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AMMI‑Bayesian perspective 
in the selection of pre‑cultivars 
of carioca beans in Agreste‑Sertão 
of Pernambuco, Brazil
Gérsia Gonçalves de Melo 1, Luciano Antonio de Oliveira 2, Carlos Pereira da Silva 3, 
Alessandra Querino da Silva 2, Maxwel Rodrigues Nascimento 4*, 
Ranoel José de Sousa Gonçalves 5, Paulo Ricardo dos Santos 6, Antônio Félix da Costa 7, 
Damião Ranieri Queiroz 1 & José Wilson da Silva 1

The productivity of beans is greatly influenced by the different edaphoclimatic conditions in the 
Agreste‑Sertão region, requiring the identification of adapted and stable genotypes to minimize the 
effects of the interaction between genotypes per environments (GxE). The objective of this work was 
to analyze the adaptability and stability of carioca bean pre‑cultivars in three municipalities in the 
Agreste‑Sertão of Pernambuco using the AMMI model in its Bayesian version BAMMI and compare 
the results with the frequentist approach. According to the results, the BAMMI analysis showed 
better predictive capacity, as well as better performance in the study of adaptability and stability. 
The cultivar BRS Notável stood out in terms of main effect and stability. Adaptability of genotypes 
to specific locations was also observed, enabling the use of the positive effect of the GxE interaction, 
which was more evident with the BAMMI model. From this work, the flexibility of BAMMI model to 
deal with data resulting from multi‑environmental experiments can be seen, overcoming limitations 
of the standard analysis of the AMMI model.

The common bean (Phaseolus vulgaris L.) is a legume highly valued and cultivated worldwide, mainly due to its 
high nutritional quality, being an important source of protein in human  food1. In Brazil, this culture has great 
socioeconomic importance and stands out in subsistence agriculture, being cultivated in different environments 
and at different technological levels of  production2.

Brazil occupies the first and third place in the world ranking of consumption and production of beans, 
respectively, with annual production of 2.89 million tons. In most states of the country, preference is observed 
for the carioca commercial group, which represents about 60% of national  consumption3.

In the Agreste-Sertão of Pernambuco, bean cultivation is carried out in several municipalities, which cover 
different edaphoclimatic conditions and, consequently, influence directly on  productivity4. In this sense, the 
interaction between genotypes x environments (GxE) is an important challenge for breeders in the evaluation 
of pre-cultivars since the environment can mask the true potential of the  genotype5.

Minimization of the effects of the GxE interaction can be achieved by identifying the most stable genotypes 
(with wide recommendation) and/or by identifying the adaptability of genotypes to specific environments. The 
evaluation of genotypic stability and adaptability can be conducted using different statistical  methodologies6–8.

The AMMI (Additive Main effects and Multiplicative Interaction analysis) model is one of the most popular 
frequentist methods for analyzing genotype responses in various  environments8–10. This model offers several 
advantages, among which its good predictive capacity and the possibility of graphically describing the effect of 
the interaction in biplots stand out, making data interpretation  simpler11–13.

Despite the advantages offered, the classic AMMI analysis has limitations that restrict or make its use unfea-
sible, such as the impossibility of working with unbalanced and/or heteroscedastic data sets, the requirement 
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to work with these effects as fixed, e a dificuldade em construir estatísticas inferenciais para os parâmetros 
bilineares da interação  GxE9.

It is worth mentioning that there are methods that circumvent the difficulties related to the data structure, 
using decomposition by singular value, such as imputation of missing values, corrections in the averages of the 
little houses and weighting in relation to the  environments14,15. However, some of these procedures are susceptible 
to criticism and can lead to loss of  information12,16.

To circumvent such problems, an alternative that has proved to be relevant is the application of the Bayesian 
approach to the AMMI model (Bayesian-AMMI or BAMMI). The BAMMI model offers flexibility in analyzing 
experimental data under different conditions, demonstrating viability for use in balanced  data10,17,  unbalanced9, 
 heteroscedastic16, with a posteriori fixed effect for all  parameters18 and with random effect for genotypes and/
or singular  values11,19.

The Bayesian approach allows the incorporation of prior information, when it is available, enabling greater 
efficiency in the  analysis16,20–22. However, there are still few studies exploring the predictive power of BAMMI 
in relation to frequentist AMMI.

Romão et al.8 investigated the predictive power between AMMI via EM algorithm (EM-AMMI), Bayesian 
AMMI with homogeneity (BAMMI) and heterogeneity of variances (BAMMI-H) and the Analytical Factorial 
(FA) model, but using simulated data. Thus, this work is a pioneer in the investigation of the predictive capac-
ity of BAMMI in relation to the frequentist AMMI using real data. Furthermore, it innovates by employing the 
ammiBayes statistical package, recently developed by Oliveira et al.23, for the inference process with the BAMMI 
model.

Therefore, this work aimed to analyze the adaptability and stability of carioca bean pre-cultivars in the Agreste-
Sertão of Pernambuco using the AMMI model (Additive Main effects and Multiplicative Interaction analysis) 
in its Bayesian version BAMMI (Bayesian AMMI) and comparing the results with the frequentist approach.

Material and methods
Sample data and experimental conditions. Grain productivity data (kg  ha-1) are from competition tri-
als of common bean pre-cultivars of the carioca type, performed in three municipalities in the Agreste-Sertão of 
Pernambuco (Table 1), in the period from May to August of the years 2014 and 2015, conducted by the Pernam-
buco Agronomic Institute (IPA) and the Federal Rural University of Pernambuco (UFRPE). These municipalities 
have different climatic conditions, incurring a greater representation of the region (Fig. 1).

The genotypes used consisted of 10 lineages and four cultivars, from the National Rice and Beans Research 
Center (CNPAF) from the Brazilian Agricultural Research Corporation (Embrapa Rice and Beans) (Table 2). 
The cultivars were used as witnesses in the experimental tests since they are recommended for cultivation in 
the state of Pernambuco.

The experimental design was in randomized blocks, with three replications. The experimental plots consisted 
of four rows spaced 0.5 × 0.1 m between and inside, respectively, and the useful area consisted of the two central 
rows.

Soil preparation was done in a conventional way, with chemical fertilization with 40 kg  ha-1 of N, 60 kg  ha-1 
of  P2O5 and 30 kg  ha-1 of  K2O before the implementation of the tests. Irrigation was performed when neces-
sary for cultivation in Belém de São Francisco, using a conventional sprinkler system, because in the others the 
rainfed system predominated. Weed plants control was done by hand weeding and for pest control, application 
of Metamidophos Fersol (600 at a dose of 0.5 L  ha-1) was promoted. The measurement of the grain productivity 
variable grain productivity experiment, and the harvest was carried out 90 days after planting, in the R9 phase.

Statistical analysis. The AMMI model in matrix notation, as presented in Oliveira et al.10, is given by:

being yn×1 the vector composed of phenotypic response, where l  , r and c denote, respectively, the number of 
repetitions, the number of genotypes and the number of environments. The vectors βcl×1 and g r×1 contain the 
effects parameters of hierarchical blocks within environments and main effects of genotypes, respectively.

The terms �k , αk and γ k are the multiplicative or bilinear components of model (1) and denote, respectively, 
the singular value and the singular vectors associated with the k-th principal component, with k = 1, ..., t being 

(1)y = X1β + Zg +

t
∑

k=1

�kdiag(Zαk)X2γ k + ε

Table 1.  Characteristics of the municipalities in Pernambuco, where the carioca bean genotypes were 
evaluated, in the years 2014 and 2015. S.F. São Francisco, S. Slightly, As Tropical, BSh Semi-arid24, Alt. Altitude 
(m), N. Neosol, Prec. Average rainfall in the growing season (mm), # Irrigated system, Temp. Temperature (°C).

Municipalities Topography Climate Alt Soil type

Year 2014 Year 2015

Prec Temp Prec Temp

Arcoverde Wavy BSh 689 No. Regolith 192.5 24.3 203 25.2

Belém de S.F Wavy S BSh 339 Flat Ground 400# 25.6 450# 26.2

São João Wavy As 687 No. Regolith 318.8 21.2 333.3 22
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t = min (r, c) the rank of the "GxE" interaction matrix. Bilinear components are also subject to order restrictions 
( �1 > �2 > · · · > �t ) and orthonormalization 

(

α⊤
k αk = γ⊤

k γ k = 1eα⊤
k αk

′ = γ⊤
k γ k

′ = 0; k �= k
′
)

.
The matrices X1 , X2 and Z are design matrices associated with β , γk and g , respectively. The term ε is the error 

vector, with ε ∼Nn(0, σ
2
e In) , where 0 represents the null vector and In the identity matrix of order n. The con-

ditional distribution of y  is multivariate normal, that is, y|α, γ , �, g ,β , σ 2
e ∼ Nn

(

µ, Inσ
2
e

)

 with 
µ = X1β + Zg +

t
∑

k=1

�kdiag(Zαk)X2γ k , being σ 2
e  the residual variance.

A priori distributions and posterior conditional distributions. The a priori distributions used for the 
parameters of model (1) are the same used by Oliveira et al.10:

β|µβ, σ
2
β ∼ N

(

µβ , σ
2
β

)

;

g|µg , σ
2
g ∼ N(µg , Iσ

2
g );

�k|µ�k
, σ 2

�k
∼ N+(µ�k

, σ 2
�k
);

αk ~ uniform spherical distribution;
γ k ~ uniform spherical distribution;

For Gaussian distributions, a priori information can be incorporated by assigning values for average and 
variance. In order to incorporate minimum information, it was considered µβ = 0 , µ�k

= 0 , σ 2
β = 108 and 

σ 2
�k

= 108 . To the singular vectors αk and γk uniform spherical a priori densities were assigned in the corrected 
subspace, which are  uninformative25 and for the experimental variance an a priori of Jeffrey was assigned 
σ 2
e = 1

/

σ 2
e  . For the genotype effect, µg = 0 and σ 2

g ∼ 1

/

σ 2
g  were considered, obtaining a posteriori random 

σ 2
e ∼ 1

/

σ 2
e .

Figure 1.  Graph of the climatic conditions of the municipalities of Pernambuco, where the carioca bean 
genotypes were evaluated, in the years 2014 and 2015.

Table 2.  Carioca bean genotypes evaluated in competition trials in the years 2014 and 2015, treatment 
identification number (IG).

IG Genotype Type IG Genotype Type

G1 IPR 139 Cultivar G8 CNFC 15504 Lineage

G2 CNFC 15458 Lineage G9 CNFC 15507 Lineage

G3 CNFC 15460 Lineage G10 CNFC 15513 Lineage

G4 CNFC 15462 Lineage G11 CNFC 15534 Lineage

G5 CNFC 15475 Lineage G12 BRS Estilo Cultivar

G6 CNFC 15480 Lineage G13 BRS Notável Cultivar

G7 CNFC 15497 Lineage G14 BRS Pérola Cultivar
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effect for genotypes. This model is the same used by Oliveira et  al.10, being referred to by BAMMI 
(Bayesian-AMMI).

Complete conditional distributions are described in detail in Oliveira et al.10 or Silva et al.19 and are the 
following:

β| . . . ∼ N

[

(

X⊤
1 X1 + I 1

σ 2
β

)−1

X⊤
1 Mβ,

(

X⊤
1 X1 + I 1

σ 2
β

)−1
]

 , where σ 2
β = 108 and.

Mβ = y − Zg −
∑t

k=1 �kdiag(Zαk)X2γk.

g|... ∼ N

[

(

Z⊤Z + I 1

σ 2
g

)−1

Z⊤Mg ,

(

Z⊤Z + I 1

σ 2
g

)−1
]

Mg = y − X1β−
∑t

k=1 �kdiag(Zαk)X2γk where:

�k| . . . ∼ N+

[

(

�⊤
k �k +

σ 2
e

σ 2
�k

)−1

�⊤
k M

⊤
k′ ,

(

�⊤
k �k

)−1
σ 2
e

]

 b e i n g  �k = diag(Zαk)X2γk

;Mk′ = y − Zg − X1β−
t
∑

k′ �=k

�k′diag(Zαk′)X2γk′ and �1 ≥ . . . ≥ �t ≥ 0.

being �αk = diag
(

X2γk
)

Z , and

being �γk = diag(Zαk)X2.
The a posteriori densities for the singular vectors are proportional to spherical distributions of the von Mises-

Fisher type (vMF). Due to the orthogonality constraints of the singular vectors the a posteriori distribution for 
these parameters is non-trivial and sampling must be performed by auxiliary variables in the corrected subspace. 
Details on this process are presented in Viele and  Srinivasan25,  Liu26 and Oliveira et al.10.

Finally, the complete a posteriori conditional distribution for the residual variance is inverse scaling 
chi-square:

MCMC sampling, model selection and comparison. The Markov chains, as well as the entire infer-
ence process with the BAMMI model, were obtained using the ammiBayes  package23. The sampling of param-
eters was conducted using a Gibbs sampler and a description of the iterative algorithm can be found in Oliveira 
et al.10. The convergence of the produced chains was monitored by the criteria of Raftery and  Lewis27 and Hei-
delberger and  Welch28, using the library Bayesian Output Analysis (BOA)29.

Model selection was performed using  BIC30,  AIC31 and  AICM32 information criteria. The estimates for the 
univariate parameters of the model were obtained by a posteriori averages of the MCMC chains of regions of 
maximum a posteriori density (HPD), built using the BOA  package29. Bivariate regions at 95% credibility, for 
genotypic and environmental scores in the biplot representation, were implemented using the method of Hu 
and  Yang33.

The classic AMMI (frequentist approach) was adjusted for comparison purposes. minimum squares method 
for the estimation of the effects and the multiplicative terms of the interaction, estimated from the singular value 
decomposition (DVS)34. Model selection was performed using Cornelius’ Fr  test35.

Random imbalances were performed in the data, with levels of 10% and 20% loss of genotypes and envi-
ronments, to verify the efficiency of the methods, and later the analyzes were performed. As the analyzes were 
conducted in two imbalance scenarios the EM (expectation–maximization) algorithm was used to impute the 
missing values in the AMMI-Classic  approach36.

An assessment of predictive ability was performed for the BAMMI and the AMMI frequentist models using 
cross-validation procedures. To compare the two models, the correlation between predicted and observed values 
(Cor), Spearman’s Correlation (CorS) and PRESS (Prediction Error Sum Square) was used. Statistical analyzes 
were performed considering each location-year combination as an environment and were performed using the 
R statistical  software37.

Results
AMMI‑classic analysis. The joint analysis showed a significant effect of the interaction, indicating non-
additivity of the main effects, justifying the application of the AMMI analysis (Table 3).

According to Cornelius’ Fr test, the model that best described the data set was AMMI-4, that is, the model 
that presents four main components retained to explain the effect of the GxE interaction. In this model, 98% of 
the variation of the GxE interaction is explained (Table 4).

Although the AMMI-4 model was the one that best fit the data, in the analysis of adaptability and stability, 
the most common is the use of the AMMI-2 biplot, since in the first axes are the highest percentages referring 

σ 2
g |... ∼ inv − χ2

(

ng , g
⊤g

)

p(αk| · · · ) ∝ exp

{

�k

σ 2
e

[

α⊤
k �

⊤
αk

(

y − X1β
)

]

}

p(γk| · · · ) ∝ exp

{

�k

σ 2
e

[

γ⊤k �
⊤
γk

(

y − X1β
)

]

}

σ 2
e |... ∼ inv − χ2

(

n,

(

y − µ
)⊤(

y − µ
)

n

)
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Table 3.  Analysis of the joint variance of competition trials of carioca bean pre-cultivars, evaluated in Agreste-
Sertão of Pernambuco, from 2014 to 2015. * and *** significant at 5% and 0.1% probability by the F test, 
respectively.

Sources of variation GL Sum of squares Medium squares F value

Blocks / Environments 12 0.98 0.08 1.39

Environments 5 75.48 15.10 30.15***

Genotypes 13 14.54 1.12 2.23*

G x A 65 32.54 0.50 8.51***

Residue 156 9.17 0.06

Total 251 132.72

Average (kg  ha-1) 2203.62

CV (%) 11

Table 4.  Cornelius’ Fr test results from AMMI analysis for competition trials of carioca bean pre-cultivars, 
evaluated in Agreste-Sertão of Pernambuco, from 2014 to 2015. *** significant at 0.1% probability by the F test.

Models GL Sum of squares Medium squares % % Accumulated F value

AMMI1 48 12.99 0.41 39.92 39.92 6.92***

AMMI2 33 7.97 0.35 24.49 64.41 5.97***

AMMI3 20 6.61 0.25 20.32 84.72 4.22***

AMMI4 9 4.31 0.07 13.26 97.99 1.24

AMMI5 0 0.65 0 2.01 100 1

Figure 2.  AMMI2 model biplot with average genotypic and environmental scores for data from competition 
trials with carioca beans in the Agreste-Sertão region of Pernambuco.
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to the interaction pattern, with less influence of noise, even when they explain a lower percentage of the sum 
of  squares38. The AMMI-2 biplot representation of the genotypic and environmental scores is shown in Fig. 2.

The lineages CNFC 15460 (G3), CNFC 15462 (G4), CNFC 15504 (G8), CNFC 15507 (G9) and the cultivar 
BRS Pérola (G14), were closer to the origin and, therefore, are the ones that contributed the least to the interaction 
effect, demonstrating wide adaptability, as well as the environments Arcoverde-2015 (E4) and São João-2015 (E6). 
On the other hand, IPR 39 (G1), CNFC 15513 (G10) and BRS Estilo (G12) were further away from the center 
of the biplot and that is why they are considered the most unstable (Fig. 2). The smallest contribution visualized 
in the interaction axis points to greater stability and indicates that the average productivity of these genotypes 
is little variable, depending on locations and  years39.

The behavior of some genotypes within the same location was incongruous between the two years of evalua-
tion. This can be visualized by taking as an example the Belém de São Francisco municipality, in which specific 
adaptability of the genotypes CNFC 15458 (G2) and BRS Notável (G13) was suggested in the year 2014 (E2), 
whereas in 2015 (E5) this was observed in relation to another material, the BRS Estilo (G12) (Fig. 2).

In relation to the Arcoverde municipality, the genotype CNFC 15497 (G7) showed specific adaptability, 
in the year 2014 (E1), while in 2015 (E4) there was no significant contribution from the environment to the 
interaction (Fig. 2).

The genotypes CNFC 15475 (G5) and CNFC 15513 (G10) showed specific adaptability to the municipality 
São João in 2014 (E3), which in turn did not contribute significantly to the interaction in 2015 (E6). In addition 
to the stable genotypes, CNFC15513 (G10) would be the most interesting for this specific location in terms of 
recommendation (Fig. 2).

AMMI‑bayesian analysis. For all MCMC chains sampled, good convergence properties were observed 
from the criteria used, since all model parameters had a dependency factor lower than  527 and passed the sta-
tionarity  test28.

In the graphs of traces and densities of the MCMC chains, it was observed that the distributions were station-
ary, corroborating the results obtained by the applied convergence tests. For examples, Fig. 3 shows the plot of 
traces for the genotypic and residual variance of the BAMMI-1 model, which was the model that best fitted the 
data in the selection stage.

In Table 5, point and interval estimates related to singular values are presented for BAMMI models as a func-
tion of the number of bilinear components retained. Based on the complete BAMMI-5 model, it can be stated 
that the first axis explains 42.8% of all the variation in the interaction.

Figure 4 shows the results of the information criteria applied in the model selection stage. For all the criteria 
used, the model that best described the dataset was BAMMI-1, that is, the one that presented the lowest value 
of AIC, BIC and AICM. The choice based on these criteria focuses on more parsimonious and robust models 
according to the different a priori  distributions12.

Figure 3.  Trace plots and MCMC chain densities for genotypic and residual variance of data from competition 
trials with carioca beans in the Agreste-Sertão region of Pernambuco.
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Table 6 presents point and interval estimates for genotype effects referring to BAMMI, as well as the mini-
mum squares estimates obtained by the frequentist AMMI adjustment for comparison purposes. As can be 
seen, in general, the predictions of the BAMMI model are slightly smaller than the respective minimum squares 
solutions. The genotypes that stood out the most regarding the main effect were CNFC 15480 (G6), BRS Estilo 
(G12) and BRS Notável (G13).

Overlaps between the HPD intervals suggest similar effects, however the lineage CNFC 15480 (G6) and the 
cultivars BRS Estilo (G12) and BRS Notável (G13) did not include negative values in their credibility regions 
and, therefore, are the most interesting in terms of the main effect (Table 6). Positive HPD values indicate that 
these genotypes contributed the most to the population average and consequently are the ones with the highest 
productivity.

Table 5.  A posteriori average, a posteriori standard deviation, and HPD interval (95% credibility) for the 
singular value referring to the possible models for approaches. Sd Standard deviation, LL Lower limit, UL 
Upper limit.

Model Par Average Sd LL UL

BAMMI-1 �1 1.87 0.23 1.41 2.31

BAMMI-2 �1 1.93 0.20 1.54 2.30

BAMMI-2 �2 1.49 0.19 1.10 1.84

BAMMI-3 �1 1.97 0.17 1.65 2.30

BAMMI-3 �2 1.49 0.17 1.16 1.82

BAMMI-3 �3 1.29 0.15 1 1.60

BAMMI-4 �1 2 0.15 1.70 2.28

BAMMI-4 �2 1.53 0.14 1.24 1.80

BAMMI-4 �3 1.33 0.13 1.08 1.58

BAMMI-4 �4 1.08 0.13 0.83 1.35

BAMMI-5 �1 2 0.14 1.71 2.28

BAMMI-5 �2 1.52 0.14 1.24 1.80

BAMMI-5 �3 1.33 0.13 1.07 1.58

BAMMI-5 �4 1.07 0.14 0.80 1.34

BAMMI-5 �5 0.26 0.15 0 0.53

Figure 4.  Graphics of the AIC, BIC and AICM information criteria for selecting the BAMMI model for data 
from competition trials with carioca beans in the Agreste-Sertão region of Pernambuco.
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The adaptability and stability analysis is performed by biplot interpretation for genotypic and environmental 
scores. Genotypes and environments whose credibility regions for the scores encompassed the origin are con-
sidered  stable11. Thus, the lineages CNFC 15460 (G3), CNFC 15462 (G4), CNFC 15497 (7), CNFC 15504 (G8), 
CNFC 15507 (G9), and cultivars BRS Notável (G13) and BRS Pérola (G14) make up a homogeneous subgroup 
of genotypes that did not significantly contribute to the GxE interaction, indicating wide adaptation (Fig. 5a).

To simplify the interpretations, only the credibility regions that do not encompass the origin (0,0) were rep-
resented, and the respective genotypes (or environments) are considered not stable, in other words, they have a 
significant contribution to interaction (Fig. 5b).

The bivariate regions of credibility for the genotypic and environmental scores, implemented in the biplot, 
are used to analyze the effect of the GxE interaction, in which overlaps between them are used to interpret the 
adaptability and stability of the materials.

The visual analysis of the regions in the biplot allows us to suggest adaptability of genotypes to specific loca-
tions, as is the case of the cultivar IPR 139 (G1) to the Arcoverde municipality (E1,E4), from the genotypes 
CNFC 15480 (G6) and CNFC 15534 (G11), to the Belém de São Francisco municipality (E5 and E2), and from 
the genotype CNFC 15513 (G10) to the São João municipality (E3, E6) (Fig. 5b).

Predictive evaluation of models. The results of the prediction analysis for the BAMMI and EM-AMMI 
models are shown in Figs. 5 and 6, for unbalance of 10% and 20%, respectively. The best performance of the 
model is indicated by the lowest value in relation to the PRESS criterion, and by the highest value in relation to 
Pearson’s correlation (Cor) and Spearman’s correlation (CorS)12.

The graphical analyzes demonstrate that the predictive accuracy between the models differed between the 
imbalance scenarios, however, both showed an advantage for the BAMMI model in all cross-validation criteria 

Table 6.  Genotype main effect, fixed effect estimates, a posteriori average and standard deviation estimates 
and HPD interval (95% credibility) (BAMMI-1). Sd Standard deviation, LL Lower limit, UL Upper limit.

Par Fixed Average Sd LL UL

G1 0.02 0.02 0.09 − 0.15 0.20

G2 0.15 0.14 0.09 − 0.03 0.32

G3 0.06 0.05 0.09 − 0.11 0.24

G4 0.01 0.01 0.09 − 0.17 0.18

G5 − 0.17 − 0.16 0.09 − 0.34 − 0

G6 0.38 0.36 0.09 0.20 0.54

G7 − 0.38 − 0.36 0.09 − 0.54 − 0.19

G8 − 0.08 − 0.08 0.09 − 0.25 0.10

G9 − 0.30 − 0.28 0.09 − 0.46 − 0.11

G10 − 0.33 − 0.30 0.09 − 0.47 − 0.13

G11 − 0.08 − 0.07 0.09 − 0.24 0.10

G12 0.43 0.41 0.09 0.22 0.58

G13 0.25 0.24 0.09 0.07 0.42

G14 0.05 0.05 0.09 − 0.12 0.23

Figure 5.  Biplot of the BAMMI model: a Average genotypic and environmental scores and b Regions of 
bivariate credibility (95%) for data from competition trials with carioca beans in the Agreste-Sertão of 
Pernambuco.
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Figure 6.  Average Pearson Correlation (Cor), Spearman Correlation (CorS) and PRESS for EM-AMMI and 
BAMMI models (10% unbalance).

Figure 7.  Average Pearson Correlation (Cor), Spearman Correlation (CorS) and PRESS for EM-AMMI and 
BAMMI models (20% unbalance).
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(Figs. 6 and 7), being more accentuated in the scenario of lower imbalance (Fig. 6). Similar results were observed 
by Romão et al.8, who identified the advantage of Bayesian models in unbalanced scenarios.

Discussion
AMMI‑classic analysis. The distinction of genotypes that showed specific interaction with the municipal-
ity of Belém de São Francisco it may have occurred due to operational problems during the the management of 
crops. It is worth noting that the average yields in Belém de São Francisco in both years were the highest among 
the other environments (Table 7), fact possibly linked to the number of genotypes with specific adaptability to 
this municipality and to having an irrigation system. A similar consideration can be made in relation to the 
Arcoverde municipality.

The São João municipality (E3 and E6) had the lowest average productivity among the environments (Table 7), 
however, it is possible to visualize in the biplot that it was the municipality that presented the greatest consist-
ency in relation to the effect of the GxE interaction in the years considered (Fig. 2). The lower averages can be 
explained by the low rainfall (Table 1 and Fig. 1), since the experiments at this location were conducted under 
rainfed conditions, furthermore, the municipalities have different types of soil and the cultivation in São João 
depends, essentially, of the amount of organic matter put in each year.

Regarding the Arcoverde municipality (E1 and E4), although consistency has not been maintained over the 
years, it is possible to observe that the genotype G1 could be indicated and would allow the exploration of the 
positive effect of the GxE interaction. The Belém de São Francisco municipality (E2 and E5) was the one that 
showed the greatest inconsistency, in relation to GxE interaction, in the two years evaluated, evidencing the 
performance of the complex type of interaction. Even so, genotypes G6 and G11 would be those with greater 
adaptability to this location (Fig. 2).

It is common for edaphoclimatic variations between different years to cause fluctuations in genotypic and 
environmental scores, masking the graphic patterns identified in the biplot, and therefore it is difficult to observe 
genotypes that maintain their performance for the same location in different years. Thus, the variation between 
the interaction effects in different years for a specific location may be like the effects for different locations, due 
to changes between  years9.

The recommendation of cultivars with specific adaptation characterizes an efficient way that breeders use to 
take advantage of the GxE interaction, benefiting environments with conditions normally unfavorable to cultiva-
tion, as well as promoting an increase in average productivity in environments with good cultivation conditions, 
when using materials that could make the most of the interaction  effect40,41.

The heterogeneity of the municipalities of Agreste-Sertão of Pernambuco directly influences productivity, 
promoting and justifying the variation in average productivity observed between environments, as observed in 
the work of Souza et al.42,Santos et al.43,Santos et al.44 and Lima et al.1. This heterogeneity, in addition to being 
confirmed in the analysis of variance (Table 3), it is evident in the description of the edaphoclimatic characteris-
tics of each municipality (Table 1). It is worth noting that the evaluated pre-cultivars showed average productivity 
above the state (464.12 kg  ha-1), regional (397.29 kg  ha-1) and national (990 kg  ha-1)  averages3.

AMMI‑bayesian analysis. The predictions of the BAMMI model slightly smaller than the respective mini-
mum squares solutions (Table 6) is due to the shrinkage effect when assuming a common population for geno-
types (random effects), in addition to being a common feature of Bayesian methods, corroborating what was 
observed by Oliveira et al.11 and Oliveira et al.12.

When considering the effects of genotypes as random, it allows for variance components to be estimated and 
for kinship coefficients to be incorporated in the AMMI analysis. This leads to more accurate estimates of the 
genetic values of the genotypes and, consequently, it offers more realistic estimates of the true genotypic value.

The stage of evaluation and selection of pre-cultivars in competition trials requires both the skill of the 
breeder as well as statistical tools that allow the correct interpretation of phenotypic data. In this sense, the use 
of shrinkage effect predictors is an excellent choice for plant breeding programs, because they are more accurate 
and facilitate the classification of genetic materials according to their genotypic values, minimizing the residual 
effects of environments present in the  data12,19.

The analysis of the main effect of the genotype is very important for the selection and recommendation of 
cultivars, but it is essential that the effects of the GxE interaction are jointly considered, to evaluate the adapt-
ability and stability of the  materials19.

The credibility regions obtained by the BAMMI model promote the elimination of subjective average scores 
close to the central point of the biplot, leading to greater precision to infer about genotypic and environmental 
 stability45. This is evident in the interpretation of the biplots (fixed and Bayesian), in which, in the Bayesian 

Table 7.  General averages referring to grain productivity (kg  ha-1) of carioca bean genotypes, evaluated in the 
state of Pernambuco, from 2014 to 2015.

Environments Harvest Average Environments Harvest Average

E1 Arcoverde 2014 2265.17 E4 Arcoverde 2015 2237.74

E2 B. S. Francisco 2014 2278.21 E5 B. S. Francisco 2015 3220.24

E3 São João 2014 1453.99 E6 São João 2015 1766.37
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analysis, the environments Arcoverde-2015 (E4) and São João-2015 (E6) do not significantly contribute to the 
interaction (Fig. 5b).

Among the genotypes that stand out in terms of the main effect only BRS Notável can be considered stable 
and, therefore, has a wide recommendation (Fig. 5b). This interpretation is not direct with respect to the biplot 
of the frequentist model and would be a risky assumption in the context of classical analysis. However, using the 
95% credibility level of the Baysean model, it is possible to safely identify G13 as stable, that is, this genotype has 
no important contribution to the GxE interaction.

The cultivar BRS Notável was used as a witness in the experiments because it has a recommendation for 
cultivation in the state of Pernambuco, in addition to other Brazilian states, as well as the other three cultivars 
mentioned in this work. However, BRS Notável was the only one that combined positive genotypic effect and 
stability, reinforcing its viability and potential for the Agreste-Sertão region of Pernambuco.

Credible regions for genotypic and environmental scores ensure that discrimination of genotypes and envi-
ronments is performed with greater precision, grouping genotypes and environments into homogeneous sub-
groups that show the same patterns of interaction. The selection of genotypes with an associated level of cred-
ibility helps plant breeders in decision making, leading to the recommendation of more consistent cultivars, and 
reducing the costs of breeding  programs9,11.

Generally, genotypes that have less than zero main effects been not recommended, given that they have a 
response below the population  average9. However, in relation to the pre-cultivars evaluated in this work, it can 
be seen that all had an average productivity significantly higher than the regional average (397.29 kg  ha-1), as 
shown in Table 8, it is therefore pertinent to indicate these materials for the places that had good interaction, 
according to the adaptability analysis through the credibility regions.

Overlaps between regions indicate homogeneous subgroups in terms of the interaction effect, demonstrating 
that the genotypes present similar behavior in the studied environments. Thus, bivariate regions are an excellent 
tool for recommending genotypes to specific  environments7.

The lineage CNFC 15480 (G6) deserves to be highlighted because it presented a positive genotypic effect 
(Table 6) and productivity slightly higher than that of the witnesses (Table 8), except for BRS Estilo, corroborat-
ing its indication for the municipality of Belém de São Francisco, as it demonstrated specific adaptability for 
that location (Fig. 5b).

The configurations of the midpoints of genotypic and environmental scores in the biplots of the AMMI 
frequentist and AMMI Bayesian models were similar. However, the analysis of the credibility regions by the 
biplot of the BAMMI model provided a clearer organization of the specific interactions of the genotypes with 
certain environments, allowing you to relate materials more firmly to specific locations, despite the differences 
perceived in the different years, which were probably caused by the edaphoclimatic variations of the municipality. 
Furthermore, the incorporation of inference to the biplot allowed us to identify environments and genotypes 
that do not have important contributions to the GxE interaction.

The Agreste-Sertão of Pernambuco presents great climatic variations between harvests; thus, the same locality 
can vary a lot in different years. However, the BAMMI method showed efficiency in grouping genotypes with spe-
cific adaptation to certain locations, even in different years, corroborating the results obtained by Bernardo Júnior 
et al.9 who verified the good ability of this method to discriminate the environments within the different seasons.

Predictive evaluation of models
In general, the EM-AMMI model showed good performance in slightly accentuated imbalance scenarios, such 
as those used in this work, showing good ability to predict the GxE interaction, without requiring sophisticated 
statistical methods, high computational demand, or estimation of complex parameters. According to Paderewski 
and  Rodrigues36, the EM algorithm is great for imputing missing data, since its iterative process is done in the 
GxE matrix, converging the imputation of the interaction in a few steps, contributing to the quality of the fit, 
which could justify the good performance of the EM-AMMI models in scenarios with losses of up to 33%.

Both models showed that they are robust to data loss in the analyses, however, the BAMMI model was 
superior in predictive accuracy and shows great potential of the technique in the study of GxE interaction and 
in the prediction of missing genotypes. The need to deal with unbalanced data is a recurring inconvenience 
in adaptability and stability studies because environmental variations and other unpredictable factors in field 

Table 8.  Carioca bean genotypes evaluated in competition trials in the years 2014 and 2015 and average grain 
productivity (kg  ha-1).

IG Genotype Prod IG Genotype Prod

G1 IPR 139 2224.03 G8 CNFC 15504 2117.92

G2 CNFC 15458 2350 G9 CNFC 15507 1907.08

G3 CNFC 15460 2260.55 G10 CNFC 15513 1875.69

G4 CNFC 15462 2219.58 G11 CNFC 15534 2125

G5 CNFC 15475 2029.30 G12 BRS Estilo 2632.36

G6 CNFC 15480 2586.25 G13 BRS Notável 2453.61

G7 CNFC 15497 1818.47 G14 BRS Pérola 2250.83
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experiments often lead to plot loss. BAMMI analysis naturally handles unbalanced datasets and still allows deal-
ing with uncertainty in biplots, being highly indicated for genotype  evaluation9.

Compared to conventional methods, the BAMMI methodology has the disadvantage of being more time 
consuming and requiring greater demand for computational resources, but the greater precision in the inference 
process, added to the other advantages mentioned throughout this work, offered by this method, justify its use. 
The Bayesian analysis of multiplicative models has gained more space in the analysis of multi-environmental 
data, due to its benefits and because of the computational progress that has mitigated the difficulty of perform-
ing the  analyzes10.

Reinforcing the advances that facilitate Bayesian analysis, emphasizing the BAMMI model, it is worth not-
ing that the ammiBayes package, recently developed by Oliveira et al.23 and pioneered in this work, allows the 
user of the statistical program to perform the entire inference process in a reasonably simple and practical way.

Conclusions
The cultivar BRS Notável (G13) is able to capitalize on positive interactions with the environments, being clas-
sified as stable and recommended with wide adaptation for the Agreste-Sertão of Pernambuco; Arcoverde and 
São João are the municipalities that present greater stability for the effects of the GxE interaction, evidenced by 
the BAMMI analysis through the credibility regions.

The recommendation of cultivar IPR 139 (G1) allows exploring the positive effect of GxE in Arcoverde, while 
in Belém de São Francisco the pre-cultivars CNFC 15480 (G6) and CNFC 15534 (G11) are used; in São João, the 
genotype CNFC 15513 (G10) shows greater adaptability.

The BAMMI analysis is more capable of identifying environments and genotypes that do not have important 
contributions to the GxE interaction; this model exhibits superior predictive ability compared to the EM-AMMI 
model, for unbalance scenarios up to 10% and 20%.
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