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Quartile coefficient of variation 
is more robust than CV for traits 
calculated as a ratio
Zoltán Botta‑Dukát 

Comparing within‑species variations of traits can be used in testing ecological theories. In these 
comparisons, it is useful to remove the effect of the difference in mean trait values, therefore 
measures of relative variation, most often the coefficient of variation (CV), are used. The studied 
traits are often calculated as the ratio of the size or mass of two organs: e.g. specific leaf area (SLA) is 
the ratio of leaf size and leaf mass. Often the inverse of these ratios is also meaningful; for example, 
the inverse of SLA is often referred to as LMA (leaf mass per area). Relative variation of a trait and its 
inverse should not considerably differ. However, it is illustrated that using the coefficient of variation 
may result in differences that could influence the interpretation, especially if there are outlier trait 
values. The alternative way for estimating CV from the standard deviation of log‑transformed data 
assuming log‑normal distribution and Kirkwood’s geometric coefficient of variation free from this 
problem, but they proved to be sensitive to outlier values. Quartile coefficient of variation performed 
best in the tests: it gives the same value for a trait and its inverse and it is not sensitive to outliers.

Values of qualitative traits can considerably vary among and within  species1,2. The structure of variation can 
be explored by partitioning total variance into components related to different sources (e.g. variation between 
species, between sites within species, between individuals within site, and within individuals). The calculated 
variance components express the relative contribution of sources in percentage, therefore their values can be 
compared between sites, species, or traits. However, some ecological hypotheses are related to the extent of 
trait  variation1,2. For example, it is hypothesized that the extent of intraspecific trait variation (ITV) is higher in 
generalists than in specialist  species3,4, and it may change along environmental and species richness  gradients5–7.

The coefficient of variation (CV), the standard deviation divided by the arithmetic mean, is the most widely 
used measure of the extent of trait variation e.g.8–11. CV has two advantages: it is a dimensionless measure of 
relative  variation2. The extent of trait variation can be compared among traits only if it is measured in the same 
units. For example, the standard deviation of height, measured in cm, and SLA, measured in g  cm−2 cannot 
be compared, while their CV is comparable because it is dimensionless. Comparing absolute variation of the 
same trait between species also can be misleading when the difference between means is large. Ten centimeters 
departure from the mean height of the species is large for a short forb but small for a tall tree. That is why better 
to use relative measures, such as coefficient of variation, for among-species comparisons too.

Several papers called attention to cases where CV should not be used e.g.12,13. The most important restric-
tions are that the domain of the variable has to be non-negative (otherwise, its arithmetic mean could be zero 
preventing calculation CV) and it has to be measured in ratio or log-interval scale, where the meaning of “zero” 
value is unarbitrary. It cannot be calculated for nominal or ordinal scale data, where the mean and standard 
deviation is undefined. CV also should not be calculated for interval and difference scale (i.e. for log-transformed 
ratio-scale  variables14), where changing of unit influences the mean value.  Brendel15 pointed out that the CV 
of standardized stable isotope ratios depends on the applied reference isotope ratio. The aims of this paper are 
(1) calling attention to another problem: swapping nominator and denominator of ratio type traits results in 
an altered CV value; and (2) suggesting to use of quartile coefficient of variation that is free from this problem.

Ratios of size or mass of plant organs are widely used as functional traits, such as the ratio of leaf area and leaf 
dry mass (specific leaf area, SLA or leaf mass per area, LMA), the ratio of root length and root dry mass (specific 
root length, SRL) or ratio of the shoot and root  mass16. In these ratios, nominator and denominator are often 
interchangeable without loss of meaning; for example, instead of the specific leaf area (SLA) often its inverse, the 
leaf mass ratio (LMA) is  calculated17. We would expect the relative variation of the two forms of ratio (e.g. SLA 
and LMA) to be the same. Note that some ratios can be transformed into proportions. For example, instead of 
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shoot mass: root mass ratio, we can use proportion of shoot mass, i.e. shoot mass/(shoot mass + root mass). In 
case of proportions, relative variation of their complement is considered.

Theory
The coefficient of variation is defined as the ratio of standard deviation and mean of the distribution:

Regarding the ratio of two random variates to bivariate function allows approximating its mean ( µx/y ) and 
standard deviation ( σx/y ) by Taylor series expansion (see Supplementary Appendix A for the derivation of 
formulas):

If CVs of x/y and y/x equal:

therefore,

This equation should be—at least approximately – hold to approximate means and standard deviations, but:

Since the equation does not hold for the approximate value, we can expect that CVs of a ratio and its inverse 
may differ. A real example will be shown in the Results section to illustrate that the difference could be important.

However, there is an important exception, when the ratio follows log-normal distribution. If x/y is log-
normally distributed, its logarithm follows normal distribution, with ν mean and θ standard deviation

where ν and θ are the mean and standard deviation of the log-transformed ratio, respectively. The mean and 
standard deviation of the log-normal distribution are

Therefore, CV depends on θ only, and it is independent from ν18:

Since

The logarithm of the inverse ratio is also normally distributed with the same standard deviation:

Thus in this case CV is the same for the ratio and its inverse.
CV can be estimated by replacing standard deviation (σ) and means (μ) with their estimates (s and m, 
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If x/y follows lognormal distribution, there is another estimator of CV:

where zi = ln
(
xi/yi

)
 , z is the arithmetic means of log-transformed ratios and n is the sample size. ĈVL  can be 

used as a descriptive statistic even if the ratio does not follow log-normal distribution.
Kirkwood19proposed another descriptive statistic the so-called geometric coefficient of variation:

GCV is not an estimate of CV, even if z follows log-normal distribution.
The logic of calculating CV is that dividing the measure of dispersion (standard deviation in CV) by the 

measure of location (mean in CV) removes the effect of differences in dispersion due to different locations, and 
if both are measured in the same units results in a dimensionless measure. Following this logic, several alter-
natives to CV were developed. The main motivation was to develop more robust (i.e. less sensitive to outlier 
values) alternatives to  CV20 and references therein. Unfortunately, most of the proposed robust relative variation 
measures are also sensitive to swapping nominator and denominator in ratio type traits. An exception is the 
quartile coefficient of variation  (CVQ):

where Q1(x) and Q3(x) are the first and third quartiles of variable x20,21.
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The interquartile range is the same for both y/(x + y) and x/(x + y), but the sum of the two quartiles and there-
fore the quartile coefficient of variation is different. The absolute variation (i.e. standard deviation or interquartile 
range) of proportions and their complement is the same, but their relative variation is different. We have to keep 
in our mind that a proportion and this complement are interchangeable when absolute variation is studied, but 
they have different meaning when relative variation is calculated.

Results
As expected, the differences between SLA and LMA in ĈVL  and GCV came only from rounding errors: the order 
of largest difference was  10–16. In the quartile coefficient of variation, the highest difference was 0.007 (Fig. 1a). 
However, differences hardly influenced the ranking of species according to the amount of intraspecific trait varia-
tion: the largest difference in ranks was 1, and 67 of 79 species the rank was the same for both traits. However, the 
amount of intraspecific trait variation (ITV) of SLA and LMA measured by ĈV  (i.e. estimated standard deviation 
divided by sample mean) differed considerably (Fig. 1b): the largest difference was 1.07. Although the rank of 
species based on SLA and LMA was strongly correlated even if ITV was measured by ĈV  (Fig. 2), the position 
of some species was strongly influenced: the largest difference in ranks between the two traits (SLA and LMA) 
was 21, and only 4 of 79 species remained ranks the same.

The differences in ĈV  between SLA and LMA were mainly caused by outlier values. After species-wise 
excluding outlier SLA values, the highest difference reduced to 0.25, but the difference between ranks of species 
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.

Figure 1.  Within-species relative variation of specific leaf area (SLA) and leaf mass per area (LMA) calculated 
by (a) CV (coefficient of variation, standard deviation divided by mean) and (b) quartile coefficient of variation 
(see formula in the main text). Red line is the 1:1 line.

Figure 2.  Rank of species based on their within-species relative variation of specific leaf area (SLA) and leaf 
mass per area (LMA) calculated by CV (coefficient of variation, standard deviation divided by mean). Red line is 
the 1:1 line.
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according to ITV of SLA and LMA remained large: the highest rank difference was 24 (even larger than without 
excluding outliers), and only for 14 of 79 species were the two ranks the same.

Excluding outlier values had a negligible effect on ITV measured by quadratic CV, the correlation between 
values estimated with and without excluding outliers was 0.99. The same correlation of ĈV  was 0.84. Surprisingly, 
the correlations between ITV calculated with or without excluding species-wise outliers were even smaller for 
ĈVL  and GCV (0.67 and 0.65, respectively).

All of the four measures of ITV indicate almost the same property of species (Table 1): the lowest linear cor-
relation was 0.61, while the lowest Spearman’s rank correlation was 0.72. Quartile coefficient of variation was the 
most different from the other three measures because it depends only on the central part of trait distribution, 
and therefore it is fully insensitive to outlier values.

Discussion
Presented results illustrate that ratio of sample standard deviation and sample mean ( ̂CV  ) is sensitive both to 
outlier values and choosing a ratio-trait or its inverse (for example SLA or LMA). Three alternatives to this 
measure were evaluated in this paper. Both ĈVL  and GCV gave the same value for a trait and its inverse, but 
they are more sensitive to outlier values than ĈV  . Quartile CV proved to be the most robust measure of ITV, it 
was hardly influenced by either excluding outliers and choosing a trait or its inverse. Therefore, I suggest that in 
studies testing hypotheses related to the amount of intra-specific trait variation, the quartile coefficient of vari-
ation should be used, especially if the inverse of the studied trait (i.e. 1/trait) is also meaningful.

Materials and methods
An R function for calculating two estimates of CV ( ̂CV  and ĈVL  ), geometric coefficient of variation (GCV), and 
quartile coefficient of variation ( CVQ ) were developed (Supplementary Appendix B). All analyses were done in 
R environment, and the script and data will be available in a public repository.

For illustrating purposes, the dataset of Gyalus et al.22 was used that contains plot level measurement of leaf 
traits. In this paper, only specific leaf (SLA, leaf area in  cm2 per leaf dry mass in g) data were used. Leaf mass per 
area (LMA) was calculated as 1/SLA. Four indices of relative variation of SLA and LMA were calculated for each 
species with at least 10 SLA data. Then the absolute differences between SLA and LMA in relative within-species 
variation and species rank according to within-species variation were calculated. Since ĈV  could be more sensi-
tive to outlier values than other measures, all analyses were repeated after excluding outlier values.

Data availability
Data and code available from Zenodo https:// doi. org/ 10. 5281/ zenodo. 69076 99.

Received: 14 July 2022; Accepted: 16 March 2023

References
 1. Albert, C. H. et al. Intraspecific functional variability: Extent, structure and sources of variation. J. Ecol. 98, 604–613 (2010).
 2. Albert, C. H., Grassein, F., Schurr, F. M., Vieilledent, G. & Violle, C. When and how should intraspecific variability be considered 

in trait-based plant ecology?. Perspect. Plant Ecol. Evol. Syst. 13, 217–225 (2011).
 3. Sides, C. B. et al. Revisiting Darwin’s hypothesis: Does greater intraspecific variability increase species’ ecological breadth?. Am. 

J. Bot. 101, 56–62 (2014).
 4. Wellstein, C. et al. Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats. 

Biodivers. Conserv. 22, 2353–2374 (2013).
 5. Helsen, K. et al. Biotic and abiotic drivers of intraspecific trait variation within plant populations of three herbaceous plant species 

along a latitudinal gradient. BMC Ecol. 17, 38 (2017).
 6. Kuppler, J. et al. Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and 

species richness. Glob. Ecol. Biogeogr. 29, 992–1007 (2020).
 7. Lemke, I. H. et al. Patterns of phenotypic trait variation in two temperate forest herbs along a broad climatic gradient. Plant Ecol. 

216, 1523–1536 (2015).
 8. Cheng, J., Chu, P., Chen, D. & Bai, Y. Functional correlations between specific leaf area and specific root length along a regional 

environmental gradient in inner Mongolia grasslands. Funct. Ecol. 30, 985–997 (2016).
 9. Li, S. et al. Leaf functional traits of dominant desert plants in the Hexi Corridor, Northwestern China: Trade-off relationships and 

adversity strategies. Glob. Ecol. Conserv. 28, e01666 (2021).
 10. Roscher, C. et al. Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands 

of varying diversity. Oikos 127, 865–865 (2018).

Table 1.  Correlations between within-species relative variation of SLA with (upper half-matrix) and without 
(lower half-matrix) excluding outliers.
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