
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4770  | https://doi.org/10.1038/s41598-023-31765-8

www.nature.com/scientificreports

Supply chain logistics 
with quantum and classical 
annealing algorithms
Sean J. Weinberg 1, Fabio Sanches 1, Takanori Ide 2, Kazumitzu Kamiya 3 & Randall Correll 1*

Noisy intermediate-scale quantum (NISQ) hardware is almost universally incompatible with full-
scale optimization problems of practical importance which can have many variables and unwieldy 
objective functions. As a consequence, there is a growing body of literature that tests quantum 
algorithms on miniaturized versions of problems that arise in an operations research setting. Rather 
than taking this approach, we investigate a problem of substantial commercial value, multi-truck 
vehicle routing for supply chain logistics, at the scale used by a corporation in their operations. Such 
a problem is too complex to be fully embedded on any near-term quantum hardware or simulator; 
we avoid confronting this challenge by taking a hybrid workflow approach: we iteratively assign 
routes for trucks by generating a new binary optimization problem instance one truck at a time. Each 
instance has ∼ 2500 quadratic binary variables, putting it in a range that is feasible for NISQ quantum 
computing, especially quantum annealing hardware. We test our methods using simulated annealing 
and the D-Wave Hybrid solver as a place-holder in wait of quantum hardware developments. After 
feeding the vehicle routes suggested by these runs into a highly realistic classical supply chain 
simulation, we find excellent performance for the full supply chain. Our work gives a set of techniques 
that can be adopted in contexts beyond vehicle routing to apply NISQ devices in a hybrid fashion to 
large-scale problems of commercial interest.

Quantum algorithms have the capacity to offer enormous performance improvements over known classical algo-
rithms for solving important problems like integer factoring and quantum mechanical simulation1–3. However, 
despite extraordinary effort and investment, the current state of quantum hardware remains too immature for 
there to be practical computational value from any quantum device that exists today. Recently, calculations have 
been performed with a quantum computer that outperform classical computing4, but these calculations do not 
solve a problem of practical use.

Given these realities, much research has been devoted to heuristic algorithms, often of a hybrid classical-
quantum nature, that aim to offer computational advantage even with problematic hardware5–9. While such 
algorithms that are suitable for the noisy intermediate-scale quantum era (NISQ)9 are not proven to offer com-
plexity advantages over classical methods, they have potential to become an oasis during the long road to the 
development of large-scale fault-tolerant quantum computers.

NISQ algorithms and rapid development of quantum hardware has caught the attention of numerous indus-
tries that are in search of solutions that can improve efficiency in their operations. To test the potential for 
NISQ algorithms in a given use case, it is commonplace to begin with a complex problem and to then identify a 
miniaturized version of the problem which can then be attacked with a NISQ quantum algorithm. For example, 
many problems that arise in operations research can be recast as a quadratic unconstrained binary optimization 
(QUBO) problem. Such problems can be downsized and then solved using the quantum approximate optimi-
zation algorithm5 (with simulated or real hardware) or by execution on quantum annealing devices like those 
produced by D-Wave Systems10.

There is no question that such studies are of value, but there are also major issues with them. Problem 
instances must be reduced to very small toy models that barely reflect the true nature of practical problems. Cir-
cuit model quantum algorithms cannot currently be tested, even on simulators, much beyond 30 binary variables. 
Quantum annealers can become cumbersome around a few hundred variables due to embedding challenges. 
Private companies may not be inclined to fund quantum computing studies when restricted to such small use 
cases and when the quality of solution and run time is all but guaranteed to be easily outperformed by classical 
algorithms with readily available hardware.
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In this work, we develop an alternative approach to downsizing problems for commercial studies. We begin 
with a realistic vehicle routing problem that arises in a company’s operations. Rather than distilling the math-
ematical problem and constructing a version with very few variables, we instead use a hybrid workflow approach: 
we iteratively construct small QUBO instances that are of reasonable size for near-term hardware with NISQ 
algorithms. Solutions to these small instances do not solve the full and very complex vehicle routing problem, 
but they do provide a route for a single truck. We use that route to update the remaining unfulfilled demand and 
we then repeat the procedure. After obtaining solutions for all trucks, we input the routes into a highly realistic 
simulation of the flow of all trucks and carried boxes, taking into account various constraints that are difficult 
to include in QUBO instances. The final result is a viable solution to the full-scale routing problem which can 
be compared to solutions obtained through other means.

Using iterative approaches to build up a heuristic solution to a complex problem instance is certainly not a 
new idea. However, the construction we give is carefully crafted to suit the needs of near-term quantum com-
puting hardware: the problem instances at each step are QUBO instances with no more than a few thousand 
variables. These QUBO instances will be appropriate for circuit model quantum hardware with a few thousand 
noisy qubits. In the more near term, the quantum annealing algorithm might be more promising than circuit 
model algorithms. Quantum annealing attempts to use quantum tunneling through energy landscapes to more 
efficiently reach global low-energy states that represent the minimum of an optimization problem11–15. And 
D-Wave Systems offers quantum annealing hardware that can optimize QUBO instances with thousands of 
variables already.

However, our instances are still too large for direct application on D-Wave annealers due to the difficulty of 
embedding QUBO connectivity graphs. To address such problems at scale, our approach decomposes the over-
all problem into sub-problems that can be optimized separately. Solving the parts of the decomposed problem 
cannot guarantee a global solution, but our motivation is to target a portion of the problem that we can address 
with quantum annealing at this time. The supply chain logistics problem involves three parts: vehicle routing, 
multiple vehicle coordination, and pick-up/drop-off requirements. We forgo a integrated multi-vehicle approach 
and focus on single-vehicle approach with pick-up and drop-off requirements subject to schedule constraints 
as the main problem to be optimized. In particular, we use a commercially available hybrid quantum annealer 
and classical solver that attempts to boost the performance of a classical solver by including information from 
a quantum solver16,17.

To build up a multi-truck solution, we iterate through solving single-truck solutions, updating the remain-
ing demand, solving for an additional truck, and repeat until a stopping condition is met. This provides us with 
a list of suggested routes for all the trucks. And finally, we relax some of the simplifying assumptions and use 
a simple but now more detailed classical (non-quantum) simulation to rectify the final multi-vehicle solution.

The construction described in this work yields a viable quantum-classical solution for a specific problem of 
substantial commercial value. Specifically, we study the problem of routing trucks in the supply chain of Aisin 
Corporation, a Japanese automotive component manufacturer. We emphasize, however, that the broad approach 
of deploying quantum algorithms on small problem instances to build up a hybrid solution to full-scale commer-
cial applications is important well outside of the context of supply chain optimization, and in fact such approaches 
may be the first ways that quantum computing will be used outside of a research setting.

Outline.  In “Vehicle routing problems”, we explain the vehicle routing problem (VRP) that models the Aisin 
Corporation supply chain. There are many ingredients to the routing problem, so we gradually build it up by 
starting with a well-known vehicle routing problem and adding various ingredients in a step-by-step fashion. 
“Single truck PUBO” describes the structure of binary optimization problem instances that we construct for each 
truck in an iterative fashion. These are the optimization problems that can be submitted to quantum hardware in 
a quantum implementation of our methods. In “Supply chain workflow”, we describe the algorithm for iteratively 
constructing the optimization problems from “Single truck PUBO”, and using their solutions to update initial 
conditions related to the remaining unfulfilled demand. In “Truck loop annealing runs”, we execute our work-
flow. As a place-holder for full quantum solutions to the binary optimization problem instances, we use simu-
lated annealing and the D-Wave hybrid tool provided by D-Wave Systems. These solution methods offer insight 
into how the workflow might behave when a direct quantum algorithmic approach becomes feasible. Finally, 
in “Full-scale simulation”, we input the route solutions from our simulated annealing and D-Wave hybrid runs 
into a full-scale supply chain simulation which tracks, in detail, the locations of all boxes and trucks, ensuring 
that realistic and cumbersome constraints are satisfied. This allows us to evaluate the overall performance of our 
methods by determining the percentage of demand that is fulfilled given the number of trucks used.

Vehicle routing problems
Although there are many aspects of supply chains that can be optimized, we focus on vehicle routing. Math-
ematically, the wide variety of combinatorial optimization problems go by the umbrella name of “vehicle routing 
problems” (VRP)18,19. The VRP variant studied in this paper is closely modeled after the supply chain of Aisin 
Corporation, and is thus very complex. It involves many trucks, nodes, and goods that must be carried by trucks 
in ways that satisfy certain routing constraints. We explain this vehicle routing problem by building it up, start-
ing from a very basic one.

Basic vehicle routing problem.  The VRP discussed in this section is most similar to the split-delivery 
capacitated vehicle routing problem, but since it’s our base example from which we will build up a more realistic 
supply chain model, we refer to it informally as the “basic VRP”. An instance of the basic VRP is specified by: 
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1.	 A graph G with n+ 1 nodes. For convenience, the nodes are labelled as z0, z1, . . . , zn
2.	 One special node z0 selected from the graph which is called the depot.
3.	 An ( n+ 1)× (n+ 1) matrix T with nonnegative entries and Tii = 0 for all i ∈ {0, 1, . . . , n} called the time 

matrix.
4.	 A nonnegative number di assigned to each node zi except for the depot ( i  = 0 ). These numbers are called 

initial demands.

The nodes of the graph can be abstract, but in many cases they are explicitly given as coordinates for locations 
that trucks might drive to. The time matrix entry Tij is supposed to be the time it take a truck to drive from node 
i to node j. That is why we require Tii = 0 . The initial demand di is supposed to be the amount of material that 
must be carried by a truck from the node zi to the depot node z0.

Here the “amount of material” is intentionally vague. In a practical application, demand can be quantified by 
volume, by weight, or even by monetary value. For our purposes, we will use volume as the standard meaning 
for “amount of material” which makes it sensible that trucks have a limited carrying capacity.

A candidate solution to this VRP is given by a route: a list of integers ξ = ξ1, ξ2, . . . , ξk where k is some posi-
tive integer (called the route length) and each ξj is an element of {0, 1, . . . , n} . We require that ξ1 = 0 and ξk = 0 
so that the truck starts and ends at the depot. Given such a sequence, there are two questions:

•	 What is the total driving time for ξ?
•	 Is ξ a demand-satisfying route?

The driving time for the route ξ is computed in the obvious way:

The question of whether or not the route is demand-satisfying requires some further elaboration. In short, a route 
is demand satisfying if it will result in a truck carrying all of the initial demand to the depot. The mathematical 
description of this concept is somewhat inelegant due to the nature of picking up material from one location 
and bringing it to another. The truck which starts at ξ1 and follows the route has a capacity which we always take 
to be 1. This is the amount of demand that the truck can store. The amount of demand the truck is carrying at a 
given time is called on-board demand and the truck’s on-board demand is initially zero, and we denote this by 
e1 = 0 . (The index 1 on e1 refers to the fact that it is the on-board demand after stopping at ξ1 = 0 which is the 
first time step.) Then, the truck drives to ξ2 and picks up demand from ξ2 . The amount picked up is the largest 
allowed amount:

Note that this is either the full demand at node ξ2 or it is a portion of that demand that fills up the truck to capac-
ity. After this step, we update the off-board demand located at node ξ2 . This means that we change dξ2 by reducing 
it by the amount that the truck took from ξ2:

Explicitly writing e2 − e1 even though e1 = 0 is pedantic, but it helps clarify how this is generalized: the off-board 
demand at each time step is calculated by starting with the off-board demand from the prior time step and reduc-
ing it by the amount by which the on-board demand increased. The only other ingredient to understand the flow 
of demand in our VRP is that when the truck returns to the depot node at some time step, it drops off all demand 
there. The on-board demand returns to zero, and off-board demands are not changed.

To be explicit, the general update rules of on-board and off-board demand are

and

respectively. In these equations, t is a time step index and we are defining dt=0
j  to be the demand dj . Moreover, 

δkl is the Kronecker delta.
With the definitions above, we can state that the optimization goal of this basic vehicle routing problem is 

to find, among all demand-satisfying routes, the one which completes its route in the smallest time. Here, time 
is defined as in Eq. (1).

Tensor demand structure.  The basic VRP discussed in “Basic vehicle routing problem” has the property 
that all demand must be taken to the same destination node (the depot). This is built into the mathematical 

(1)time(ξ) =

k−1
∑

t=1

Tξtξt+1 .

e2 = min
(

1, dξ2
)

= min
(

1, e1 + dξ2
)

.

d2ξ2 = dξ2 − (e2 − e1).

et =

{

0 if ξt = 0

min
(

1, et−1 + dt−1
ξt

)

otherwise

dtj =

{

dt−1
j if ξt = 0

dt−1
j − (et − et−1)δj,ξt otherwise
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description of the problem because the off-board demand has a vector demand structure. This means that the 
demand at a given time step t is given by a vector

In a realistic supply chain, we do not have the luxury of a single delivery destination. Goods from a given node 
may be split into groups which need to be taken to various delivery destination nodes. To accomodate such a 
situation, we introduce the concept of a tensor demand structure. We begin with a rank-2 tensor.

Rank‑2 demand.  Consider a graph with n nodes z1, . . . , zn . (There is no longer any need for a special z0 node). 
We introduce an n× n matrix Dt=0 with nonnegative entries. The meaning of the entry D0

ij is, intuitively, the 
initial amount of demand that is located at node i and must be shipped to node j.

When the truck arrives at node i at time t with this sort of demand structure, a new issue arises: a pickup 
selection decision must be made. There are n different sorts of demand that can be picked up from node i: 
(

Dt−1
i1 ,Dt−1

i2 , . . . ,Dt−1
in

)

. Because of this difficult issue, we cannot simply determine whether or not candidate 
solution giving only a route without an explanation of how we perform pickup selection is in fact a demand-
satisfying solution.

Assuming that pickup selection can be accomplished in a reasonable fashion, we can obtain a new matrix 
Dt by reducing Dt−1 by the amount of demand picked up by the truck from node i. However, now a second 
issue appears: now that demand is on the truck, we have to remember which parts of the on-board demand 
must go to which destination nodes. This can be dealt with by promoting on-board demand at time t to a vector 
Et =

(

Et1,E
t
2, . . . ,E

t
n

)

 . The meaning of Eti  is that, after the operations at time step t (including pickup), Eti  is the 
amount of demand on the truck which must be delivered to node i.

Now that there is on-board demand in the truck, we need to revisit what happens when the truck first arrives 
at a given node i. Before pickup selection or any other operation, the first step is now to completely drop off 
demand Et−1

i  . Mathematically, this simply means setting Eti = 0 . If we wish, we can also keep track of the overall 
total demand satisfied after each time step, in which case we would iteratively define a sequence S by

where, as in “Basic vehicle routing problem”, ξt refers to the node visited at time step t.

Arbitrary rank demand.  The ideas of a demand matrix Dt
ij can readily be generalized to higher-rank tensors. 

The reason for doing this is that in a practical supply chain (including the one our study is based on), there are 
delivery requirements along the lines of “move this box from node 3 to node 7, and then from node 7 to node 
5”. Such multi-leg requirements may sound odd, but they can arise for numerous practical reasons. There may 
be capacity limitations at node 5, and node 7 may be a storage warehouse. Or perhaps the box needs to have an 
operation performed on it before its final delivery. Another important reason for multi-leg delivery requirements 
is that a cargo container may need to be sent somewhere else after delivery.

Whatever the reason, promoting the matrix and vector structure of D and E to higher rank tensors allows 
us to encode the data that we need for this new situation. An initial demand tensor D0

ijk can be interpreted as 
“there is initially demand D0

ijk located at node i which needs to first travel to node j and then travel to node k.”
Unfortunately, with higher-rank tensor structure like this, the operations that are performed when a truck 

arrives at a node become even more complicated. Consider first an empty truck arriving at node i at time t. It 
starts by performing pickup selection to decide what off-board to pick up: any part of Dt−1

ijk  is fine as long as the 
first index is i. After the pickup, the off-board demand is correspondingly reduced. However, the loaded demand 
is now material with instructions like “go to node j, then go to node k” so we must introduce a matrix on-board 
demand Etjk to track this. However, now that the truck has this on-board demand, when it later drives to node j, 
the on-board Ejk will be dropped off. This demand is not satisfied because it hasn’t reached its final destination 
of node k. We are therefore forced to introduce a rank-2 matrix off-board demand structure when this demand 
is dropped off! When that matrix off-board demand is later picked up, it is converted to rank-1 vector on-board 
demand.

In conclusion, rank-r off-board demand will automatically require tracking off-board demands with ranks 
2 through r as well as on-board demands with ranks 1 through r − 1 . These can be separately tracked by a col-
lection of tensors like

or, alternatively, we can “embed” lower rank demand within a single higher rank demand tensor. Regardless of 
the organizational approach, there is no question that bookeeping is one of the major issues that arise when 
dealing with this more realistic version of a vehicle routing problem.

dt =
(

dt1, d
t
2, . . . , d

t
n

)

.

S0 = 0

St = St−1 + Et−1
ξt

Dr t

Dr−1 t Er−1 t

...

D2 t E2 t

E1 t
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As with the cases above, we can introduce a “total demand satisfied” sequence St which accumulates only 
when demand is sent to its final destination. We do not accumulate S when rank-2 on-board deamand arrives 
at a node, but we do accumulate it when rank-1 on-board demand arrives because that node is the final destina-
tion for that material.

Multiple trucks.  The next complexity to consider is the involvement of multiple trucks. This is intuitive 
and easy to describe mathematically, but it adds immense difficulty for optimization. The main observation to 
make about the mathematical structure is that there is an on-board demand for every truck, but there is only 
one off-board demand. Thus, we need a new index m, which ranges from 1 to the number of trucks N, added to 
on-board demand. For instance:

for rank-2 on-board demand. We can allow different trucks to have different capacities C1, . . . ,CN , but through-
out our work we assume that all trucks have capacity 1.

The introduction of multiple trucks adds profound subtleties to the problem. The optimal solution to an 
instance with many trucks may involve highly collaborative relationships between trucks. Finding nearly optimal 
solutions may thus require an exploration of numerous heuristic optimization algorithms or machine learning 
approaches.

In our study, we take an approach that will not offer a truly collaborative solution, but may provide good 
solutions with excellent runtime. We find truck routes in an iterative fashion, starting with a single truck, updat-
ing the off-board demand expected to be satisfied by that truck, and then adding a second truck with the new 
demands. Repeating this process allows us to take advantage of some of the benefit of including many trucks, 
but without dealing with the most intractable aspects of this problem.

Optimization goals with multiple trucks.  When dealing with multiple trucks, there is some ambiguity on the 
optimization goal for a routing problem. There are two reasonable goals to consider. 

1.	 If the number of trucks is fixed and given, then the optimization goal is to minimize the total driving time 
among all trucks to satisfy all demand.

2.	 If the number of trucks is not fixed, then the optimization goal is to minimize total driving time for all trucks 
and to find the number of trucks that attains the lowest minimal total driving time.

In other words, we can either fix or optimize over the number of trucks.

Individual boxes and the box soup simplification.  Another factor in the realistic vehicle routing prob-
lem that we are building toward is the fact that boxes are not abstract “material” but physical boxes with specific 
volumes and weights and specific routing requirements. Each box has a starting node and a list of nodes that it 
must arrive at before going to its final destination node. In other words, for every box a, where

there is a corresponding list of nodes Ra which box a is required to visit. The number of elements in Ra is some 
integer ra which is greater than or equal to 2. We sometimes call ra the rank of box a. In other words, box a fol-
lows the path

There is also a volume for the box a which we denote as Va.
Rather than dealing with all of this detail, we can simplify the problem by finding all boxes with the same 

required route Ra . We can put all such boxes together into a box group. For the optimization algorithm, there 
is no need to distinguish boxes within the same box group unless they have different volumes which will fill 
off-board and on-board demand differently. However, we can perform a box group soup simplification where we 
combine all of the boxes within the same group together and regard their total volumes as continuous. The box 
soup then determines the initial off-board demand tensor(s), but it plays no other roll after that. In this case, 
the final solution we find may not be physically possible, but at least we won’t have to deal with the enormous 
complexity of tracking individual boxes.

Restricted driving windows.  Typical VRPs involve minimizing driving time to accomplish the goal of 
fulfilling all deliveries. However, in a commercial setting there is a limitation on the time in which trucks can 
drive. We may fail to satisfy all demand, especially with heuristic algorithms.

Suppose that all trucks are only allowed to drive during an overall period of time Tmax . The trucks drive 
simultaneously during this time. Then, we are not necessarily guaranteed that it is possible to fully satisfy demand 
within that constraint.

In this situation, the objective function is no longer obvious. One possibility is to minimize driving time and 
maximize satisfied demand with some relative weighting. There is, however, a different commercially natural 
objective to consider. To minimize cost, it is important to minimize the number of trucks required. Thus, a useful 
objective is to find the smallest number of trucks such that it is possible to satisfy all demand.

Etm,ij

a ∈ {1, . . . , number of boxes},

(2)Ra =
(

R1
a,R

2
a, . . . ,R

ra
a

)

.
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Aisin Corporation vehicle routing problem.  With all of the ideas above, we are finally in a position to 
describe the commercial routing optimization problem that we aim to address with an optimization workflow. 
For brevity, we will refer to the most general (and potentially complicated) of these commercial routing problems 
as the “logistical routing problem” (LRP).

The LRP is based closely on the supply chain of Aisin Corporation, a Japanese automotive manufacturing 
company. Their operations involve the delivery of parts between numerous facilities. Driving times between these 
facilities range from minutes to hours, and tens of thousands of boxes must be shipped by trucks between these 
locations on a daily basis. The Aisin Corporation routing challenge can be thought of as an instance (or class of 
instances) of the LRP. For example, the highest rank of demand tensors is 3. When referring specifically to the 
Aisin Corporation restricted version of the LRP, we will use the terminology “Aisin logistical routing problem” 
or ALRP. The ALRP is the instance for which we describe an implementation of our workflow in “Execution 
and performance”.

We strongly emphasize that neither the LRP nor the ALRP are meant to be rigorously defined computational 
problems. There is some ambiguity on the objective goal in these problems. The following is a summary of the 
features of the LRP and ALRP.

•	 Nodes: The number of nodes are arbitrary for the LRP. In the ALRP, there are 23 nodes.
•	 Trucks: Multiple trucks are allowed in the LRP and ALRP. For the ALRP, the typical number of trucks is in 

the 50-100 range.
•	 Initial demand: Off-board demand for the LRP can consist of an arbitrary (finite) number of demand tensors 

with rank greater than or equal to 2. The ALRP only has rank 2 and rank 3 off-board demand.
•	 Driving window: Driving windows are optional for the LRP. In the ALRP, the driving window is fixed (and, 

in reality, is 16 hours broken into two shifts).
•	 Boxes: For the LRP, demand can be broken into individual boxes. This is the case for the ALRP.
•	 Time matrix: The time matrix is arbitrary for the LRP. The ALRP time matrix is based on actual estimated 

driving times between facilities in Japan. Times range from minutes to hours in this case.
•	 Objective: The objective for the LRP/ALRP is ambiguous but is roughly to maximize demand satisfied while 

minimizing total driving time (which includes minimizing the number of trucks).

Binary optimization and annealing
The annealing algorithms that we discuss below are heuristic algorithms that attempt to find the minimum or 
maximum of polynomials with binary variables. Many problems, especially discrete optimization problems, can 
be cast as polynomials of binary variables20. Routing problems like vehicle routing problems are not manifestly 
similar to optimizing a polynomial objective function, but we will be able to find polynomial optimization 
instances with solutions that can be used to build up approximate solutions for the realistic vehicle routing 
problem discussed in “Aisin Corporation vehicle routing problem”.

Polynomials with binary variables.  By a “polynomial with n binary variables” we mean a polynomial 
from {0, 1}n → R with real coefficients. While we are choosing the domain of the n variables to be {0, 1}n there 
are other reasonable conventions like {1,−1}n . In the former case, we sometimes say that the variables are 
boolean and in the latter case the variables are said to be spin variables. When we use the term binary, without 
clarification, we mean boolean. As an example, f : {0, 1}2 → R defined by f (x, y) = 3xy − y is a polynomial 
with two boolean variables.

The computational problem PUBO, which we take to stand for Polynomial Unconstrained Binary Optimiza-
tion, is the problem of finding the minimizing input to a given polynomial with binary variables. Similarly, the 
computational problem QUBO (Quadratic Unconstrained Binary Optimization) is the same as PUBO except 
that the polynomial has at most degree 2. PUBO (and thus also QUBO) are NP-hard, as can be seen from the 
fact that many NP-hard problems can be reduced to QUBO21. For the sake of brevity, we often use the term 
“QUBO” to refer to a quadratic polynomial with binary variables rather than the computational problem itself 
as in “ f (x, y, z) = z + xy − x is a QUBO and g(x, y, z) = xyz is a PUBO”.

Quantum and classical optimization algorithms.  There has been substantial interest in the QUBO 
and PUBO problem classes from the quantum computing community because various heuristic quantum opti-
mization algorithms are designed for polynomials with binary variables. The quantum annealers of D-Wave 
Systems specifically solve QUBO instances. Simulated annealing, which is a class of classical algorithms that are 
somewhat analogous to the operation of quantum annealing, is well-suited for both QUBO and PUBO instances.

There are also very notable circuit-model algorithms that optimize PUBO instances. The quantum approxi-
mate optimization algorithm (QAOA)5 is a variational algorithm that begins with a uniformly distributed quan-
tum state and gradually evolves the state into one that, when measured, yields an approximate solution to the 
original PUBO. In certain respects, QAOA is a natural choice for our workflow once hardware evolves to the 
scale where around 1000 useful qubits, either error-corrected or sufficiently low-noise, can be manipulated in a 
circuit-model quantum computer. In lieu of this, the tests performed in “Execution and performance” exclusively 
use annealing algorithms which we now briefly review.

Simulated annealing.  Simulated annealing22,23 refers to a class of heuristic optimization algorithms that are 
motivated by the idea of starting in a “high temperature ensemble” and gradually “cooling” until a state finds its 
way into the minimum of an objective function. To be more concrete, consider a finite set of points A and an 
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objective function f : A → R . Assume that f is bounded below so that there is some a0 ∈ a such that f (a0) ≤ f (a) 
for all a ∈ A . In addition, there is another important piece of structure needed for the set of points A: we need a 
concept of “neighboring” points. Assume, therefore, that for every a ∈ A , there is a collection of “neighbors” of 
a, N(a). While there are no formal requirements on the properties of N(a), simulated annealing works best when 
N(a) tends to satisfy some things that are reasonable for so-called neighbors: we want all of the neighbors of a to 
have similar objective values to that of a. We also want the size of N(a) to be quite small compared to the size of 
A, and we also need to ensure that the elements of N(a) are efficiently determined given a.

PUBO and QUBO fit naturally into this framework. We set A = {0, 1}n ; neighbors are naturally defined by 
putting a limitation on Hamming distance. For example, given a binary string x = (x1, . . . , xn) , we can let the n 
strings obtained by flipping a single bit of x be the elements of N(x).

The final input needed for simulated annealing is a “cooling schedule” which is a value of a “temperature” T 
for every time step. T should be taken to start off as a larger number and gradually decrease to zero. We start in 
an initial guess a1 ∈ A and look at all neighbors of a1 . We evaluate the objective function f (a1) and compare it to 
f(a) for a ∈ N(a1) and we select a new state a2 based on probabilities given by relative Boltzmann factors e−f (a)/T 
for the various states. When T is large compared to objective function differences, each step randomly changes 
states with no consideration for value of f, but as T tends to zero, states evolve in an increasingly greedy fashion.

Quantum annealing.  Quantum annealing is a quantum analog of the classical simulated annealing described 
above. And importantly, quantum annealing is the paradigm implemented on the D-Wave Systems quantum 
annealing computer, which was used in this study to find the solutions to the logistics routing problem instances. 
Quantum annealing is meant as a form of adiabatic quantum computing, where an initial quantum state is sub-
jected to a time-dependent Hamiltonian in such a way that the state remains in the (approximate) ground state of 
the Hamiltonian during evolution. By evolving from a initial “driving” Hamiltonian to a “problem Hamiltonian”, 
one that represents the binary optimization problem instance that we want to solve, measurements of the final 
ground state yield solutions to the binary optimization problem instance24.

In more detail, a transverse field is applied to an ensemble of spin qubits to provide a high-energy superposi-
tion of states in an initial driving Hamiltonian, Hinit . The transverse field serves as an effective high temperature. 
The transverse field is slowly lowered, while simultaneously a problem Hamiltonian, Hfinal is applied to the qubits 
via spin-spin couplings and external fields with increasing strength according to an annealing schedule

where a real number, s ∈ [0, 1] , is the annealing schedule parameter.
If done adiabatically–that is, sufficiently slowly–this allows the final alignment of the qubits, spin up or down, 

to represent a low-energy minimum configuration that corresponds to a solution to the problem Hamiltonian 
that was applied. The rate of annealing can be considerably slow, depending on the minimum gap between 
energy levels of the ground state and neighboring higher-energy states, and can lead to anneal times longer than 
the coherence time of quantum annealing devices. Adding to this coherence time limit the fact that other noise 
sources exist, fully adiabatic quantum computing has not yet been achieved.

Quantum annealing is a similar approach to adiabatic quantum computing that uses the similar anneal 
schedule and achieves low-energy solution states without strict adiabaticity6. The intuition behind quantum 
annealing is that during the anneal quantum effects will allow the exploration of energy structure of the problem 
by tunneling through energy barriers6,7,10,25,26. In practice, of course, noise limitations limit the effectiveness of 
the technique, but nonetheless, such devices have been built that increasingly are able to find low-energy states 
of problem Hamiltonians for ever increasing problem sizes.

D‑wave systems quantum annealing computer.  D-Wave Systems has been offering quantum anneal-
ing computers for commercial use for over a decade. Their latest model, the D-Wave Advantage, offers 5000 
superconducting qubits operating at cryogenic temperatures. It is accessible via the Internet and is fully pro-
grammable to represent any problem in QUBO formulation of binary variables as described earlier in this sec-
tion. In order to overcome the limitation of problem size—a limitation for all existing quantum computing 
devices of today—D-Wave Systems include a hybrid solver that uses the quantum annealing computer to provide 
promising starting points to large-scale classical computers. This allows researchers to work on the quantum 
annealing algorithm while running much larger problem sizes of practical interest. This hybrid solver was in fact 
used in this study to address a much larger and more realistic logistics problem than could be handled by just 
the quantum annealer alone.

D‑wave quantum annealer.  The important characteristics of a quantum annealer are the number of qubits, the 
amount of connectivity among the qubits, and the noise qualities of the qubits. The latest D-Wave Advantage 
also offers an increase in connections between qubits to 16, up from 6 on previous versions. This increase in 
connectivity allows more efficient embedding of logical problems onto the hardware graph of qubits, and thus 
enables larger problem sizes to be embedded onto the processor. The embedding of the logical problem onto the 
hardware qubit graph is important. One should recognize that the 5000-qubit processor cannot handle a prob-
lem of 5000 binary variables. The embedding requires multiple hardware qubits to be programmed as a logical 
node to represent each logical variable. For a fully-connected logical problem, one in which every binary variable 
interacts with all the others, one can only embed such a fully-connected problem of approximately 180 logical 
binary variables on the 5000 hardware qubits. Many problems of practical interest are not fully-connected logi-
cally, so larger problem sizes of hundreds of binary variables can often be embedded. However, to handle much 
larger problems of thousands of binary variables requires the use of the hybrid solver–quantum annealer and 

(3)H(s) = (1− s)Hinit(s)+ sHfinal,
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classical heuristic solvers working together. Documents fully describing the characteristics and operating modes 
of the D-Wave Advantage quantum annealing computer can be found on their web site16,17,27.

The performance of the D-Wave Systems quantum annealers has increased with each new generation of 
machine. While the latest machine still can not perform better than the best classical algorithms on multiple 
CPU/GPU compute hardware, they are narrowing the gap between their annealing quantum processor unit 
(QPU) and a classical CPU for certain problem types26. It is difficult to compare the performance of quantum 
annealing and classical heuristics in theory. Predictions of adiabatic quantum computing have some theoretical 
underpinning, quantum annealing itself does not. Additionally, in empirical comparisons, the quantum annealers 
are mostly limited by noise and other imperfections in their current state of technology, while classical algo-
rithms and hardware are very mature. Research on improving quantum annealing is ongoing both from a qubit 
technology perspective and from an operational perspective. A case in point for the latter is exploring tailored 
annealing schedules different than the nominal linear annealing schedule shown above in Eq. (3). For example, 
inhomogeneous annealing schedules for each qubit can be applied and have shown significant improvements in 
obtaining higher probabilities for low-energy solutions28.

D‑wave hybrid solver.  The D-Wave Systems hybrid solver aims to bring quantum computing to bear on larger 
problem sizes than it can alone handle at this point in its maturity. The key idea is to use the quantum annealer to 
better guide a classical heuristic algorithm. Heuristic algorithms for optimization lie between the two extremes 
of exhaustive search and random sampling. Exhaustive search is, of course, too time consuming for large prob-
lems, scaling exponentially with problem size for combinatorial optimization. Random sampling is fast but not 
very good at finding extrema. Heuristics extend from each of these extremes. Examples are search techniques 
that can smartly eliminate large portions of the search space, such as branch and bound, and probabilistic sam-
pling along with local search, such as in simulated annealing described above. For discrete optimization, which 
cannot benefit from the power of gradient descent, alternative heuristics have been developed that can help 
guide the search space or eliminate redundancy, such as tabu search, which excises previously explored territo-
ries of the search strategy.

Quantum annealing brings something additional into play. It is believed, as identified in the introduction, 
that quantum annealing will be better at exploring the global search space and, via the power of quantum tun-
neling, might avoid getting stuck in local minima. The D-Wave Systems hybrid approach invokes several of these 
approaches in an overarching meta-heuristic17.

A top-level functional diagram of the hybrid solver is shown in Fig. 1. The Metasolver on the left governs the 
overarching algorithm. The problem Hamiltonian in QUBO form is provided along with the stopping conditions, 
usually just an overall target run-time. The Metasolver launches multiple threads which uses classical heuristic 
algorithms running on CPUs or GPUs. These heuristic algorithms use versions of simulated annealing, tabu local 
searches, and additional proprietary heuristics. Simultaneously, the Metasolver uses the quantum annealer to 
search for promising solutions of smaller subsets of the problem, and these are fed back into the algorithm flow 
to provide additional promising starting points to the heuristic algorithms in each thread. The Metasolver col-
lects a set of best solutions until the stopping condition is reached, and the results are reported back to the user.

In performance testing on benchmark optimization problems, the hybrid solver performs well and in some 
cases better than other state-of-the-art classical heuristics on comparable hardware15. Additionally, when running 
the hybrid solver with the quantum annealing augmentation disabled, the solution time and quality are degraded 
slightly on average. This indicates that the quantum annealing solutions are providing improved performance, 
at least for the problem types and instances studied to date. The long-term expectation is that as the quantum 
annealing hardware improves in the future, this should provide even more advantage over the purely classical 
solvers alone. Interestingly, this approach can also be pursued using other quantum computing paradigms, such 
as circuit model discrete optimization solvers. Further testing will need to be done on future quantum hardware 
and quantum algorithms—both quantum annealing and circuit model—to see how much further these hybrid 
approaches can be developed.

Figure 1.   A functional diagram of the D-Wave Systems hybrid solver. The Metasolver on the left governs the 
overarching algorithm. It launches multiple threads which uses classical heuristic algorithms running on CPUs 
or GPUs as depicted in the middle of the figure. Simultaneously, it uses the quantum annealer (QA) on the right 
to search for promising solutions of smaller subsets of the problem to provide additional promising starting 
points to the heuristic algorithms.
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Single truck PUBO
The enormously complex logistical routing problem (LRP) described in “Aisin Corporation vehicle routing 
problem” could be formulated as the problem of minimizing a polynomial with binary variables. However, 
such a formulation would involve an intractably large number of variables and may have very high polynomial 
degree. This complexity suggests that we find another approach, even if that approach cannot achieve an exactly 
optimal solution.

Consider a single truck and ignore completely the presence of all other trucks. We do not concern ourselves 
with the fact that other trucks can potentially interfere with or assist this one truck. We only focus on one single 
truck and we write down a PUBO, the solution to which ought to give a reasonable route for this truck.

Binary variables.  Suppose that there are n nodes z0, . . . , zn−1 . (Note that we are starting indices at 0 for 
convenience here. z0 is not a special node as in “A. Basic vehicle routing problem”) The truck starts at one of the 
nodes at the first time step t = 0 and then drives to another one at each subsequent time step. Assume that there 
are a total of τ time steps so that the route of the truck is ξ0, ξ1, . . . , ξτ−1 with each ξt ∈ {0, 1, . . . , n− 1} . The fact 
that we are fixing the total number of time steps will play an important role below.

We now introduce n τ Boolean variables

The intended meaning of these variables is that xit is supposed to be 1 if the truck is located at node i at time 
step t and xit = 0 otherwise. This approach to introducing binary variables is commonplace when dealing with 
PUBO formulations of routing problems like the traveling salesman problem.

Locality term.  Configurations of the binary variables xit can violate locality: if x2 5 = x3 5 = 1 , then the 
truck is apparently at z2 and z3 simultaneously at time step 5. For this reason, the PUBO will require terms that 
act as constraints to enforce locality. We must demand that

for all times t. There are a few ways to handle this, but our approach is to start our PUBO with a quadratic term 
of the form

which is 0 if and only if the configuration is local at all times. The coefficient Alocal is some positive real number 
which can be tuned to improve an algorithm’s performance. flocal(x) is positive when the configuration is nonlocal 
and it gets larger as the solution becomes more and more non-local. flocal also prohibits configurations where a 
all variables are zero at any given time.

Demand and time.  The tensor demand structure of the LRP explained in “Tensor demand structure” pos-
ses a challenge for a PUBO formulation. Off-board demand changes as trucks pick up and drop off boxes, and we 
thus need a dynamical approach to deal with demand to be technically correct. However, the single truck PUBO 
we are building is a heuristic, so we allow a heuristic approach at this point.

Consider rank-2 and rank-3 off-board demand Dr=2
ij  and Dr=3

ijk  . (To review, the rank-3 demand means material 
which starts a node i and must be brought to node j and then to node k.) We can use this demand to compute 
an “overall off-board demand”:

This overall demand can be interpreted as an upper bound on the amount of material that a truck could encounter 
at node i that needs to be sent directly to node j. (Note that we exclude from this accounting rank-3 demand in 
the summation that would be sent indirectly from node i to node j via an intermediate node k, as those cases will 
be handled by a sequence of two steps using two other terms in the objective function summation described 
immediately below.)

We then introduce a demand term for the PUBO:

where δ∗(t) = min(δmax, τ − 1− t) and δmax is some fixed integer limitation on δ . The reason that we include 
δ > 1 terms is that a truck may pick something up from node i with destination at node j, but the truck might 
stop at node k before going to node j. In this case, we still want to reward the truck from driving from i to j 
eventually. Solutions which approximately minimize fdemand may correspond to routes where the truck can carry 
large amounts of demand.

We can similarly penalize routes that take excessively long drives. If Tij is the time matrix computing the 
driving time between nodes, adding

{xit | i ∈ {0, 1, . . . , n− 1}, t ∈ {0, 1, . . . , τ − 1}}.

∑

i

xit = 1

(4)flocal(x) = Alocal

∑

t

(
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∑
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∑
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∑

ijt

δ∗(t)
∑

δ=1

Dijxi t xj t+δ



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4770  | https://doi.org/10.1038/s41598-023-31765-8

www.nature.com/scientificreports/

to the PUBO will add a preference for routes that can visit more nodes in the limited number of time steps. Note 
that terms (6) and (7) can be combined into one quadratic term with modified coefficients.

Redundancy abatement.  The final term to build our PUBO requires some explanation. Consider again 
the “overall demand” matrix Dij . There are two situations to consider: when Dij is large and when it is small. 
When it is large, our usage of Dij is quite reasonable. Configurations that try to minimize fdemand and ftime are 
likely to satisfy lots of demand while avoiding long times. However, in the case where Dij is small we encounter a 
serious deficiency. As mentioned above, off-board demand, when treated without any simplification, is dynami-
cal: it changes as trucks pick up and drop off parts.

Consider the following extreme example. Suppose that between nodes z3 and z6 , there is a small amount of 
demand D3 6 . If our truck drives from z3 to z6 once, doing so a second time would be pointless. However, there 
is no information that this would be wasteful in fdemand . In fact, fdemand may suggest that going back and forth 
between z3 and z6 for all time steps is a good solution! To avoid this sort of thing, we introduce terms in the 
PUBO which penalize route repetition. However, we only want to do this for pairs of nodes where Dij is “small” 
so we will only introduce these new terms for certain pairs of nodes. We will use the notation Iij = 1 when Dij is 
sufficiently “small” that we would want to include such a term and we will write Iij = 0 for “large” Dij.

In the example above, including a term proportional to

counts the number of times that a truck follows the path z3 → z6 → z3 → z6 . We can generalize this term further 
by adding a delay δ ∈ {2, . . .} between repetitions as follows:

which is the same as before except now we are counting the number of times that the truck follows the two-step 
path z3 → z6 at some time t and then later follows the same path at time t + δ . We can then define

Finally, we can give the redundancy abatement term for our PUBO

where I is an n× n matrix consisting of only zeros and ones which is supposed to be 1 for pairs ij if and only if 
demand Dij is small enough to include such a repetition-avoidant term. Note that equation (8) is fourth-order, 
and we should thus use these terms sparingly: Iij should be zero unless we expect cycling between i and j to be 
a serious problem.

Full single truck PUBO.  Combining the ideas from above, our full single-truck PUBO is the summa-
tion of Eqs. (4), (6), (7), and (8). There are four positive constants that can be tuned: Alocal,Ademand,Atime, and 
Anonredundant as well as the choice of Iij and δmax . These parameters offer substantial freedom to tune heuristic 
PUBO-solvers to obtain better solutions for the final combined problem instance.

Solution rectification.  Approximate solutions to a single-truck PUBO do not always give a well-defined 
route for a truck. It’s possible that a solver returns a solution which is not a minimum of flocal . For these situa-
tions, it’s helpful to settle on a method for “rectifying” solutions that violate locality.

To enforce locality on an approximate solution x, we iterate through time steps t. If we have xit = 0 for all i, 
then we randomly choose one node i∗ to have xi∗t = 1 while keeping xit = 0 when i  = i∗.

If, for some t, our initial solution has multiple nodes i1, i2, . . . , ik with xist = 1 , then we wish to select a single 
value of s∗ ∈ {1, . . . , k} to keep xis∗ t = 1 while setting the other variables equal to 0. To do this, we simply look 
at the terms of the PUBO that involve this time step t and we try the k possibilities by brute force. We select any 
of the choices with the lowest objective function value.

Order reduction.  To submit a PUBO on D-Wave Systems solvers, including their quantum annealer as well 
as simulated annealing and the D-Wave hybrid solver, there is a necessity to eliminate any polynomial terms with 
order exceeding two.

Polynomial order can be reduced at the cost of introducing extra variables and constraints. This is easy to see 
through an example. Given a sufficiently large real number � , the polynomial of binary variables f (x, y, z) = xyz 
is “equivalent” to g(x, y, z, a) = az + �(a− xy)2 in the sense that the minimum of g, restricted to the variables 

(7)ftime(x) = Atime

∑
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Tijxi txj t+1
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(x, y, z), is also a minimum of f. To see this, note that the variable a, being binary, takes on the same values as 
xy (0 and 1 only). Moreover, the term �(a− xy)2 enforces the constraint that a = xy to minimize g as long as � 
is large enough.

In the executions discussed in “Execution and performance”, we perform PUBO to QUBO conversions for 
simulated annealing and for D-Wave hybrid runs. For all cases, we used the open-source library Qubovert29 to 
perform PUBO to QUBO conversions.

Supply chain workflow
An approximate solution to the single-truck PUBO described in Single truck PUBO gives a route for one truck, 
but the logistical routing problem (LRP) of “Aisin Corporation vehicle routing problem” involves many trucks. 
Constructing a PUBO with solutions that obtain multi-truck solutions for a multi-truck VRP is possible, but 
will involve a large number of variables and terms. We certainly do not consider such an approach to be viable 
with hardware such as quantum annealers constructed by D-Wave Systems.

The single-truck PUBO, on the other hand, can viably be attacked with near-term quantum algorithms. We 
thus devise an algorithm which attempts to solve the full LRP by working truck-by-truck, iteratively obtaining a 
route, estimating the demand satisfied by the route, and then updating the remaining off-board demand tensor 
before proceeding to the next truck.

For this truck-loop algorithm, we work only with “overall demand” given in Eq. (5). This demand is a useful 
simplification to avoid the challenges of higher-rank demand while still obtaining a reasonable solution. We 
return to the details of higher-rank demand in “B. Full-scale simulation”.

The truck-loop algorithm is given in pseudo code as follows:

Algorithm1 Truck Loop
Inputs:

Number of time steps to use τ
Stopping condition stop
Solver with rectification solver
Initial overall demand D

routes ← empty list
� ← 0
while not stop(D,m) do

f ← single truck pubo(D, τ)
ξ ← solver(f)
D ← D − estimate demand(D, ξ)
routes ← append(routes, ξ)
� ← length of routes

end while
return routes

This algorithm refers to some subroutines that require explanation:

•	 single_truck_pubo returns a PUBO as described in “Single truck PUBO”. The only part of this func-
tion that cannot be read-off from Single truck PUBO is the choice of redundancy abatement coefficients Iij . 
These are chosen to be 0 for a pair i, j when Dij is above some threshold and 1 otherwise.

•	 solver refers to some PUBO solver and post-processor. The PUBO solver can be any exact or heuristic 
algorithm which is aims to find the minimum of a given PUBO. The output of solver is not, however, the 
min or argmin of the PUBO. Instead, we first get the binary variable assignments that approximately minimize 
the PUBO, and then we perform locality rectification as explained in “Single truck PUBO”.

	   Moreover, if there are driving windows (see “Restricted driving windows”), then we also cut off the last 
steps of the route until the route fits into the window. Along the same lines, we may also lengthen routes 
that fall well-short of the driving window. This can be done by looping the original route until adding one 
more step would exceed the time window. This procedure may sound counterproductive, but in applications 
with driving windows, as in the ALRP (“Aisin Corporation vehicle routing problem”), we may calculate cost 
by assuming that all trucks have a fixed price for a fixed window, and in that case it’s ideal to use the truck 
throughout the time window.

	   Finally, the output of solver is the sequence of nodes for the single-truck route obtained.
•	 estimate_demand is a function which attempts to estimate the degree to which D will be reduced by a 

truck following a given route. We compute this by performing a small supply chain simulation for the route. 
Suppose that the truck starts at node z4 and that it will then go to nodes z6, z8, z3 in that order. We then load 
onto an abstract truck the largest allowed amount of D4,6 (limited either by the truck capacity or by the value 
of D4,6 ). If there is remaining truck capacity we move on to D4,8 , and so on until we either take all of D4,3 or 
we run out of capacity. At this point, the truck (abstractly) drives to z6 and we unload all of the D4,6 that was 
on-board. We then repeat the procedure starting with D6,8 followed by D6,3 . This method provides a reason-
able estimate of the demand that a truck is expected to satisfy, but it is only a heuristic approach, severely 
weakened by the realities of multi-truck interactions.

•	 stop is a stopping condition such that stop(D,m) is true if and only if conditions on a demand matrix D 
and the number of trucks assigned m are satisfied. We can, for example, stop whenever more than 50 trucks 
have been assigned or when all entries of D are below some threshold.
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Once the truck loop algorithm is complete, we obtain a collection of routes for each truck

where N is the number of trucks and each ξm is a list of nodes 
(

ξm,1, ξm,2, . . . , ξm,km

)

 with km ≤ τ for all m. Unfor-
tunately, this final routing was obtained with a series of heuristics and it’s therefore not immediately obvious 
how to estimate the solution quality. The most naive and easily implemented strategy is to simply look at the 
final value of D in the algorithm and the total time for all of the trucks to drive along the routes. However, this 
demand and time calculation is only a approximation. To determine the quality of the solution, a more involved 
supply chain simulation is necessary, and we explain this in “Full-scale simulation”.

Execution and performance
The purpose of the truck loop algorithm of “Supply chain workflow” is to have an algorithm that can break a very 
large commercial problem into sufficiently small pieces that simulated and quantum annealing algorithms can 
viably be applied in the near term. As a proof-of-concept, we applied our algorithm to proprietary supply chain 
data of Aisin Corporation using both simulated annealing and the D-Wave Hybrid algorithm. Application of 
direct quantum annealing rather than the D-Wave Hybrid algorithm remains unrealistic for this problem until 
the hardware matures to some extent.

We referred to the Aisin problem, which was referred to as the ALRP in “Aisin Corporation vehicle routing 
problem”. Their data consists of approximately 350,000 boxes to be shipped by trucks among 23 nodes in Japan. 
The travel times between nodes is shown in Fig. 2.The boxes have rank-2 and rank-3 demand structure. Thus, 
some boxes have direct delivery requirements and others have a required stop along the way. To apply the truck 
loop algorithm, we first group boxes by their required routes and then we apply the “box soup” simplification of 
“Individual boxes and the box soupsimplification” to convert from a discrete to continuous demand structure. 
Moreover, we use Eq. (5) to compute the overall demand matrix. With truck volumes normalized to 1, the overall 
demand matrix is illustrated in Fig. 3.

Truck loop annealing runs.  We ran the truck loop algorithm of “Supply chain workflow” using both a 
simulated annealing algorithm (“B. 1. Simulated annealing ”) and the D-Wave Hybrid solver (“B. 2. Quantum 
annealing”).

During each step of the loop, we computed an estimated overall demand carried by each truck. That estimated 
overall demand is shown for the case of simulated annealing and D-Wave Hybrid in Figs.  4 and 5 , respectively. 
The simulated annealing loop terminated after 61 trucks, and the D-Wave Hybrid loop terminated after 74 trucks. 
This termination condition, defining stop from “Supply chain workflow”, is simply to stop all entries of D under 
a very small cutoff (.0005 in our case).

To construct the single-truck PUBO, we used a different value of τ (the number of time steps) for simulated 
annealing and for the D-Wave Hybrid solver: 15 for simulated annealing and 5 for D-Wave Hybrid. With 15 
time steps, the typical number of PUBO variables is approximately 350, corresponding to approximately 2500 
QUBO variables. With only 5 time steps, there are around 100 PUBO variables which are equivalent to about 
200 QUBO variables.

The PUBO coefficients were the same in both cases:

(9)ξ = {ξm |m = 1, . . . ,N}

Figure 2.   The matrix of driving times between the 23 nodes in the Aisin logistical routing problem. Units 
are in seconds which is the same unit used for the PUBO construction (figure generated by the authors using 
matplotlib 3.6.3 found at https://​pypi.​org/​proje​ct/​matpl​otlib/).

https://pypi.org/project/matplotlib/
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As we emphasized earlier, the data in Figs.  4 and 5 cannot, on their own, be taken as an evaluation of the per-
formance of our methodology. This is especially true given that demands are only estimated by the methods 
explained in “Supply chain workflow”. We now explain how we translated the routes and heuristic solutions 
from this section into meaningful instructions for a commercial supply chain and, in doing so, evaluate the 
performance of our workflow.

Full‑scale simulation.  The truck loop algorithm provides a simple way to break up the enormous logistical 
routing problem (“Aisin Corporation vehicle routing problem”) into smaller problems relating to one truck at a 
time. The output of the truck loop algorithm is a set of routes ξ as in Eq. (9). These routes were computed with 
methods that ignored most of the inter-truck interaction and also treated boxes as a continuous “box soup”. How 
can we apply the routes ξ in a more realistic fashion given those simplifications?

Alocal = 5000,

Ademand = 320,

Atime = .01,

Anonredundant = 1.

Figure 3.   The overall demand matrix (as defined in Eq. (5) for the Aisin Logistics Problem of “Aisin 
Corporation vehicle routing problem”. Note that of the 232 = 529 entries for the matrix, only 115 are nonzero 
(figure generated by the authors using matplotlib 3.6.3 found at https://​pypi.​org/​proje​ct/​matpl​otlib/).

Figure 4.   Estimated demands computed during the truck loop process for simulated annealing. The algorithm 
terminated after 61 trucks were given routes. Demands are estimated by the method explained in “Supply chain 
workflow”.

https://pypi.org/project/matplotlib/
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We chose to interpret the output ξ as “suggested routes” and to attempt to use them in a full-scale supply chain 
simulation. The simulation we built does not make any of the simplifications described in “Single truck PUBO” 
or “Supply chain workflow”. Boxes are treated as real boxes with identity. Every box is individually tracked, has a 
specified volume, and every box has given rank-2 or rank-3 requirements. In other words, boxes have required 
paths as in Eq. (2), but those paths have either length 2 or length 3. All of this detail is in the supply chain data 
set of Aisin Corp.

While we have dropped the simplifying assumptions, the simulation is not exact and global in that we are 
starting with the fixed truck routes determined by our quantum-classical heuristic in the truck loop algorithm. 
Trucks follow along the routes they were assigned by the truck loop algorithm and they pick up as many boxes 
as is sensible for their route. The method of pickup selection is very similar to that described for estimate_
demand in “Supply chain workflow”. We briefly describe it here for clarity. Suppose that a truck follows the 
route z1, z2, z3, z4 . When the truck starts (at z1 ), it first tries to pick up demand destined for z2 . We thus look at all 
boxes currently at z1 with their next stop being z2 . As many such boxes (with no bias for which ones) are picked 
up as can fit on the truck. (Note that here we continue to use the simplification that box volumes are fluid; we 
do not compute close packing of the three-dimensional shape of boxes.) Then we ask if there is space for boxes 
at z1 that are destined for z3 that still fit on the truck. The same is done for z4 if there is remaining space. At this 
point, the truck drives to z2.

During this time, other trucks will be driving and will alter the material at various nodes. We simulate in 
detail what each truck is doing at this time step and modify the demand as appropriate. Then we advance to 
the next time step. When our example truck arrives at z2 , we first drop off all boxes that need to go to z2 as their 
next stop. We then repeat the prior procedure, asking if there are boxes at z2 that need to go to z3 and so on. We 
repeat this for each truck in this time step and then advance to the next time step and repeat. Our simulation also 
takes into account exact details of driving windows, ensuring that no driving goes outside of these windows. The 
simulation runs until the end of the set maximum time–there is no other stopping condition.

This detailed simulation converts a list of suggested routes for trucks into a precise history of what every 
truck in a supply chain does and the path of every box in the supply chain. Such simulation is an important tool 
because it allows algorithms like our truck loop algorithm to make various simplifications while still getting a 
final result that is commercially useful.

One more utility of the exact simulation, is that it allows for making final corrections to routes and knowing 
for a fact that those corrections improve performance. In the description above, the trucks routes returned from 
the truck loop algorithm were held fixed for the duration of the simulation, but there are many ways one could 
consider variations of the routes that might improve performance. For our purposes, we used a very simple heu-
ristic to modify routes: after running a simulation, we checked to see if there were trucks which end their routes 
on a sequence of steps carrying no demand whatsoever. We clipped these parts of the routes away, and replaced 
them with a route driving back and forth between whatever two nodes had the highest unsatisfied demand 
during that simulation run. We then performed the simulation again, and kept it if the overall satisfied demand 
was superior. We performed this step only 5 times for each overall run, and found only modest improvements.

The simulation algorithm, including the five-variation repeat, is given in pseudocode as follows:

Figure 5.   Estimated demands computed during the truck loop process using the D-Wave Hybrid solver. The 
algorithm terminated after 74 trucks were given routes. Note that the last 15 trucks consume a very small 
amount of demand, suggesting that they can be replaced by a smaller number of trucks. Demands are estimated 
by the method explained in “Supply chain workflow”.
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Algorithm2 Simulation
Inputs:

Number of variation loops m
Maximum drive time τ
Number of trucks n
List of n truck routes routes(n)
Specification of node locations nodes
Parts list (ID, Volume V, Overall Demand D)

best routes(n) ← empty list
for variation=1 to m do

new best routes(n) ← empty list
for time=0 to τ do

for truck=1 to n do
compute location of truck at time
if truck at node then

D ← update pick-up/drop-off demand
new best routes(truck) ← update delivery
schedule for truck

end if
end for

end for
if new best routes(n) better than best routes(n)
then

best routes(n) ← new best routes(n)
end if
if best routes(n) have later stops with no pick-
up/drop-off then

routes(n) ← Modify routes by redirecting to unmet
demand

end if
end for
return best routes(n)

For both the simulated annealing routes and the D-Wave Hybrid routes, we kept only the first 61 trucks. We 
found that these trucks satisfied 96.45% of the overall Aisin Corp. demand when using simulated annealing and 
99.39% with the D-Wave Hybrid solver. We make no claim that these results would compete with dedicated clas-
sical optimization tools commonly used in operations research. However, these results illustrate the viability of 
breaking problems into small pieces, running those pieces on solvers that can only run smaller problem sizes (like 
near-term quantum algorithms and quantum annealers), and restoring a realistic solution through simulation.

The truck routing found through our methods using the D-Wave hybrid solver followed by the full-scale 
simulation with 61 trucks is depicted in Fig. 7 whereas the routes devised by Aisin Corporation logistics experts 
are shown in Fig. 6. The truck routes that we found have a substantially greater degree of connectivity than those 
currently used in practice.

Comparison with current supply chain performance.  Aisin Corporation currently routes trucks in 
their supply chain by careful analysis by logistics experts. In this subsection, we briefly compare the current 
routes used by Aisin Corporation with the routes determined by the execution of our workflow. A major finding 
is that our routes appear to outperform current routing by a number of metrics.

The connectivity graph currently used by Aisin Corporation (that is, the pairs of nodes that trucks currently 
drive between) is shown in Fig. 6. Our execution on the D-Wave hybrid solver, followed by full-scale simulation 
with 61 trucks as described in “Execution and performance” and “Full-scale simulation”, yielded the substantially 
denser connectivity graph shown in Fig. 7. The routes currently used involve 142 trucks whereas our methods 
use only 61 trucks, implying a large reduction in cost.

These are exciting results, but we caution that our simulations are not complete in all regards. There may be 
constraints that logistics experts must account for that we have not been able to include in the simulation of 
“Full-scale simulation”, such as how long a parts box needs to stay at an intermediate node (we assume immedi-
ate availability) or how the drive time varies during the day due to traffic conditions, so the overall reduction in 
truck number may not be as dramatic as it appears. Nonetheless, using our routes as a starting point and making 
small adjustments is expected to yield a meaningful cost reduction.

A less obvious benefit of the workflow we describe is that it yields very precise instructions for each truck’s 
route and delivery requirements. An example of such a routing is shown in Fig. 8 (this figure only shows the 
requirements for two parts, referred to as part A and part B). Because there are approximately 15,000 parts, such 
a precise prescription is extremely useful. Aisin Corporation currently relies on human experience and intuition 
to make precise determinations for part pickup requirements, while our approach removes this pain point. We 
emphasize, however, that specific pickup and dropoff instructions are determined by the full-scale simulation 
implementation, and are not directly determined by the PUBO optimizer.
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Conclusions
Quantum algorithms are known to provide computational benefits over classical computing for specific tasks. 
This specificity implies that, even when quantum hardware matures, quantum computing will most likely be 
used as a component in hybrid classical-quantum workflows when dealing with complex problems of practical 
significance.

The methodology of this work is an example of such a hybrid workflow. Even for the enormously complex 
task of routing trucks in a realistic supply chain, we were able to find a way to construct small problem instances 

Figure 6.   Connectivity graph for routes currently used by Aisin Corporation. Lines indicate pairs of the 23 
nodes that trucks drive between in the routes determined by Aisin Corporation logistics experts. For this 
routing, 142 trucks deliver approximately 340,000 boxes containing ∼ 15, 000 unique parts. Among these parts, 
there are 115 unique routing requirements as described in “Individual boxes and the box soupsimplification” 
(figure generated by the authors using kepler.gl v3.0.0-alpha.0 found at https://​kepler.​gl/).

Figure 7.   Connectivity graph for routes found through our workflow with 61 trucks, the D-Wave hybrid solver, 
and full-scale simulation (see “Full-scale simulation”). The problem instance is the same as described in the 
caption of Fig. 6 (figure generated by the authors using kepler.gl v3.0.0-alpha.0 found at https://​kepler.​gl/).

https://kepler.gl/
https://kepler.gl/
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as subroutines that can be solved with NISQ quantum algorithms. For our study of a commercial supply chain, 
the smaller problems are binary optimization problems with ∼ 2500 binary variables, an appropriate scale for 
near-term quantum annealing and somewhat near-term circuit model quantum computing. When running 
our workflow with solvers like simulated annealing and the D-Wave hybrid solver, proxies used in lieu of more 
mature quantum hardware, we found viable solutions for the full supply chain.

We do not claim that our method furnishes a provable performance advantage over classical algorithms 
because NISQ quantum optimization techniques like the quantum annealing and QAOA are heuristics without 
relevant proven guarantees. However, the individual truck routing binary optimization problem is itself NP-
hard, and can thus be a performance bottleneck. It’s sensible to apply quantum algorithms to these bottlenecks, 
and this approach will pay off if NISQ quantum optimization algorithms that outperform classical computing 
are discovered.

Beyond vehicle routing, we believe that our approach is viable for a wide range of practically important 
optimization problems. Many problems can be approximately solved through heuristics that decompose a large 
problem into solving a large number of smaller problems, and such smaller problems can often be reduced to 
binary optimization. As long as the number of variables for those small problems is appropriate for NISQ quan-
tum algorithms, such a hybrid approach can be used as a way to explore the performance of quantum optimiza-
tion algorithms in the use case without resorting to miniaturizing the actual problem.

Data availability
The data sets and code generated and/or analysed during the current study are not publicly available due to pro-
prietary commercial restrictions. This specifically applies to the details of the logistics routes and parts delivery 
demand structure. However, the formulation of the algorithm is fully described herein so that interested parties 
could generate their own logistics scenarios with depot/factory locations and supply pick-up/delivery demand 
structure and apply the algorithm.
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