did not achieve significantly better accuracy twenty years later. We agree with 
related work in that criminal investigations are easier to classify than routine civil personnel screenings3. Thus, 
we may have a significantly better model, but AUCs are on par with Slavcovic because emotions in our dataset are 
harder to classify, and because civil screening questions are much broader than criminal investigation questions.

Honts and Amato recruited 80 volunteers to mock lies and truthful answers in the screenings29. In half of 
the screenings, volunteers watched videotaped questions instead of an examiner asking questions, and a special 
algorithm (RI Score) scored the answers instead of an examiner evaluation. Honts and Amato conclude that 
the automated screening scenario was more accurate than that carried out by a human polygraph examiner. 
Honts and Amato neither aimed at finding, nor found, any examiner errors. We differ in that Honts and Amato 
automate the screenings while we automate examiner conclusion verification. We do not substitute examiner 
with automated scoring. Moreover, in our setup, we do not show the examiner the scores of our tool (to exclude 
the possibility of the tool results influencing the conclusion of the examiner). The RI Score is rule-based and 
apparently requires additional markup by an examiner to calculate, whereas our ML models need no markup 
in addition to NCCA ASCII standard.

Mambreyan et al. show that artificial bias in data with regards to sex leads to overestimating the quality of 
deception detection models running on video30. They refer to a work that built a model on a dataset of videos, 
where 65% of woman and only 27% of men lied. A model can learn sex from video, and use it to infer the truth/
deception label, disregarding any other data. We made sure that we do not have artificial bias in the alternative 
data we use (sex, age, roles). Particulary for sex data, we demontstrate the balance in Suppl. Table 4.

Abouelenien et al. measure effectiveness of physiological, linguistic, and thermal features in deception detec-
tion on a laboratory dataset of size 149 and three synthetic topics (mock crime, attitude towards abortion, and 
best friend)31. We explore other alternative data sources, using field dataset and real topics, and in addition our 
main goal is a tool to hunt for examiner errors.

Figure 2.   Distribution of basic model scores for topics: (a) “Drug abuse”; (b) “Corruption”.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5522  | https://doi.org/10.1038/s41598-023-31775-6

www.nature.com/scientificreports/

Limitations
This is the first detailed disclosure of building and testing a second-opinion tool for classical polygraph. Yet, the 
subject is immense, and we may have just scratched the surface. To start with, the manual field validation (by 
double QA-ing candidates for examiner errors) covered only 39 conclusions but, as we explained, even this tiny 
test required approximately 80 examiner hours (not including a concilium to sort out discrepancies between the 
two QAs). We hope to grow these experimental statistics after putting the models to live pilot.

Our trainset is contaminated with few and unknown examiner errors and, at least until the field validation, 
we ran the risk of finding no examiner errors because of the models learning to make all the same mistakes 
examiners do. Making a gold standard trainset involves double QA-ing hundreds of screenings. While the field 
validation has proven that our second-opinion tool catches some examiner errors, we still cannot exclude the 
risk that models are confused by the most common examiner mistakes. The running of our tool in production 
slowly but surely will grow the golden dataset of screenings QA-ed by three examiners (and conclium in some 
cases), thus producing a first ever gold standard accessible to academics.

With manual QAs we validated errors where an examiner set NDI erroneously, but we did not investigate 
erroneous DI labels because we lack DI labels. Less than 7% of the screenings in the archive contain DI labels. 
Applying our work to detect this second type of errors is a direction for future work.

We decided to not implement examiner textbooks because in the examiner community we hear many dis-
cussions on exemptions to almost any textbook rule. To avoid being dragged into these heated, undocumented 
discussions we decided to use features that do not depend on examiner textbooks or scoring methods. We 
started with plain and simple raw signal features (min, mean, max on a window). We also started with gradient 
boosting models. The plan was to up our feature and model game after having the baseline research pipeline 
built. When we obtained 0.85 + AUC examiner conclusion inference quality, and keeping in mind that we shall 
avoid a perfect model as explained above, we decided that this is enough for a pilot. We believe that developing 
sophisticated raw signal features and employing neural networks more suited for time series (such as LSTM) is 
a good avenue for future work.

We tested several unorthodox data sources for uplift to conclusion prediction models. While there are some 
preliminary and promising results, most of these are inconclusive and need more data and investigation.

Methods
Ethics information.  All methods were performed in accordance with relevant guidelines and regulations. 
This study neither required nor used any human participants. The study analyzes legacy polygraph screening 
data that is collected as part of a standard screening process of hiring candidates and employees with critical 
roles. The hiring candidates and employees sign a written agreement to be screened, including an informed con-
sent for the Bank to store and to utilize the screening data. Internal Security of the Bank anonymized the data 
before handing it over to the authors of this study.

Dataset description.  We possess an archive of 2094 field polygraph screening recordings (PSRs) including 
Deception Indicated (DI) attributes set by examiners who conducted the screenings. These polygraph screenings 
(PS) were performed on bank personal with critical roles before hiring, before promotion, or every year, depend-
ing on their role. A PS includes a subset of 14 topics, including drug abuse and corruption.

PSRs store physiological signals of the examinee, audio, and questions as strings. Each question data includes 
three time-stamps relative to each repetition: the start of the question by the polygraph examiner (PE), the end 
of the question and the moment of the answer. Each question had a type assigned to it (see Suppl. Table 3 for 
the list of question types). In addition to physiological signals (listed in Suppl. Table 1) the examinee’s sex, age, 
and job position is recorded.

The screenings were performed on Polyconius polygraph, model 7.

Feature engineering.  The basic task was to make inference examiner conclusions (DI or NDI) for a certain 
topic in the screening.

To build a model we presented data in the following format: each row in the dataset is a record of PS by a 
certain topic in a particular test for an examinee. Targets are DI or NDI. There may be a bias due to such target-
setting, because an examinee may not lie in all tests on a topic during screening.

Physiological signals were extracted from a time window defined by time-stamps of the question’s data. Thus, 
initially a row is a time series of the physiological signals for a given repetition on given topic.

For every repetition of the relevant and comparison questions we generate the basic statistics: minimum, 
maximum, mean, amplitude and standard deviation. Further, we used minimum, maximum, mean and standard 
deviation as aggregate functions at each step. The repetition’s data we grouped by the question. An additional 
feature is to characterize the difference between the first repetition and the next ones. Similarly, the question’s 
data we grouped by topic for each test. At the end, each row in the dataset comprises 600 features extracted from 
PSR for a certain topic in a particular test (Suppl. Fig. 1) for an examinee, with the label (DI/NDI).

Models.  We used gradient boosting with a two-level stacking ensemble to avoid the curse of dimensionality. 
The first-level model trained on 600 physiological features for a topic, inferencing DI/NDI for each test inside a 
screening. The second-level model aggregated the output of the first-level model for all tests for a topic. At the 
second-level we have the following features:

•	 pred_proba_max—the maximal probability of DI among the tests;
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•	 pred_proba_mean—the mean probability of DI;
•	 pred_proba_min—the minimal probability of DI among the tests;
•	 pred_proba_diff—difference between the maximal and mean values.

These probabilities are concatenated with alternative data (biographical data, weather data, geomagnetic 
storm data). The obtained dataset is fed to the input of the second model, which gives the probability of DI on 
screening for a topic.

Basic model.  This model does not receive information about topics during training and inference (Fig. 3). 
Information about topic type is saved for further aggregation by screening. For example, the drug abuse (DA) 
topics of each test are aggregated in the first screening. The second-level model result is an estimation of prob-
ability of DI for any given topic of a screening.

One‑topic model.  The logic of model construction and feature generation is the same as in the basic model. 
The difference is that for training, we used features of one topic only. The data is filtered by a single topic before 
the first-level model is applied. Figure 4 shows how the ensemble is trained on the drug abuse topic, while other 
topics are filtered out.

Universal model.  We decided to use the best sides of the models described above, so we built an ensemble 
of existing architectures. After a series of experiments, the architecture showed the best result where we use 
averaging the confidence of the following models (Fig. 5):

Figure 3.   Universal model scheme. Information that is not received by the model is marked red.

Figure 4.   One-topic model scheme.

Figure 5.   Universal model scheme.
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•	 a basic model built on boosting, using alternative data;
•	 a model of a single topic, built on boosting, using alternative data;
•	 a basic model built on a random forest.

This ensemble was applied to all topics except drug abuse. Aside from traditional advantages of ensembles, 
here the rationale for using models of different architectures (e.g. gradient boosting and random forest) together 
is that it hopefully will eliminate some pure model errors and will highlight label (target) errors that constitute 
examiner errors.

Training.  Since we did not have much data (2094 files), we used the stratified group K-Fold Validation to 
evaluate each of the historical screening. We set the K value equal to 5 and, using the developed a framework of 
stacking standard models, and received 5 models, trained on 80% of data each.

The custom values that we used as hyperparameters for the standard classifiers of the open source libraries 
are presented in Table 10.

Standard hyperparameters can be found in the documentation of the open source ML frameworks, links to 
the documentation are in Suppl. Table 7.

Validating.  We evaluated the quality of the model using a test set of each validation step described in the 
Training subsection above. Thus, at this stage, we evaluate success of the model in the classical understanding of 
machine learning, i.e. as improvements in the main metrics (ROC-AUC, TPR, FPR).

Testing.  Our main focus was not to build a high quality ML model for polygram classification, but to use an 
ML model to detect I-type ML model errors (FP) in polygraph screenings. Since a I-type error from the model’s 
perspective is equivalent to the II-type error (FN) from an examiner’s point of view, this procedure allowed us to 
find potential labeling errors in our historical sample, where an examiner did not indicate deception when the 
deception should have been indicated. After we got desired results at the validation stage, we use an expensive 
resource, examiners, to re–check polygrams that were likely to contain examiners’ errors, as explained above in 
the “Results” section, “Validating ML-based second-opinion in the field” section.

Data availability
Upon reasonable request we are ready to provide part of our anonymized screening dataset, subject to a non-
exclusive, revocable, non-transferable, and limited right to use the data for the exclusive purpose of undertak-
ing academic research. However, in 2022 a federal law was signed that complicates cross-border personal data 
transfer34. Anonymized datasets are deemed personal data too. In case of our anonymized data, a lengthy approval 
process will be required for each recipient, without any success guarantees.
We devised a way to offer academic researchers the opportunity to experiment with the anonymized dataset, 
so that no data is transferred cross-border. Upon reasonable request, we will accept Python scripts, run those 
against the dataset, and report back the quality metrics of the resulting model. To ease experiment preparation, 
we are ready to share detailed data structure description and baseline code.
The data is in NCCA ASCII standard text format35, and has a 31 Hz sampling rate. It contains 2094 anonymized 
field screenings, including date, raw signal data, alternative data (sex and age), magnetic storm data, weather 
data for one city, labels for seven topics (DI/NDI), and questions and answers time-stamped and labeled for 
seven topics.
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