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Genetic correlations 
between Alzheimer’s disease 
and gut microbiome genera
Davis Cammann 1,8, Yimei Lu 1,8, Melika J. Cummings 1, Mark L. Zhang 2, Joan Manuel Cue 1, 
Jenifer Do 1, Jeffrey Ebersole 3, Xiangning Chen 4, Edwin C. Oh 1,5,6, Jeffrey L. Cummings 7 & 
Jingchun Chen 1*

A growing body of evidence suggests that dysbiosis of the human gut microbiota is associated with 
neurodegenerative diseases like Alzheimer’s disease (AD) via neuroinflammatory processes across 
the microbiota-gut-brain axis. The gut microbiota affects brain health through the secretion of toxins 
and short-chain fatty acids, which modulates gut permeability and numerous immune functions. 
Observational studies indicate that AD patients have reduced microbiome diversity, which could 
contribute to the pathogenesis of the disease. Uncovering the genetic basis of microbial abundance 
and its effect on AD could suggest lifestyle changes that may reduce an individual’s risk for the disease. 
Using the largest genome-wide association study of gut microbiota genera from the MiBioGen 
consortium, we used polygenic risk score (PRS) analyses with the “best-fit” model implemented in 
PRSice-2 and determined the genetic correlation between 119 genera and AD in a discovery sample 
(ADc12 case/control: 1278/1293). To confirm the results from the discovery sample, we next repeated 
the PRS analysis in a replication sample (GenADA case/control: 799/778) and then performed a meta-
analysis with the PRS results from both samples. Finally, we conducted a linear regression analysis to 
assess the correlation between the PRSs for the significant genera and the APOE genotypes. In the 
discovery sample, 20 gut microbiota genera were initially identified as genetically associated with 
AD case/control status. Of these 20, three genera (Eubacterium fissicatena as a protective factor, 
Collinsella, and Veillonella as a risk factor) were independently significant in the replication sample. 
Meta-analysis with discovery and replication samples confirmed that ten genera had a significant 
correlation with AD, four of which were significantly associated with the APOE rs429358 risk allele 
in a direction consistent with their protective/risk designation in AD association. Notably, the 
proinflammatory genus Collinsella, identified as a risk factor for AD, was positively correlated with the 
APOE rs429358 risk allele in both samples. Overall, the host genetic factors influencing the abundance 
of ten genera are significantly associated with AD, suggesting that these genera may serve as 
biomarkers and targets for AD treatment and intervention. Our results highlight that proinflammatory 
gut microbiota might promote AD development through interaction with APOE. Larger datasets and 
functional studies are required to understand their causal relationships.
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LPS  Lipopolysaccharide
TLR4  Tol-like receptor 4
SNP  single nucleotide polymorphism
GWAS  genome-wide association study
OR  odds ratio
CI  confidence interval
LD  linkage disequilibrium
PRS  polygenic risk score
CNS  central nervous system
IRB  Institutional review board
UNLV  University of Nevada Las Vegas
NIA/LOAD  National Institute of Aging/Late-onset Alzheimer’s Disease Study
GenADA  Multi-site Collaborative Study for Genotype–Phenotype Associations in Alzheimer’s 

Disease
NINCDS-ADRDA  National Institute of Neurological and Communicative Disorders and Stroke, and the 

Alzheimer’s Disease and Related Disorders Association
LDL  low-density lipoprotein
SCFA  short-chain fatty acid
UA  Urolithin A
mbQTL  microbial quantitative trait loci
mbBTL  microbial binary trait loci

Alzheimer’s disease (AD), the most common form of dementia, is a neurodegenerative disorder characterized 
by a multitude of pathological and clinical hallmarks such as a progressive decline in cognitive function and the 
buildup of toxic β-amyloid and tau  proteins1,2. Due to the growing elderly population worldwide, the number 
of individuals with dementia is projected to reach 150 million globally by the year  20503. Despite this growing 
burden on world health, the mechanisms underlying the disease pathology are not fully understood, impeding 
the development of optimally effective  treatments4. Neuroinflammation has emerged as a key feature of AD with 
mechanistic and treatment implications due to the central role of microglia and inflammation in brain  health5,6. 
There remains an urgent need to understand the genetic risk factors and pathological basis of neuroinflammation 
in AD so that individuals with a higher risk can be identified for earlier intervention.

Recently, an association between dysbiosis of the gut microbiome and neuroinflammation has been hypoth-
esized to drive AD. The gut microbiota comprises a complex community of microorganism species that reside 
in our gastrointestinal ecosystem; alterations in the gut microbiota have been reported to influence not only 
various gut disorders but also brain disorders such as  AD7,8. The human gut microbiota has been suggested to 
modulate brain function and behavior via the microbiota-gut-brain axis (MGBA), a bidirectional communica-
tion system connecting neural, immune, endocrine, and metabolic  pathways9. Observational studies across 
multiple countries show reductions in gut microbiota diversity in AD patients compared to cognitively normal 
 controls10–12. Current research indicates that bacteria populating the gut microbiota are capable of releasing 
lipopolysaccharide (LPS) and amyloids, which may induce microglial activation in the brain and contribute to 
the production of proinflammatory cytokines associated with the pathogenesis of  AD13. The secretion of these 
biomolecules also harms the integrity of the MGBA and blood–brain barrier (BBB), which worsens with increas-
ing  dysbiosis8,14. The composition of the human gut microbiota and risk for AD have been suggested as heritable 
 traits2,15. Apolipoprotein E ε4 (APOE ε4), the most well-established risk gene for AD, has recently been shown 
to correlate with microbiome composition in humans and mouse models of  AD16–18. However, few studies have 
explored the correlation between APOE alleles and microbiome taxa at the human genomic level. In this study, 
we aim to determine the genetic correlation between the abundance of gut microbial genera and AD diagnosis. 
We further investigate whether gut microbial genera are correlated with APOE genotyping.

One promising approach to exploring this relationship is the use of polygenic risk score (PRS) analyses. A 
PRS is an overall estimate of an individual’s genetic liability for a specific trait. The software PRSice-2 is designed 
to calculate the PRS of an individual by aggregating and quantifying the effect of many single nucleotide poly-
morphisms (SNPs) in their genome, which are weighted by the effect sizes of each SNP derived from genome-
wide association studies (GWASs)19. This approach has previously been used to explore the genetic relation-
ship between gut microbial abundance and complex traits like bone mineral density, rheumatoid arthritis, and 
 depression20–22. In the present study, we used this approach to determine the genetic relationship between 119 
microbial genera and AD diagnosis. With the largest GWAS of the human gut  microbiota23, we first conducted 
PRS analyses in an AD discovery sample to identify the genera genetically correlated with AD. We then verified 
our results in a replication sample and meta-analysis with the two samples. The correlation between the top ten 
significant genera and the APOE genotypes was further analyzed by linear regression analysis.

Materials and methods
Study design overview. The overall design of our study is shown in Fig. 1. Briefly, we used PRSice-219 
to calculate PRSs for individuals from our discovery sample. PRSs were calculated based on the summary 
statistics for 119 microbial genera from the MiBioGen consortium. The significant association between gen-
era and AD diagnosis was determined when the “best-fit” PRS model had a Bonferroni-corrected p < 0.00042 
(0.05/119 = 0.00042). We then replicated the results in an independent sample. We conducted logistic regression 
analyses between the PRSs of associated genera and AD diagnosis to generate relative odds ratios (ORs) for 
meta-analysis. The multivariate logistic regression model was used to determine whether sex, age, and APOE 
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genotypes affected the correlation between the PRSs of the associated genera and AD diagnosis. Furthermore, 
we conducted a linear regression analysis to evaluate the genetic association between the PRSs of ten signifi-
cant genera and the APOE genotypes of individuals in our discovery and replication samples. This study was 
approved by our institutional review board (IRB) at the University of Nevada Las Vegas (UNLV).

Data sources. Microbiome GWAS summary statistics (base data). For our “base” GWAS data, we obtained 
summary statistics from the MiBioGen consortium initiative (www. mibio gen. org)23, which is the largest, multi-
ethnic genome-wide meta-analysis of the gut microbiome to date (Table 1). The data includes 24 multi-ethnic 
cohorts comprising 18340 participants. 16S rRNA sequencing profiles from each individual were utilized to 
characterize their gut microbiota abundance using SILVA as a reference  database24. The MiBioGen cohorts used 
a variety of platforms for genotyping their participants, such as the Illumina OmniExpress, Affymetrix 6.0, and 
more, which are detailed in the supplements of the original  study23. The genotyping data from 23 cohorts were 
imputed at the Michigan Imputation Server (https:// imput ation server. sph. umich. edu)25, while another genotyp-
ing data were imputed with IMPUTE2 software (v2.3.2)23. From the phylum to genus level, 31 loci were associ-
ated with gut microbiota taxa abundance (mbQTL, n = 20) or the presence/absence of taxa (mbBTL, n = 11) at 
the genome-wide significant threshold (p < 5.0 ×  10−8)23. The SNP effect sizes reported in the mbQTL GWAS 
summary statistics represent how the host genetic loci affect the relative abundance of each microbiome taxa 
(mbQTLs)23. In the present study, we limited our analyses to the mbQTL summary statistics from the 119 mi-

Figure 1.  Study design flowchart. In the PRS analysis, “Base” data is used to provide effect sizes for SNPs shared 
with individuals in the “Target” data. Using PRSice-2, 20 genera were found to be significantly genetically 
associated with AD diagnosis in the discovery sample. Three genera were validated in the replication sample, 
and ten were confirmed by a meta-analysis from discovery and replicate samples. Linear regression analyses 
were used to determine the genetic correlation between the PRSs for ten significant genera and APOE 
genotyping. Three genera were identified as genetically correlated with APOE rs429358 risk allele C.

http://www.mibiogen.org
https://imputationserver.sph.umich.edu
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crobial genera, as 16S rRNA sequencing correlates more accurately with the functional role of gut microbiota at 
lower taxonomic  levels26.

AD genotyping data (target data): discovery and replication samples. For AD genotyping data we requested two 
datasets from dbGaP (https:// www. ncbi. nlm. nih. gov/ gap/), including the National Institute of Aging/Late-onset 
Alzheimer’s Disease Study (NIA/LOAD) cohort consents 1 and 2 (ADc12) (dbGaP phs000168.v2.p2)27, and the 
Multi-Site Collaborative Study for Genotype–Phenotype Associations in Alzheimer’s Disease Study (GenADA) 
(dbGaP phs000219.v1.p1)28,29. The ADc12 data were used as the discovery sample, and the GenADA data were 
used as the replication sample.

In this our study, AD cases were considered as any individual with dementia diagnosed with definite, prob-
able, or possible AD at any point in their clinical course, according to the Criteria proposed in 1984 by the 
National Institute of Neurological and Communicative Disorders and Stroke, and the Alzheimer’s Disease and 
Related Disorders Association (NINCDS-ADRDA)30. Included controls were neurologically evaluated individu-
als who were age-matched cognitively normal. Unspecified dementia, unconfirmed controls, and controls with 
other neurological diseases from the original studies were removed for our analyses, resulting in 1278/1293 
cases/controls in the discovery sample ADc12, and 799/778 cases/controls in the replication sample GenADA. 
Demographic characteristics of the ADc12 and Gen/ADA samples are listed in Table 2, along with two major 
APOE SNP genotype information. More detailed descriptions of the data can be found in previous  studies27–29.

The ADc12 genotyping data were originally generated with the Illumina Human610 QuadV1-B platform at 
601273 SNPs, and the GenADA genotyping data with the Affymetrix 500k Set (Mapping 250k_NSP and Mapping 
250k STY arrays).To maximize genetic variants, we conducted imputation for both discovery and replication 
samples at the Michigan Imputation Server (minimac4) (https:// imput ation server. sph. umich. edu)25. The 1000 
Genome Phase  3v531 was used as a reference. After the imputation, standard quality control was performed with 
the Plink command (--maf 0.01 --hwe 1e-6 --geno 0.01 --mind 0.01)32,33. The final datasets were composed of 

Table 1.  Information for studies used in our analyses. Information for the data used in this study. The Multi-
ethnic cohorts of the MiBioGen study include 16 European cohorts (n = 13266), one Middle Eastern cohort 
(n = 481), one East Asian cohort (n = 811), one American Hispanic/Latin cohort (n = 1097), one African-
American cohort (n = 114), and four cohorts of multi-ancestry individuals (n = 2571). The Multi-ethnic cohort 
of the NIA/LOAD study contains African-American (n = 251) and Caucasian individuals (n = 2320).

Variable Consortium or study PMID Year Total sample size Ethnic groups

Gut microbiota MiBioGen 33462485 2021 18340

European (13266)
Admixed (2571)
Hispanic (1097)
East Asian (811)
Middle-East (481)
African American (114)

Alzheimer’s disease

ADc12
19001172 2008

2571
European (2320)
African American (251)dbGaP phs000168.v2.p2 NIA/LOAD 

consent 1 and 2 1278 cases/1293 controls

GenADA 17998437
19013250 2008

1577
European (1577)

dbGaP phs000219.v1.p1 799 cases/778 controls

Table 2.  Demographic characteristics of the target data (ADc12 and GenADA) with APOE SNP genotyping. 
Both discovery (ADc12) and replication (GenADA) samples were downloaded from dbGaP. Age, mean ± SD. 
For each case, the “Age” was the age at onset (AAO). For each control, the “Age” was the age at examination 
(AAE). *p = 5.97 ×  10−71 when AAO compared to AAE in the discovery sample. **p = 4.94 ×  10−3 when AAO 
compared to AAE in the replication sample.

Discovery Sample (ADc12) Replication Sample (GenADA)

Cases Controls Total Cases Controls Total

Age, mean ± SD
1278 1293 2571 799 778 1577

76.57 ± 6.71* 70.27 ± 10.29 72.24 ± 8.41** 73.40 ± 7.92

Sex (Male/Female) 443/835 471/822 914/1657 339/460 276/502 615/962

APOE SNP Geno-
type

rs429358

T/T, n(%) 409 (32.0) 847 (65.5) 1256 (48.9) 296 (37.0) 589 (75.7) 885 (56.1)

T/C, n(%) 682 (53.4) 414 (32.0) 1096 (42.6) 397 (49.7) 177 (22.8) 574 (36.4)

C/C, n(%) 187 (14.6) 32 (2.5) 219 (8.5) 106 (13.3) 12 (1.5) 118 (7.5)

C/C, n(%) 1206 (94.4) 1128 (87.2) 2334 (90.8) 739 (92.5) 661 (85.0) 1400 (88.8)

rs7412
C/T, n(%) 71 (5.6) 159 (12.3) 230 (8.9) 60 (7.5) 113 (14.5) 173 (11.0)

T/T, n(%) 1 (0.0) 6 (5.1) 7 (0.3) 0 (0.0) 4 (0.5) 4 (0.3)

https://www.ncbi.nlm.nih.gov/gap/
https://imputationserver.sph.umich.edu
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2571 individuals with 9997692 SNPs in the discovery sample, and 1577 individuals with 8914585 SNPs in the 
replication sample.

Polygenic risk score (PRS) analyses via PRSice-2 software. PRSice-2 was mainly designed to cal-
culate PRSs for individuals based on GWAS summary statistics data using the traditional “Clumping + Thresh-
olding” (C + T)  approach19. A key assumption of the C + T approach is that the SNPs comprising the PRS are 
independent of each other, which is controlled by thinning SNPs in linkage disequilibrium (LD) and retaining 
those that are the most significant (“Clumping”)34. SNPs are then thresholded by their p-values from the sum-
mary statistics, and the PRS is calculated for individuals at each threshold (“Thresholding”).

One major application of PRSice-2 is to evaluate the genetic correlation between different traits when pro-
vided GWAS summary statistics data from a base trait (base data) and genotyping data from a target trait (target 
data)19. The PRS itself is a numerical approximation of genetic liability for the base trait in the individuals in the 
target trait, based on their number of alleles from the target data and effect sizes drawn from the base data for 
a set of  SNPs35. As mentioned above, the base (GWAS) data were from the 119 gut microbiome genera in the 
MiBioGen consortium  study23. The target data were the discovery sample  ADc1227 and the replication sample 
 GenADA28,29. In this study, we first calculated PRSs for the 119 gut microbiome genera in the discovery sam-
ple ADc12 to determine which genera were genetically correlated with AD diagnosis. The best PRS model for 
each genus was calculated using the “best-fit” model implemented in the PRSice-2 program. For this purpose, 
a range of p-value thresholds applied to the base data, as well as the association p-value between the PRSs of 
each genus and AD diagnosis. For this purpose, a range of p-value thresholds was set from 5 ×  10−8 to 1 with 
an incremental interval of 0.00005 (--interval 0.00005 --lower 5e-08) with LD clumping (--clump-kb 250 kb 
--clump-p 1.0 --clump-r2 0.1)19. In the discovery sample, a genus was considered significant if its assocation 
p-value from the “best-fit” model was less than 4.20 ×  10−4 (0.05/119 with Bonferroni correction). To validate 
the significantly associated genera from the discovery sample ADc12, we conducted the same PRS analyses for 
them in the replication sample GenADA.

Logistic regression and meta-analysis. To further evaluate the overall association of the 20 signifi-
cantly associated genera from the discovery sample, we z-score normalized the "best-fit" PRSs from both the dis-
covery sample ADc12 and replication sample GenADA. We then performed a simple logistic regression analysis 
for both samples between the normalized PRSs from the “best-fit” threshold for AD diagnosis using the glm 
function from the R package  stats36.

Next, we conducted a random effects meta-analysis from both samples using the R package metafor v3.8-137. 
The summary effect estimate of this meta-analysis identified ten significant genera that were used for all future 
analyses. Forest plots were generated to visualize the overall AD protective and risk effects across the significant 
genera using the “forestplot” R  package38. To compare the normalized PRSs for the ten significant genera between 
AD cases and controls in the discovery sample, we conducted the unpaired Wilcoxon Rank Sum test with the 
wilcox.test function in R (v4.2.0)36 and visualized the results with box plots. Box plots were generated using the 
R program ggplot2 v.3.3.639.

To account for potential confounding variables in our analysis, multivariate logistic regression was conducted 
between AD diagnosis and z-score normalized PRSs for significant microbial genera using the glm function from 
the R stats  package36. Sex, age, and APOE genotypes (rs429358, rs7412) were used as covariates.

Linear regression analyses between APOE genotypes and PRSs for the ten significant gen-
era. Two APOE SNPs, rs429358 minor allele C and rs7412 major allele C, are well-known risk factors for 
 AD40,41. We performed linear regression analyses to determine the genetic correlation between the two APOE 
SNPs and the normalized PRSs of the ten significant genera from the meta-analysis. The association was further 
evaluated by linear regression analysis adjusted for sex and age. All linear regression was performed using the lm 
function from the R stats package. Box plots with the ANOVA test (state compare means function) were created 
using the R packages ggplot2 (v3.3.6), ggpubr (v0.4.0), and stats (v0.1.0)36,39.

Statistical analyses. The p-value threshold for significant association in the discovery sample and meta-
analysis was set as p < 4.20 ×  10−4 (0.05/119 with Bonferroni correction). For the replication sample, one-side 
significant level p < 0.005 (0.1/20 with Bonferroni correction) was used. For all other statistical analyses, such as 
linear regression analysis, the ANOVA test, and Wilcoxon Rank Sum test, p < 0.05 was considered significant. 
The Wilcoxon Rank Sum method, also known as the Mann–Whitney test, is a non-parametric alternative to the 
unpaired two-sample t-test, which can be used to compare two independent groups of samples without knowing 
their  distribution42. The ANOVA method was utilized to test the association between the normalized PRSs for 
the ten significant genera and APOE  genotypes43.

Ethical approval and consent to participate. We are using the existing data for this study. Informed 
consent was obtained from all subjects and/or their legal guardian(s) in the original studies. Contributing stud-
ies received ethical approval from their respective institutional review boards (IRB). This study was performed 
per the Declaration of Helsinki and approved by the IRB at the University of Nevada Las Vegas (IRB #00002305, 
10/12/2021).
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Results
PRSs for ten microbiome genera were significantly associated with AD diagnosis. We first cal-
culated the PRSs for the 119 microbiome genera for each individual from the discovery sample (ADc12) using 
the PRSice-2  program19. We found that 20 out of the 119 genera were significantly associated with AD diagnosis 
using the “best-fit” model (p < 4.20 ×  10−4) (Table 3). Among these top 20 significant genera, six were identified 
as likely risk genera and 14 potentially protective genera for AD diagnosis. Risk genera included Alistipes and 

Table 3.  Association between significant microbiome genera and AD diagnosis from “best-fit” PRSice-2 
model. Genetic association between PRSs for top 20 microbiome genera and AD diagnosis from PRSice-2 
“best-fit” model. The association from the “best-fit” threshold was generated from PRSice-2 with a range of 
p-value thresholds from 5 ×  10−8 to 1 and incremental interval of 5 ×  10−5;  R2: Variance explained by the PRS 
model; P: p-value of model fit for the association; Coeff: Coefficient of the model; SE: standard error; # of SNPs: 
Number of SNPs included in the model at the specified threshold. Genera in bold are three genera identified 
to have a genetically significant association with AD in both discovery and replicate samples. *: indicated ten 
genera that have the same direction in both discovery and replicate samples. Seven genera, originally identified 
to be significantly associated with AD in the discovery sample, did not survive the replicate analysis due to the 
opposite direction in the replicate sample.

Genera Samples Threshold R2 P Coeff SE SNP# SampleSize

Adlercreutzia*
ADc12 0.3705 0.0068 3.57E−04 − 1870.66 524.00 101798 2571

GenADA 0.0020 0.0036 3.91E−02 − 224.26 108.71 1684 1577

Alistipes
ADc12 0.1676 0.0080 1.04E−04 2581.83 665.28 67574 2571

GenADA 0.3246 0.0023 1.03E−01 − 2953.44 1810.61 99785 1577

Anaerostipes
ADc12 0.0032 0.0078 1.18E−04 − 469.15 121.86 2834 2571

GenADA 0.2989 0.0054 1.18E−02 4134.46 1641.01 96076 1577

Bacteroides*
ADc12 0.1792 0.0114 3.32E−06 3930.96 845.35 71984 2571

GenADA 0.0009 0.0037 3.68E−02 221.55 106.10 922 1577

Candidatus Soleaferrea*
ADc12 0.0002 0.0090 3.48E−05 − 71.29 17.22 177 2571

GenADA 0.0199 0.0020 1.28E−01 − 404.97 265.96 12431 1577

Catenibacterium
ADc12 0.3839 0.0082 8.54E−05 − 1276.68 324.95 71434 2571

GenADA 0.0831 0.0080 2.11E−03 1068.34 347.56 25728 1577

Collinsella
ADc12 0.0002 0.0073 1.78E−04 125.63 33.51 230 2571

GenADA 0.0003 0.0143 4.36E−05 229.15 56.06 335 1577

Eisenbergiella*
ADc12 0.1049 0.0082 9.64E−05 − 858.39 220.13 42727 2571

GenADA 0.0439 0.0066 5.28E−03 − 1131.73 405.70 22002 1577

Eubacterium coprostanoligenes
ADc12 0.1020 0.0086 7.19E−05 − 1085.22 273.37 48130 2571

GenADA 0.0101 0.0038 3.36E−02 707.65 333.01 7483 1577

Eubacterium fissicatena
ADc12 0.0404 0.0070 3.00E−04 − 418.31 115.71 19567 2571

GenADA 0.0008 0.0090 1.17E−03 − 142.85 44.01 663 1577

Eubacterium nodatum*
ADc12 0.4353 0.0072 2.52E−04 − 1240.65 338.95 95579 2571

GenADA 0.1259 0.0025 8.82E−02 − 805.51 472.45 42817 1577

Gordonibacter*
ADc12 0.0330 0.0089 5.57E−05 − 254.45 63.13 16821 2571

GenADA 0.0116 0.0039 3.30E−02 − 351.65 164.98 7135 1577

Intestinibacter*
ADc12 0.1903 0.0154 1.01E−07 − 3014.37 566.17 70292 2571

GenADA 0.0024 0.0024 9.22E−02 − 246.05 146.10 2152 1577

Lachnospira*
ADc12 0.0034 0.0067 3.30E−04 530.79 147.83 2997 2571

GenADA 0.0004 0.0021 1.11E−01 113.71 71.44 439 1577

LachnospiraceaeUCG008
ADc12 0.0784 0.0081 1.08E−04 − 776.50 200.53 35344 2571

GenADA 0.0041 0.0017 1.57E−01 197.29 139.40 3224 1577

Oscillibacter
ADc12 0.0124 0.0068 3.08E−04 − 630.36 174.67 8305 2571

GenADA 0.0051 0.0027 7.55E−02 302.62 170.24 3884 1577

Prevotella9*
ADc12 0.0084 0.0075 1.57E−04 − 556.34 147.21 6609 2571

GenADA 0.0008 0.0031 5.47E−02 − 147.32 76.68 819 1577

Roseburia*
ADc12 0.2061 0.0100 1.35E−05 − 3564.78 819.18 78446 2571

GenADA 0.0037 0.0027 7.64E−02 − 366.88 207.02 3135 1577

Sutterella
ADc12 0.4928 0.0071 2.53E−04 3594.16 982.20 124985 2571

GenADA 0.0002 0.0009 3.08E−01 − 34.75 34.10 156 1577

Veillonella
ADc12 0.0070 0.0081 8.83E−05 539.94 137.72 5406 2571

GenADA 0.0021 0.0085 1.56E−03 369.43 116.78 1843 1577
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Bacteroides from the Bacteroidetes phylum, Lachnospira and Veillonella from the Firmicutes phylum, and Col-
linsella and Sutterella from the Actinobacteria and Pseudomonadota phyla, respectively. The most significant 
risk genus was Bacteroides  (R2 = 0.011, p = 3.32 ×  10−6) at the “best-fit” p-value threshold of 0.179 with 71984 
SNPs. For protective genera, eleven out of fourteen were from the Firmicutes phylum (Anaerostipes, Candidatus 
Soleaferrea, Catenibacterium, Eisenbergiella, Eubacterium coprostanoligenes group, Eubacterium fissicatena group, 
Eubacterium nodatum group, Intestinibacter, Lachnospiraceae UCG-008, Oscillibacter, and Roseburia), two were 
from Actinobacteria (Adlercreutzia and Gordonibacter), and one was from Bacteroidetes (Prevotella 9). The most 
significant protective genus was Intestinibacter  (R2 = 0.015, p = 1.01 ×  10−7) at the “best-fit” p-value threshold of 
0.190 with 70292 SNPs.

To validate our findings for the top 20 genera in the discovery sample, we further conducted the PRS analy-
sis in the independent replication sample (GenADA). Two risk-associated genera (Collinsella and Veillonella) 
and one protective genus (Eubacterium fissicatena) remained significantly associated with AD diagnosis in the 
replication sample (p < 0.005). Ten other genera did not reach significance, but had the same effect direction 
as in the discovery sample (Table 3). To evaluate the overall association of the original top 20 genera from the 
discovery sample, we conducted a meta-analysis with the discovery and replication samples. As a result, a total 
of ten genera, including the three genera validated from the replication sample, were significantly associated 
with AD diagnosis (See Fig. 2 and Table S1).

Of the ten significant genera from the meta-analysis, six genera—Adlercreutzia, Eubacterium nodatum group, 
Eisenbergiella, Eubacterium fissicatena group, Gordonibacter, and Prevotella9—were identified as protective, and 
four genera—Collinsella, Bacteroides, Lachnospira, and Veillonella—were identified as a risk factor for AD. From 
the meta-analysis, Eisenbergiella was identified as the strongest protective factor for AD with p = 1.39 ×  10−6 and 
OR = 0.857 (95% CI 0.805–0.912), and Collinsella was identified as the strongest risk factor for AD p = 4.47 ×  10−8 
and OR = 1.188 (95% CI 1.117–1.264).

The meta-analysis also found three genera to have a suggestive association (0.00042 < p < 0.05) with AD diag-
nosis, of which all were potential protective factors (Intestinibacter, Candidatus Soleaferrea, and Roseburia) (See 

Figure 2.  Forest plots of ten genera significantly associated with AD from meta-analysis. (A) The genetically 
predicted abundance of six genera showed significant association (p < 0.00042) with AD diagnosis as a protective 
factor with ORs < 1.0. (B) Conversely, four genera showed significant association with AD as a risk factor with 
ORs > 1.0. OR (95%CI): Odds ratio of the respective genus with the lower and upper 95% confidence intervals.
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Table S1). In addition, seven genera—Alistipes, Anaerostipes, Catenibacterium, Eubacterium coprostanoligenes 
group, Lachnospiraceae UCG-008, Oscillibacter, and Sutterella—originally identified to be associated with AD 
in the discovery sample, did not show any association in the meta-analysis due to the opposite effects in the 
replication sample.

Next, a multivariate logistic regression analysis, including sex, age, and two APOE genotypes (rs429358 
and rs7412) as covariates, was used to determine any confounding effects on the association between the ten 
significant genera and AD diagnosis. As shown in Supplementary Table S2, the ten significant genera remained 
significantly associated with AD diagnosis in the discovery sample (p < 0.05), which suggested that the genetic 
association between PRSs for the ten significant genera and AD diagnosis was independent of age, sex, and APOE 
genotypes. As expected, age and APOE were strongly associated with AD in the multivariate logistic regression 
analysis. Specifically, age and rs429358 minor allele C were risk factors as shown the positive correlation with AD 
diagnosis, while rs7412 minor allele T was a protective factor with the negative correlation with AD diagnosis. 
However, sex did not show any association with AD in this study.

To better visualize the difference of PRSs from the ten significant genera between AD cases and controls, 
we constructed a box plot along with the Wilcoxon Rank Sum  test42 in the discovery sample. As compared to 
cognitively normal controls, Fig. 3A showed that AD patients had lower PRSs for the six likely protective genera 
(Adlercreutzia, Eubacterium nodatum group, Eisenbergiella, Eubacterium fissicatena group, Gordonibacter, and 
Prevotella9). On the other hand, Fig. 3B showed AD patients had higher PRSs for the four risk genera (Bacte-
roides, Collinsella, Lachnospira, and Veillonella). These results were consistent with the PRSice-2 "best-fit" model 
and logistic regression analysis between PRSs and AD diagnosis.

Correlation between PRSs for the top ten significant genera and APOE genotypes. APOE is 
a well-known genetic risk for  AD40,41. Depending on the alleles of two SNPs rs429358 and rs7412, the human 
APOE gene has three alleles (ε2, ε3, and ε4)41. The ε4 allele is the most influential risk factor for AD beyond age; 
a single ε4 allele increases one’s risk by three to four folds compared with the ε2 or ε3  allele40. Several studies 
have been conducted for the potential links between the APOE genotypes (rs429358 and rs7412) and the gut 
 microbiota16–18, but not at the genome-wide level. For this reason, we sought to determine whether there was a 
genetic link between the PRSs for the ten significant genera and the APOE genotypes. Linear regression analy-
ses were performed between the z-score normalized best PRSs for the ten significant genera and APOE minor 
alleles at rs429358 and rs7412. The meta-analysis showed that four out of ten significant genera were correlated 
with APOE rs429358 risk allele C (p < 0.05) (Table 4). Notably, Collinsella was the only genus that was positively 
correlated with AD diagnosis and APOE risk allele C at rs429358 in both discovery and replication samples 
(p < 0.05) (Tables 3 and 4). PRSs for three genera—Adlercreutzia, Eubacterium nodatum, and Prevotella9—iden-
tified negatively correlated with AD diagnosis showed negative correlation with APOE risk allele C at rs429358.

To illustrate the correlations between PRSs for Collinsella and APOE risk allele C at rs429358, we constructed 
a box plot along with ANOVA analysis. As shown in Fig. 4, a positive correlation between PRSs for Collinsella 
and APOE risk allele C at rs429358 was found in the discovery sample (p = 2.1 ×  10−5). This positive correlation 
indicated that a genetic factor determining Collinsella abundance was more likely to occur in individuals with 
APOE minor allele C (CC and TC) as compared to individuals with two T alleles (TT) at rs429358.

Figure 3.  Normalized PRSs for ten significant genera between AD cases and controls in the discovery sample. 
(A) PRSs for six genera were relatively lower in AD cases than controls (p < 0.05), suggesting they might be 
a protective factor for AD. (B) PRSs for four genera were relatively higher in AD cases vs. controls (p < 0.05), 
suggesting they were likely be a risk factor for AD. Wilcoxon Rank Sum test was applied to generate p values. 
X-axis: Diagnosis (AD cases/controls). Y-axis: z-score normalized PRSs for each of the ten significant genera.
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Overall, our results showed that Collinsella was a risk factor for AD diagnosis and that Collinsella was posi-
tively correlated with APOE risk allele C at rs429358. On the other hand, three genera identified as protective 
factors (Eubacterium nodatum group, Adlercreutzia, and Prevotella9) for AD diagnosis showed a negative cor-
relation with APOE risk allele C at rs429358 (Table 4). These associations indicate that certain microbial genera 
and APOE may contribute to disease modulation in some similar biological pathways, synergizing in disease 
risk or protective effects. The associations between PRSs for the four genera and the APOE rs429358 risk allele 
were independent of sex and age, as the results remained significant after adjustment for these cofactors (Sup-
plementary Table S3). For the APOE genotype at rs7412, we did not see any significant correlation with the PRSs 
for the ten significant genera from the meta-analysis.

Association between microbiome abundance and APOE genotypes. To further investigate the 
association between the abundance of all the gut microbiota genera and APOE genotypes, we retrieved summary 
statistics for the two APOE SNPs rs429358 and rs7412 directly from the 119 genera GWAS summary statistics in 
the MiBioGen consortium study. As shown in Table 5, rs429358 was marginally correlated with the abundance 
of ten genera, and rs7412 was marginally associated with the abundance of eight genera (p < 0.05). Together, 
these findings indicate that the APOE genotypes may have some impact on the microbiome abundance at the 
genus level and that the association may synergistically contribute to the risk for human diseases such as AD. 
Our results open the door for future studies to explore the role of the interaction between APOE and the gut 
microbiota and find a new target for treatment in human diseases.

Table 4.  Association between PRSs for ten significant gut microbiota genera and APOE rs429358. Genera 
in bold are four genera identified to have genetically significant correlation with APOE rs429358 minor allele 
C in the meta-analysis (p < 0.05). Collinsella was the only genus that showed significant correlation in both 
discovery and replication samples.

Trait Samples Coeff SE z-value P OR (95%CI)

Adlercreutzia

ADc12 − 0.051 0.031 − 1.643 0.1006 0.95 (0.89–1.01)

GenADA − 0.093 0.040 − 2.309 0.0211 0.91 (0.84–0.99)

Meta-analysis − 0.067 0.025 − 2.712 0.0067 0.94 (0.89–0.98)

Bacteroides

ADc12 0.019 0.031 0.608 0.5434 1.02 (0.96–1.08)

GenADA 0.014 0.040 0.350 0.7263 1.01 (0.94–1.10)

Meta-analysis 0.017 0.025 0.695 0.4871 1.02 (0.97–1.07)

Collinsella

ADc12 0.137 0.031 4.413 1.06E-5 1.15 (1.08–1.22)

GenADA 0.118 0.040 2.930 0.0034 1.12 (1.04–1.22)

Meta-analysis 0.130 0.025 5.283 1.27E-7 1.14 (1.09–1.19)

Eisenbergiella

ADc12 − 0.105 0.031 − 3.382 0.0007 0.90 (0.85–0.96)

GenADA 0.007 0.040 0.180 0.8575 1.01 (0.93–1.09)

Meta-analysis − 0.052 0.056 − 0.924 0.3553 0.95 (0.85–1.06)

Eubacterium Fissicatena

ADc12 − 0.111 0.031 − 3.557 0.0004 0.90 (0.84–0.95)

GenADA − 0.010 0.040 − 0.252 0.8011 0.99 (0.91–1.07)

Meta-analysis − 0.064 0.050 − 1.270 0.2042 0.94 (0.85–1.04)

Eubacterium Nodatum

ADc12 − 0.097 0.031 − 3.130 0.0018 0.91 (0.85–0.96)

GenADA − 0.043 0.040 − 1.080 0.2804 0.96 (0.88–1.04)

Meta-analysis − 0.077 0.026 − 2.912 0.0036 0.93 (0.88–0.98)

Gordonibacter

ADc12 − 0.108 0.031 − 3.460 0.0005 0.90 (0.84–0.95)

GenADA − 0.014 0.040 − 0.352 0.7248 0.99 (0.91–1.07)

Meta-analysis − 0.064 0.047 − 1.383 0.1668 0.94 (0.86–1.03)

Lachnospira

ADc12 0.047 0.031 1.524 0.1277 1.05 (0.99–1.11)

GenADA 0.047 0.040 1.169 0.2425 1.05 (0.97–1.13)

Meta-analysis 0.047 0.025 1.921 0.0548 1.05 (1.00–1.10)

Prevotella9

ADc12 − 0.046 0.031 − 1.486 0.1373 0.95 (0.90–1.01)

GenADA − 0.074 0.040 − 1.836 0.0666 0.93 (0.86–1.01)

Meta-analysis − 0.057 0.025 − 2.299 0.0215 0.94 (0.90–0.99)

Veillonella

ADc12 0.092 0.031 2.946 0.0032 1.10 (1.03–1.17)

GenADA − 0.027 0.040 − 0.664 0.5071 0.97 (0.90–1.05)

Meta-analysis 0.035 0.059 0.596 0.5513 1.04 (0.92–1.16)
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Figure 4.  Genetic association between PRSs for Collinsella and APOE rs429358 genotype in the discovery 
sample. Individuals in the discovery sample were separated by their genotype at the APOE SNP rs429358. Those 
with the genotype of TC and CC had higher PRSs for genetically predicted Collinsella abundance than those 
with the TT genotype.

Table 5.  List of gut microbiome genera that were nominally associated with APOE SNPs rs429358 and rs7412. 
SNP data were extracted from GWAS summary statistics of human gut microbiome abundance conducted 
from 24 multi-ethnic cohorts in the MiBioGen consortium (www. mibio gen. org)24. rsID (CHR:BP:Effect 
Allele): the rs number of single nucleotide polymorphisms, chromosome number (CHR), base pair (BP), with 
the effect allele (genome assembly GRCh37/hg19). Microbiome: the genus level with significant abundance 
associated with APOE two SNPs. Beta: Beta coefficient. SE: Standard Error. SZ: Weighted sum of z-scores. 
P: p-value (p < 0.05 was considered as nominal association between the microbiome genera and APOE). N: 
sample count. # Cohorts: Number of cohorts involved.

rsID (CHR:BP:Effect Allele) Microbiome Genera Beta SE SZ P N # cohorts

rs429358 (19:45411941:C)

Bacteroides − 0.044 0.015 − 2.881 0.0040 18173 23

Butyricimonas − 0.044 0.020 − 2.241 0.0250 10657 23

Dorea 0.030 0.015 2.127 0.0334 17494 23

Eubacterium coprostanoligenes 0.033 0.015 2.120 0.0340 17261 23

Faecalibacterium − 0.035 0.015 − 2.188 0.0287 17960 23

Olsenella 0.064 0.033 1.993 0.0462 3721 13

Parasutterella 0.040 0.019 2.216 0.0267 11291 23

Senegalimassilia 0.050 0.024 2.207 0.0273 6888 21

Veillonella 0.044 0.021 2.032 0.0421 9194 23

rs7412 (19:45412079:T)

Butyricicoccus 0.048 0.021 2.468 0.0136 15637 20

Collinsella 0.052 0.023 2.214 0.0268 12811 19

Coprococcus3 0.050 0.022 2.344 0.0191 14323 20

Eubacterium hallii 0.053 0.021 2.453 0.0142 14846 20

Lachnospiraceae UCG001 − 0.071 0.027 − 2.534 0.0113 9357 20

Olsenella − 0.103 0.043 − 2.346 0.0190 3721 13

Ruminococcaceae UCG004 0.080 0.028 2.901 0.0037 9049 20

Senegalimassilia 0.082 0.032 2.584 0.0098 6508 18

http://www.mibiogen.org
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Discussion
The microbiota is a complex ecosystem that comprises more than 100 trillion symbiotic microbial cells in the 
human body, of which 95% inhabit the human  gut44. The bacteria from phylum Firmicutes and Bacteroidetes 
form a significant proportion (90%) of the adult gut microbiota, while Actinobacteria composes the  rest45. 
Recently, significant evidence has shown that the gut microbiota influences normal systemic physiological home-
ostasis and that dysbiosis of gut microbiota may contribute to the pathogenesis of brain diseases, including AD. 
The gut microbiota interacts with the central nervous system (CNS) across the MGBA via microbial components, 
metabolic products, and neural stimulation. In this study, we leveraged extensive GWAS data to study the genetic 
correlation between gut microbiota genera and AD diagnosis. PRSs for 20 genera were initially found significantly 
associated with AD in the discovery sample, three of which were replicated in the independent replication sample. 
A further meta-analysis between our discovery and replication samples identified a strong genetic association 
between ten gut microbiota genera and AD diagnosis. Six genera were negatively associated with AD diagnosis 
and four genera were positively correlated with AD diagnosis. “Negative association” means that the abundance 
of these genera is lower in AD patients as compared to normal controls. Thus, PRSs for such genera are regarded 
as a protective factor for the disease. Similarly, “positive association” means that the abundance of those genera is 
higher in AD cases as compared to normal controls, indicating their PRSs would be seen as a risk factor against 
the disease. Genera identified as a protective factor were primarily from the Firmicutes phylum (Eubacterium 
nodatum group, Eisenbergiella, and Eubacterium fissicatena group) as well as from Actinobacteria (Adlercreutzia, 
Gordonibacter) and Bacteroidetes (Prevotella9). Positively correlated, or risk-associated genera were from phyla 
including Firmicutes (Lachnospira and Veillonella), Actinobacteria (Collinsella), and Bacteroidetes (Bacteroides).

In the discovery sample, the correlation of the ten significant genera remained statistically significant after 
being adjusted for sex, age, and two APOE SNPs (rs429358 and rs7412), suggesting that the genetic correlation 
between the ten genera and AD diagnosis was independent of age, sex, or APOE genotypes. In addition, we 
found that four of the ten significant genera showed a strong correlation with the APOE rs429358 risk allele C 
via linear regression analysis. Interestingly, the genera showing a positive correlation with APOE rs429358 risk 
allele C tend to have a positive (risk) association with AD, while the genera showing a negative correlation with 
APOE rs429358 risk allele C have a negative (protective) association with AD.

In our analyses, Collinsella from the phylum Actinobacteria was identified as a risk factor for AD in both the 
discovery and replication samples. Collinsella was also positively correlated with APOE rs429358 risk allele C in 
both samples. The abundance of Collinsella in the gut has been previously associated with rheumatoid arthri-
tis, atherosclerosis, and Type-2  diabetes46–48. Importantly, an increased abundance of this genus has also been 
observed in AD transgenic mice and AD  patients49,50. Our findings provide evidence at the human genome-wide 
level of a connection between Collinsella and AD that supports previous observational studies. At the molecular 
level, this connection is possibly driven by the pro-inflammatory effects of the Collinsella genus. In a human 
intestinal epithelial cell line, the presence of Collinsella increased the expression of inflammatory cytokines (IL-
17A) and chemokines (CXCL1, CXCL5). Collinsella also increased gut permeability by reducing the expression of 
tight-junction  proteins51. Furthermore, the strong association between Collinsella and APOE rs429358 risk allele 
C in our study may provide new insight into the pathogenesis of AD. For example, a study found that Collinsella 
correlates with higher serum levels of total cholesterol and low-density lipoprotein (LDL) cholesterol in healthy 
 adults52, which may be correlated with the interaction between Collinsella and APOE. Functional studies that 
further explore the relationship between Collinsella, lipid metabolism, and inflammatory signals would help to 
elucidate how their interaction influences AD and other diseases.

Three genera of the Firmicutes phylum—Eubacterium nodatum group, Eisenbergiella, and Eubacterium fis-
sicatena group—had a negative association with AD diagnosis. Eisenbergiella, Eubacterium fissicatena group, and 
Eubacterium nodatum group are known to contain species that metabolize the short-chain fatty acid (SCFA) 
butyrate from dietary  carbohydrates53–56. Butyrate is a major SCFA metabolite in the colon that might be a criti-
cal mediator of the colonic inflammatory response. Alongside its anti-inflammatory properties, butyrate is also 
essential in maintaining tight junctions that prevent dysbiotic gut  permeability57,58. Despite their production 
of butyrate, several studies have identified Eisenbergiella and Eubacterium nodatum group as microbial features 
associated with neurodegenerative diseases. A notable study of patients with AD and vascular dementia found 
that the gut abundance of these genera could be used to discriminate severe dementia patients against those 
with mild or moderate  dementia59. High serum levels of the IgG antibody against oral Eubacterium nodatum 
were associated with lower AD risk in another  study60. This suggests that oral and gut populations of the same 
microbial taxa may have different etiologies with the same disease, however, our base data covers only the gut 
abundance of microbiota. Nevertheless, we are the first to report a protective association between genetically-
predicted Eisenbergiella, Eubacterium nodatum group, and Eubacterium fissicatena group abundance with AD, 
but more studies are needed to understand how these three genera may interact with the pathology of AD.

In addition, we identified two Firmicutes genera as risk factors for AD (Lachnospira and Veillonella), with 
Veillonella being validated in the replication sample. Recently, it was reported that AD patients have an abun-
dance of Veillonella in their oral  microbiome61. In the gut, it has been shown that an overabundance of species 
like V.parvula promotes intestinal inflammation by activating macrophages via the lipopolysaccharide-Toll-like 
receptor 4 (LPS-TLR4)  pathway62. The dual association of oral and gut abundance of Veillonella with disease 
points to this genus as a target for therapeutics and a potential bridge between conditions like gut inflammation 
and periodontitis with AD. On the other hand, gut Lachnospira and Veillonella species have also been identified as 
beneficial or commensal to gut health, such as Lachnospira being protective against Crohn’s disease, or Veillonella 
interacting with Streptococcus species to modulate immune responses in the small  intestine63,64. In an observa-
tional study from a Chinese group, patients with AD had decreased Lachnospira at the genus level compared with 
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healthy  controls65. However, this may reflect national differences in diet or the genetics of microbial abundance, 
as our study uses mostly Caucasian subjects from the United States in our discovery and replication samples.

The Bacteroidetes genera, Prevotella9 and Bacteroides, were identified as protective and risk factors, respec-
tively, in our meta-analysis. There is a complex relationship between Prevotella and Bacteroides abundance 
and intestinal  diseases66. In humans, Prevotella is more common in populations with plant-based and high-
carbohydrate  diets67. Conversely, Bacteroides is more abundant in those consuming “western” diets high in 
protein and  fat68. One major study showed that Prevotella was higher in individuals with greater adherence to 
Mediterranean diets, which is thought to be protective against neurodegenerative  diseases69–71. The protective 
effects of Prevotella abundance may come from the positive dietary effects on the genus. Our association of 
higher genetically-predicted Bacteroides abundance with AD risk supports the findings of previous observational 
 studies11,72,73. Bacteroides species are capable of secreting LPS as an endotoxic biomolecule, which has been 
implicated in pathological endothelial dysfunction of the gut and can induce neuroinflammation in microglia 
 cells74–76. However, it should be noted that a meta-analysis including Chinese studies found no risk association 
between Bacteroides and  AD12, which may again reflect national differences in diet and microbial abundance.

Two protective genera, Gordonibacter and Adlercreutzia, are from the Actinobacteria phylum. These genera 
tend to produce metabolites beneficial to mitochondrial function, namely Urolithin A (UA) and  Equol77,78. UA 
is an anti-inflammatory compound that enhances mitophagy, the removal of dysfunctional mitochondria in a 
 cells79. Impaired mitophagy is part of the pathogenesis of AD, thus, UA and Gordonibacter species might be prom-
ising therapeutic targets against aging and  AD80. Equol is an estrogen-like compound that reduces microglial 
inflammation when stimulated by LPS and downregulates genes in neurons related to  apoptosis81. The beneficial 
effects of these bacterial metabolites could drive the protective association of Gordonibacter and Adlercreutzia 
abundance with AD that we found in this study.

The strength of our study include the use of the largest available GWASs of gut microbiota taxa to date that 
allow us to identify multiple genera genetically associated with AD after the strict Bonferroni correction. The use 
of logistic regression analysis alongside our initial PRS analyses allowed us to adjust for potential confounders, 
such as sex, age, and APOE alleles, and further validate that the association was independent of those confound-
ers. Additionally, we are the first to study the genetic correlation between the gut microbiota and the APOE gene 
at the human genome-wide level.

Limitations
There are several limitations to our study. First, the sample size for our base microbiome GWAS may not be large 
enough to truly cover the effect size of the host genetic variants, even though the MiBioGen study has a larger 
sample size compared to other microbiome GWASs. Because of this, we may not have enough power to detect 
some of the associations in our meta-analysis that were considered significant in the discovery sample. Future 
studies with larger sample sizes would be more capable of drawing solid conclusions about the genetic connec-
tion between gut microbiota and AD. As microbiome is highly influenced by lifestyle and environmental factors, 
the lack of information on these confounders in our base and target data prevents the subtyping of patients. 
Given the phenotypes available in our genotyping data, we included age, sex, and APOE genotype as covariates 
in our multivariate logistic regression models to account for their confounding effects. Second, our genotyping 
data for AD studies were mostly drawn from European American individuals, which limits the generalization 
of our conclusions when applied to other ethnic groups. Although the largest ethnic cohort of the MiBioGen 
GWAS was European (Table 1), the inclusion of other ethnic groups in the original study’s meta-analysis may be 
a confounding factor in our results. More diverse genotyping datasets would enable us to capture the variability 
in risk for AD across different ethnicities. Third, the 16S rRNA sequencing used to generate genetic associations 
in the “base” GWAS only provides taxa resolution from the phylum to the genus level. Fully understanding the 
role of bacterial taxa that may drive the pathology of AD will require methods that can capture the abundance 
of individual species and their mechanistic impact on the MGBA.

Conclusions
Overall, our novel findings of ten significant genera associated with AD from the meta-analysis provide new 
insights into the interplay of the gut microbiota on AD. Genetic associations with the abundance of certain 
bacterial genera inhabiting the gut correlate with AD diagnosis in risk and protective directions. Risk-associ-
ated genera, such as Collinsella, have been previously tied to neuroinflammatory processes across the MGBA, 
while protection-associated genera like Gordonibacter are known to secrete metabolites that promote gut and 
brain health. PRSs for four genera were further identified as significant associations with the APOE genotype at 
rs429358. Our results advance the understanding of how gut dysbiosis may play a role in the pathology of AD. 
Future investigations with larger cohorts of AD patients from different ethnic backgrounds and more power-
ful microbiome GWASs are needed to better understand these genetic associations. Functional studies are also 
required to establish causality between particular gut microbiota and AD pathology.

Data availability
The Full GWAS summary statistics of mbQTLs analyzed during this study are available at https:// mibio gen. gcc. 
rug. nl/. Genotyping data for the NIA/LOAD (phs000168.v2.p2) and GenADA (phs000219.v1.p1) cohorts are 
available at https:// www. ncbi. nlm. nih. gov/ gap/. All data generated in this study are included in the manuscript, 
Supplementary Tables S1–3, and Supplementary Fig. S1.
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