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Multivariate indicators of disease 
severity in COVID‑19
Joe Bean 1, Leticia Kuri‑Cervantes 2,3, Michael Pennella 1, Michael R. Betts 2,3, 
Nuala J. Meyer 4 & Wail M. Hassan 1*

The novel coronavirus pandemic continues to cause significant morbidity and mortality around the 
world. Diverse clinical presentations prompted numerous attempts to predict disease severity to 
improve care and patient outcomes. Equally important is understanding the mechanisms underlying 
such divergent disease outcomes. Multivariate modeling was used here to define the most distinctive 
features that separate COVID-19 from healthy controls and severe from moderate disease. Using 
discriminant analysis and binary logistic regression models we could distinguish between severe 
disease, moderate disease, and control with rates of correct classifications ranging from 71 to 100%. 
The distinction of severe and moderate disease was most reliant on the depletion of natural killer 
cells and activated class-switched memory B cells, increased frequency of neutrophils, and decreased 
expression of the activation marker HLA-DR on monocytes in patients with severe disease. An 
increased frequency of activated class-switched memory B cells and activated neutrophils was seen 
in moderate compared to severe disease and control. Our results suggest that natural killer cells, 
activated class-switched memory B cells, and activated neutrophils are important for protection 
against severe disease. We show that binary logistic regression was superior to discriminant analysis 
by attaining higher rates of correct classification based on immune profiles. We discuss the utility 
of these multivariate techniques in biomedical sciences, contrast their mathematical basis and 
limitations, and propose strategies to overcome such limitations.

As of the date of this writing, the novel coronavirus SARS-CoV-2—the causative agent of the novel coronavi-
rus disease (COVID-19)—has sickened over 0.67 billion people and resulted in more than 6.8 million deaths 
around the globe1. The clinical presentation varies widely, ranging from an asymptomatic infection to a severe 
viral pneumonia, which can rapidly progress to acute respiratory distress syndrome (ARDS) and multi-organ 
failure2,3. Identifying reliable early predictive markers of severe and critical disease and deciphering the underly-
ing mechanisms responsible for such divergent disease outcomes are urgently needed.

Mild to moderate COVID-19 disease is characterized by upper respiratory tract symptoms (e.g., cough, sore 
throat), fever, headache, and mild pneumonia (< 50% lung involvement); severe disease is defined by > 50% lung 
involvement, dyspnea, and hypoxia in addition to any combination of the symptoms of mild/moderate disease; 
and critical disease is characterized by respiratory failure, shock, and multi-organ system dysfunction. Most 
symptomatic patients (81%) experience mild or moderate disease, while 14% and 6% experience severe and 
critical illness, respectively4. In patients who develop severe disease, the median time from the onset of symptoms 
to the development of ARDS is 8–12 days4. This delay before the onset of life-threatening complications is an 
opportunity for clinicians to detect high-risk patients to intervene and potentially curb mortality.

Many predictors of disease progression have been identified. The CDC defines certain groups who are at 
increased risk for severe infection and possibly death, including older adults and patients with specific comor-
bidities, including cancer, chronic kidney disease, liver disease, chronic lung disease, diabetes mellitus, and 
immune suppression, among other comorbidities5. The use of clinical calculators based on predictive algorithms 
has helped enable early detection of high-risk patients and allowed clinicians to focus their attention and tri-
age resources. These clinical calculators use patients’ vital signs, simple laboratory values, and comorbidities to 
predict clinical course and mortality6. Overall, they have shown good negative predictive value for mortality6,7. 
However, the success of such calculators in predicting severe disease is relatively low, with sensitivity for four of 
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the most popular calculators ranging from 23.8 to 84.2%, and specificity ranging from 35.9 to 69.0%6. Clearly, the 
main value of these calculators is in their clinical application rather than in uncovering the underlying mecha-
nisms of disease. Immune profiles have the potential to provide novel insights into the underlying mechanisms, as 
well as serving as biomarkers for clinical applications. One of the most comprehensive immune profiling studies 
in COVID-19 patients is that of Kuri-Cervantes et al.8, which we have selected to reanalyze using our multivariate 
modeling methods hoping to better define the most useful biomarker profiles for predicting disease severity and 
shed some new light on the pathophysiology of severe versus mild and moderate disease.

It has been realized that the nature of patient’s own immune responses likely plays a major role in the patho-
physiology of COVID-19. Several groups have attempted to characterize the differences in immune responses 
between the various disease severity groups and have discovered several significant trends. These studies tend 
to analyze either the cytological response to infection, often using mass or flow cytometry, or the levels of 
cytokines and other plasma proteins8–13. A limited number of these studies have attempted to develop models 
to predict clinical progression based upon immunological profiling early in infection. Several groups have found 
that patients with COVID-19 do not share a single common immunotype, but rather fall into one of a number 
of immunotypes that correlate with clinical presentation. Most commonly, three separate immunotypes have 
been identified: an appropriate immune response associated with lower risk of mortality, an excessive immune 
response, and an inadequate or low immune response14–16. Individuals demonstrating excessive or inadequate 
immunotypes on admission tend to deteriorate clinically and develop more severe disease14–16. Groups have 
analyzed various factors to assess the immune response to COVID-19 infection, including cytokines and other 
soluble serum factors14–18, changes in cell populations9,10,16–18, and gene expression changes in immune cells16,17. 
Some of these groups primarily analyzed factors which distinguish severe COVID-19 patients from healthy 
controls9,17,18, some have compared factors which differentiate severities of infection and anticipate clinical 
progression9,16–19, and still others have produced models which predict clinical prognosis/severity based upon 
initial immunological data by defining distinct ‘immunotypes’ of infection10,14,15.

Kuri-Cervantes’ study identified several features of COVID-19 including leukocytosis accompanied by expan-
sions of both neutrophil and eosinophil populations8. Severe COVID-19 disease has been correlated with CD4+ 
and CD8+ T-cell decline and an increased neutrophil-to-lymphocyte ratio8,20. Further, a decrease in the den-
dritic cell population and an increase in the monocyte population have also been observed8. Some of the most 
interesting and significant changes observed in severe COVID-19 patients occur in the lymphocyte populations. 
Overall, a lymphopenia is typically observed, driven most heavily by decreased T cell populations. This includes 
a decrease in the frequency of the CD4+ T cells, CD8+ T cells, NK cells, and CD8+ mucosal associated invariant 
T cells (CD8+ MAIT), seen primarily in individuals with severe disease8,21. More detailed analysis show that 
this decrease is not seen in CD4+ or CD8+ memory T cells8. This decrease in lymphocytes, combined with the 
increase in neutrophils, contributes to a proposed independent risk factor: the neutrophil-to-lymphocyte ratio, or 
alternatively the neutrophil-to-T-cell ratio, whose increase has been correlated with severe disease8,22. The overall 
B cell population also demonstrates a decrease in severe patients21, but a consistent and interesting finding in 
patients with severe disease is a substantial increase in the plasmablast population8. More detailed analysis shows 
that this expansion is oligoclonal, with a few clones contributing to the majority of the circulating plasmablast 
population in patients with severe disease. This oligoclonality is stronger with severe disease than moderate 
disease or recovered patients. Analysis of antibody characteristics demonstrates elongation of CDR3 sequences, 
which has been hypothesized to contribute to pathogenesis by producing multi-reactive/nonspecific antibodies8. 
Beyond mere changes in cell populations, activation of lymphocytes has also been shown to be altered by severe 
COVID-19 infection. Increased activation of CD4+ memory T cells and CD8+ MAIT has been described8. It 
should be noted that despite these general trends in response to severe COVID-19 infection, the immunological 
response has been shown to be very heterogeneous. as discussed previously, some groups have proposed different 
immunotypes and some have correlated these immunotypes with different clinical outcomes10,14,15.

The main goals of the current study is to evaluate the predictive power of the immunological variables tested 
in Kuri-Cervantes et al.8 in identifying COVID-19 severity groups, identify the most distinguishing features of 
each severity group, compare these features to existing literature, and clearly present the reader with a discus-
sion on the validity and limitations of statistical methods used here and elsewhere. We employed discriminant 
analysis (DA) and binary logistic regression to reanalyze the work presented by Kuri-Cervantes et al.8. Two main 
objectives motivated this work, the first of which is to identify combination of features that is most effective in 
distinguishing between either COVID-19 patients and normal control or the various disease severity groups 
among COVID-19 patients. The second objective is to determine the relative importance of each of these features 
for group discrimination. Using principal component analysis (PCA), Kuri-Cervantes et al. identified T cell 
activation in CD4+ and CD8+ memory T cells, frequency of plasmablasts, and frequency of neutrophils as the 
top parameters associated with severe COVID-198. Although PCA has the advantage of unbiased exploration 
of data partitioning, DA directly addresses group discrimination. Both techniques combine correlated variables 
into eigenvectors, called principal components in PCA and canonical discriminant functions in DA. A key dif-
ference, however, is that PCA selects the vectors that maximize the amount of variance explained, while DA 
maximizes group discrimination. Binary logistic regression is also designed to directly address group separation. 
We also present an evaluation of the significance of the contribution of each of the variables and models used 
in the study, and thereby assisting the reader in perceiving the appropriate level of confidence through which 
the data should be viewed.
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Results
Evaluation of the fitness of data for discriminant analysis.  Most of our predictor variables deviated, 
sometimes substantially, from normal Gaussian distribution. Univariate normality of each variable (v = 171) 
was tested in four datasets: healthy controls, moderate COVID-19, severe COVID-19, and combined moder-
ate/severe COVID-19. Therefore, there were 684 variable/dataset combinations (Vi). Normal distribution was 
indicated by a Shapiro–Wilk’s W statistic equal to, or approaching, “1” and a p-value greater than 0.05. Vis that 
did not significantly deviate from normality using a p-value cutoff of 0.05 [245 (35.8%)] showed W values rang-
ing from 0.812 to 0.990. Skewness (a measure of distribution asymmetry around the mean) values for these Vis 
were mostly within the − 1-to-1 range, except for 58 Vis (23.7%); none of the latter Vis, however, fell outside 
the − 2-to-2 range. For kurtosis (a measure of tailedness or clustering of datapoints in tails as opposed to the peak 
of the distribution curve), 109 Vis (44.5%) were outside the − 1-to-1 range, of which 20 (8.2%) were also out-
side the − 2-to-2 range. The remainder (55.5%) were within the − 1-to-1 range (Supplemental Fig. S1, Table S1). 
This means, using a − 1-to-1 cutoff, skewness and kurtosis agreed with Shapiro–Wilk’s test p-value 76.3% and 
55.5% of the time, respectively. Among the 439 Vis (64.2%) that significantly deviated from normality accord-
ing to the Shapiro–Wilk’s test, 49 (11.2%) and 90 (20.5%), respectively, showed skewness and kurtosis values 
within the − 1-to-1 range. Therefore, among these Vis, skewness and kurtosis data agreed with Shapiro–Wilk’s 
test results 88.8% and 79.5% of the time, respectively. These Vis showed W values ranging from 0.273 to 0.920. 
(Supplemental Table S1). Overall, Shapiro–Wilk’s test showed 84.4% and 70.9% agreement with skewness and 
kurtosis data, respectively, using a cutoff range of − 1-to-1 for the latter two.

The absence of multicollinearity was confirmed using correlation matrices generated using Pearson moment 
correlation coefficient. There is no precise consensus on the correlation coefficient threshold above which mul-
ticollinearity is presumed to exist. Thresholds as low as 0.40 and as high as 0.85 have been reported23, but the 
most commonly used threshold in our experience ranges from 0.7023 to 0.8024. In this study, we used 0.8 as our 
threshold and we found that CD69+, CXCR5+, CD38+, HLA-DR+, CD38+ HLA-DR+, Ki67+, and PD1+ subsets of 
total memory CD4+ T cells were often highly correlated with cell populations carrying the same surface markers 
among central, effector, and transitional memory CD4+ T cells. Total memory CD8+ T cells expressing these same 
surface markers were often highly correlated with cell populations carrying the same markers among central, 
effector, effector CD45RA+, and transitional memory CD8+ T cells. CD69+, CXCR5+, CD38+, HLA-DR+, CD38+ 
HLA-DR+, Ki67+, and PD1+ subsets of total memory CD8+ T cells were also highly correlated with multiple other 
cell populations including subsets of CD4+ T cells (Supplemental Tables S2–S4).

Non-parametric Levene’s test showed that most of the variables in each of our 3 models were homoscedastic 
with p-values greater than 0.05. Thirteen, 29, and 11 of the 171 variables used in each model showed p-values less 
than 0.05, suggesting heteroscedasticity among these variables in models 1, 2, and 3, respectively (Supplemental 
Table S5). Box’s M test was also performed yielding p-values of 5.7528 × 10−14 and 9.8324 × 10−22 for models 1 
and 2, respectively (Table 1). Box’s M test could not be calculated in SPSS for Model 3 for technical reasons. As 
discussed in more detail in the "Discussion" section, the non-parametric Levene’s test is more reliable in assessing 
homoscedasticity in non-normal data25,26. We also evaluated outliers in our datasets. Using the criteria described 
in the “Methods” section, we identified 52, 31, 134, and 216 outliers in the control, moderate, severe, and COVID-
19 groups, respectively. Out of 171 variables, there were 45, 31, 79, and 94 variables containing 1 or more outliers 
in the control, moderate, severe, and COVID-19 groups, respectively (Supplemental Tables S6–S10).

Construction and evaluation of discriminant models tailored for specific clinical applica‑
tions.  The wide range of presentations that develop following infection with SARS-CoV-2 called for a prog-
nostic algorithm that may enable identifying critical patients early after infection. We therefore evaluated three 
discriminant models of immune profiles to distinguish healthy controls versus moderate or severe disease pres-
entation. One model was designed to distinguish between the three groups of participants: control, moderate, 
and severe (Model 1). The predictive model was significant (p = 4.87 × 10−15) with a Wilks’ λ of 0.065, indicat-
ing that a majority of the variance contained in the model’s discriminant functions could be explained by dif-
ferences in group membership. The model was built in five steps, each of which was statistically significant 
(p = 6.68 × 10−15–1.11 × 10−8) and contributed to improving the model as indicated by the incremental decrease of 
Wilks’ λ from 0.351 in the first step to 0.065 with the fifth (Table 1). Such small Wilks’ λ is consistent with a good 
fit with 93.5% of model variance (1 − 0.065 = 0.935) geared toward predicting group membership. The model 
contained two canonical discriminant functions, the first of which was a more important predictor of group 
membership than the second, as indicated by the first’s higher eigenvalue (4.155 versus 1.985), larger proportion 
of variance it explained (67.7% versus 32.3%), and greater canonical correlation (0.898 versus 0.815) (Table 1). 
Five variables were sequentially incorporated into the model in this order: NK cells, T cells, CD21−CD27+CD38lo 
(class-switched, activated memory27,28) B cells (actSMB), activated HLA-DR+ neutrophils29 (actNeut), and Ki67+ 
immature granulocytes (imGran). As seen in the model’s discriminant score plot, the severe and moderate groups 
were well separated from controls on the first discriminant function, while the moderate group was separated 
from severe and controls on the second function (Fig. 1d). The first discriminant function was most representa-
tive of NK cells and T cells, while the second represented actSMB and actNeut the most. ImGran almost equally 
contributed to both discriminant functions where their contributions ranked third for both functions. Despite 
model improvements with the introduction of each of the five variables, only the first three variables showed 
significantly different group means (by ANOVA with Holm correction and pairwise comparisons using a t-test 
with Holm-Sidak correction) and had relatively small Wilks’ λs (Table 2), prompting us to conclude that some 
of the variables ruled nonpromising based on individual biomarker evaluations, may still be useful to the model. 
Pairwise comparisons using a t-test p-value cutoff of 0.05 showed that NK cells and T cells were less abundant in 
patients with severe COVID-19 compared to uninfected controls and moderate disease patients, while ActSMB 
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Model 1

Suitability of data for discriminant analysis

Pooled within-groups matrices (correlation between predictor variables)

Box’s M 
test p-value 
(cutoff > 0.001)

 Pearson correla-
tions NK cells ActSMB T cells ActNeut ImGran

5.7528 × 10−14

 NK cells 1

 ActSMB  − 0.192 1

 T cells  − 0.080 0.144 1

 ActNeut 0.055  − 0.534 0.117 1

 ImGran 0.377  − 0.339 0.120 0.184 1

Model fitness

Step Wilks’ λ p-value

 1 0.351 1.1055 × 10−8

 2 0.189 1.0226 × 10−11

 3 0.125 3.3432 × 10−13

 4 0.083 1.261 × 10−14

 5 0.065 6.6843 × 10−15

 Model 0.065 4.8677 × 10−15

Discriminant function discriminatory power

Eigenvalue % Variance Canonical correlation

 First discriminant 
function 4.155 67.7 0.898

 Second discrimi-
nant function 1.985 32.3 0.815

Model 2

Suitability of data for discriminant analysis

Pooled within-groups matrices (correlation between predictor variables)

Box’s M 
test p-value 
(cutoff > 0.001)

 Pearson correla-
tions MAIT En38NK ActNB En27NK Temra

9.8324 × 10−22

 MAIT 1

 En38NK 0.147 1

 ActNB  − 0.226  − 0.254 1

 En27NK 0.192  − 0.202 0.297 1

 Temra  − 0.093 0.068  − 0.039  − 0.343 1

Model fitness

Step Wilks’ λ p-value

 1 0.459 1.4335 × 10−7

 2 0.347 8.8178 × 10−9

 3 0.224 3.6834 × 10−11

 4 0.191 1.9134 × 10−11

 5 0.166 1.3565 × 10−11

 Model 0.166 1.101 × 10−11

Discriminant function discriminatory power

Eigenvalue % Variance Canonical correlation

 First discriminant 
function 5.033 100.0 0.913
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were more abundant in patients with moderate disease compared to those with severe disease and uninfected 
controls (Fig. 1a). In conclusion, model 1 proposes that reduced frequency of NK cells and T cells are the most 
distinguishing features separating severe COVID-19 from moderate COVID-19 and controls, high frequency of 
actSMB and actNeut are the most distinguishing features separating moderate COVID-19 from severe COVID-
19 and controls, and imGran play a minor role in separating the three groups.

The second model (Model 2) was designed to distinguish between healthy volunteers and COVID-19 patients, 
regardless of the latter’s disease severity status. The model was statistically significant (p = 1.10 × 10−11) and had 
a good fit as a predictive model with a Wilks’ λ of 0.166. Since this model aimed to distinguish between two 
groups, only one discriminant function was extracted, which explained 100% of variance and had an eigenvalue 
of 5.03 and a canonical correlation of 0.913 (Table 1). This model was also compiled in five steps, each of which 
was significant (p = 1.36 × 10−11–1.43 × 10−7) and improved the model as indicated by the incremental decline of 
Wilks’ λ starting at 0.459 in the first step and reaching 0.166 in the last (Table 1). Five variables were included 
in the model, of which MAIT (decreased in COVID-19 patients compared to control) was the only significantly 
different variable (Fig. 1b). More than 50% of the variance of this variable could be explained by group mem-
bership, as indicated by a Wilks’ λ of 0.459. Having the highest standardized canonical discriminant function 
coefficient value (1.024), MAIT population was the most impactful on the single discriminant function in Model 
2 and, thus, on group separation. Group means did not significantly differ for the remaining four variables 
[CD38+ NK cells (NK cells with enhanced cytotoxicity and cytokine secretion30) (en38NK), CD21+CD27−Ki67+ 
B cells (proliferating/activated naïve B cells31,32) (actNB), CD27+ NK cells (NK cells with enhanced function33,34) 
(en27NK), and CD27−CD45RA+ effector memory CD8+ T cells (terminally differentiated effector T cells35) 
(Temra)]; these variables had relatively high Wilks’ λs (0.960, 0.852, 0.993, and 0.908, respectively), indicating 
that only small portions of their respective variances were related to group membership (Table 2). However, these 
variables were not useless to the model since incorporating each of them resulted in a highly significant boost to 

Model 3

Suitability of data for discriminant analysis

Pooled within-groups matrices (correlation between predictor variables)

Box’s M 
Test p-value 
(cutoff > 0.001)

 Pearson correla-
tions

Monocyte HLA-
DR MFI ActSMB NK cells CXCR5+CD8+ 

MAIT cDC HLA-DR MFI
CD45RA+ effector 
memory CD8+ 
T cells

Neutrophils

N/A

 Monocyte HLA-
DR MFI 1

 ActSMB  − 0.501 1

 NK cells 0.231  − 0.333 1

 CXCR5+CD8+ 
MAIT  − 0.094  − 0.252  − 0.224 1

 cDC HLA-DR 
MFI 0.097  − 0.165  − 0.158  − 0.227 1

 CD45RA+ effector 
memory CD8+ 
T cells

 − 0.053  − 0.022 0.207 0.374 0.156 1

 Neutrophils  − 0.163  − 0.007  − 0.228 0.251 0.012  − 0.397 1

Model fitness

Step Wilks’ λ p-value

 1 0.413 3 × 10−6

 2 0.196 3.1293 × 10−9

 3 0.0.142 6.324 × 10−10

 4 0.113 4.3273 × 10−10

 5 0.095 4.9018 × 10−10

 6 0.072 2.1319 × 10−10

 7 0.058 2.0125 × 10−11

 Model 0.058 8.7331 × 10−11

Discriminant function discriminatory power

Eigenvalue % Variance Canonical correlation

 First discriminant 
function 16.219 100.0 0.971

Table 1.   Evaluation of the fitness of the discriminant models and the relative importance of canonical 
functions within each model. Model variables were sequentially incorporated into the model, one at a time, 
and are listed in the order they were incorporated. NK cells natural killer cells, en27NK CD27+ NK cells, 
en38NK CD38+ NK cells, actNeut activated HLA-DR+ neutrophils, imGran Ki67+ immature granulocytes, 
Temra CD27−CD45RA+ effector memory CD8+ T cells, actNB CD21+CD27−Ki67+ B cells, actSMB 
CD21−CD27+CD38lo B cells.
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the discriminatory ability of the model—as indicated by the p-values associated with each step (see above and 
Table 1)—and a decrease in the model’s Wilks’ λ (Table 1). En38NK and actNB (standardized canonical discri-
minant function coefficients of 0.968 and 0.684, respectively) impacted the sole discriminant function of the 
model more than en27NK and Temra did (standardized canonical discriminant function coefficients of − 0.626 
and − 0.443, respectively) (Table 2). In brief, the model suggests that the lower frequency of MAIT is the most 
prominent distinguishing feature that separates COVID-19 patients from controls, while en27NK, en38NK, 
actNB, and Temra improve the discriminant model despite a lack of significant differences between groups.

The last model (Model 3) aimed to distinguish COVID-19 patients with severe disease from those with mod-
erate presentation. The model was statistically significant (8.73 × 10−11) with an excellent fit (Wilks’ λ of 0.058). 
The model was constructed in seven steps, all of which were highly significant (p = 2.01 × 10−11–3.00 × 10−6) and 
resulted in a corresponding decrease in Wilks’ λ. The model’s single discriminant function explained 100% of 
variance and had an eigenvalue of 16.219 and canonical correlation of 0.971 (Table 1). Multiple aspects of this 
model were paradoxical. Group means were significantly different for two variables (NK cells and the mean 
fluorescence intensity (MFI) of HLA-DR on monocytes) when correcting for multiple testing over all variables, 
and four variables (additional two variables were neutrophils and actSMB) when correcting for multiple test-
ing over the number of variables incorporated in the model (Fig. 1c). However, these variables were not the 
most impactful on the discriminant function of the model. In fact, monocytes’ HLA-DR MFI and neutrophils 
frequency had the lowest absolute standardized canonical discriminant function coefficient (0.616) and, thus, 
the smallest impact compared to other variables in the model. NK cells and actSMB had a standardized canoni-
cal discriminant function coefficient of 1.199 and 1.415, making them the second and fourth most impactful 
in the model, respectively. On the other hand, CXCR5+ CD8+ MAIT and Temra had the strongest and third 

Figure 1.   Discriminant analysis-based distinction between COVID-19 patients presenting with different 
levels of disease severity and healthy volunteers. Discriminant analysis was done using the stepwise method 
and raw data corresponding to the variables entered in models 1, 2, and 3 are shown in (a–c), respectively. 
(d) Model 1: distinction between healthy volunteers (n = 11), moderately ill (n = 7), and severely ill (n = 20) 
COVID-19 patients. (e) Model 2: distinction between healthy volunteers (n = 11) and COVID-19 patients 
including moderately and severely (n = 27) ill patients combined in one group. (f) Model 3: distinction between 
moderately (n = 7) and severely ill patients (n = 20). Graphs in (e,f) are drawn on 1 axis (i.e., the x-axis) and 
vertical elevation of data points is for illustration purposes only. NK natural killer cells, neut neutrophils, actNeut 
activated HLA-DR+ neutrophils, imGran Ki67+ immature granulocytes, Mono HLA MFI MFI of HLA-DR 
in monocytes, MFI of HLA-DR in conventional dendritic cells, MAIT mucosal associated invariant T cells, 
CXCR5+ CD8+ MAIT CXCR5+ CD8+ mucosal associated invariant T cells, Temra CD27−CD45RA+ effector 
memory CD8+ T cells, actNB CD21+CD27−Ki67+ B cells, actSMB CD21−cd27+CD38lo B cells.
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strongest impacts on the discriminant function (standardized canonical discriminant function coefficients of 
1.493 and − 1.137), respectively, but none of them had significantly different group means. Even more perplexing 
is that almost none of CXCR5+ CD8+ MAIT and Temra variance was related to group membership (Wilks’ λ of 
0.997 and 1.000, respectively) (Table 2). It is noteworthy that MFI of HLA-DR on monocytes had the smallest 
Wilks’ λ (0.413) of any variable tested in the study, thus, using it as a nidus around which the model was built 
was, indeed, appropriate. The fact that six other variables were added in the following steps indicates that each 
introduced variable lowered the models’ Wilks’ λ the most at the step in which it was introduced, which is man-
dated by the algorithm. In conclusion, it appears that decreased frequency of NK cells and actSMB, decreased 
MFI of monocyte HLA-DR, and increased frequency of neutrophils are the main distinguishing features of severe 
COVID-19 that set it apart from COVID-19 of moderate severity.

To visually observe group separation using the three models, we examined the corresponding canonical score 
plots. Model 1 clearly separated uninfected controls from moderate and severe patients, while the latter two 
appeared closer to each other than either of them was to the control. This finding suggested that distinguishing 
between moderate and severe patients would probably be more challenging than distinguishing between infected 
and uninfected participants, which will be addressed below (Fig. 1d). Model 2 plot shows complete separation 
between COVID-19 patients—inclusive of patients with moderate and severe disease—and uninfected con-
trols. Severe and moderate patients overlapped, almost completely, as expected since they were all in one group 
whose centroid and the centroid of the control group defined the direction of the models’ discriminant function 
(Fig. 1e). Model 3 shows effective separation between moderate and severe patients (Fig. 1f).

Creating binary logistic regression models for binary dependent variables.  Models 2 and 3 
were recreated using binary logistic regression resulting in two new models that we named models 2′ and 3′, 
respectively. According to Chi-square test results, both new models were highly significant (p = 1.18 × 10−10 and 
p = 2.26 × 10−7, respectively). The Hosmer–Lemeshow null hypothesis of perfect group-membership prediction 
was retained at p = 1.000 for each of the two steps in model 2′ and the one step of Model 3′. All steps in both 
models had very high Nagelkerke’s pseudo-R2 values (0.916–1.000) (Table 3). These data strongly suggest that 
each of the two models had a strong predictive power. In Model 2′, there were 27 COVID-19 patients and 11 

Table 2.   Optimized multivariate immune profiles for predicting COVID-19 disease severity using 
discriminant analysis. Discriminant models were constructed to distinguish between healthy volunteers, 
moderately ill patients, and severely ill patients (Model 1); healthy volunteers and COVID-19 patients 
presenting with moderate or severe disease (Model 2); or moderately ill and severely ill COVID-19 patients 
(Model 3). Model variables are listed in the order they were incorporated into the model. Correction for 
multiple testing was performed using Holm method60. NK cells natural killer cells, en27NK CD27+ NK cells, 
en38NK CD38+ NK cells, actNeut activated HLA-DR+ neutrophils, imGran Ki67+ immature granulocytes, 
Temra CD27−CD45RA+ effector memory CD8+ T cells, actNB CD21+CD27−Ki67+ B cells, actSMB 
CD21−CD27+CD38lo B cells.

Wilks’ λ p-value/corrected p-value

Standardized canonical discriminant function 
coefficient

1st discriminant function 2nd discriminant function

Model 1

 NK cells 0.351 1.11 × 10−8/1.89 × 10−6 0.886 0.019

 ActSMB 0.559 3.84 × 10−5/6.21 × 10−3  − 0.049 1.242

 T cells 0.418 2.33 × 10−7/3.96 × 10−5 0.706  − 0.176

 ActNeut 0.907 0.181/1  − 0.042 0.825

 ImGran 0.953 0.432/1  − 0.451 0.437

Model 2

 MAIT 0.459 1.434 × 10−7/2.44 × 10−5 1.024 N/A

 En38NK 0.960 2.31 × 10−3/0.365 0.968 N/A

 ActNB 0.852 0.017/1 0.984 N/A

 En27NK 0.993 0.629/1  − 0.626 N/A

 Temra 0.908 0.063/1  − 0.443 N/A

Model 3

 Monocyte HLA-DR 
MFI 0.413 3.17 × 10−6/5.42 × 10−4 0.616 N/A

 ActSMB 0.597 3.72 × 10−4/0.0617 1.415 N/A

 NK cells 0.420 3.90 × 10−6/6.63 × 10−4 1.199 N/A

 CXCR5+ CD8+ 
MAIT 0.997 0.786/1 1.493 N/A

 cDC HLA-DR MFI 0.952 0.271/1 0.944 N/A

 Temra 1.000 0.998/1  − 1.137 N/A

 Neutrophils 0.681 2.14 × 10−3/0.352  − 0.622 N/A
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controls with the COVID-19 group being the target group—meaning we were interested in estimating the odds 
and probability of having COVID-19 for each of our participants. MAIT was introduced to the model in the first 
step and the corresponding Chi-square p-value was 4.45 × 10−10 (Table 3), implying that the model at this stage 
was highly likely to be a better predictor of group membership than the null model containing no predictor vari-
ables. In the second step, which was also significant (p = 0.009), the CD56dimCD16+ NK cells variable was intro-
duced (Table 3). No more steps or variables were added to the model signaling that it could not be significantly 
improved by incorporating more variables. Model 3′ had seven moderately ill and twenty severely ill patients, 
with the severely ill being the target group. Only one predictor variable—MFI of HLA-DR on monocytes—was 
introduced into the model with a Chi-square p-value of 2.26 × 10−7. Regression weights, significance of each pre-
dictor variable, and odds ratios were not reliably calculated due to complete or quasi-complete group separation. 
This issue will be addressed in the "Discussion" section. The differences in the makeup of the logistic regression 
models compared to the corresponding discriminate models led us to put each of these models to the test and 
empirically determine their predictive power.

Evaluation of the discriminant and binary logistic regression models.  RCC was used to evalu-
ate each models’ ability to correctly assign participants to their respective groups. Our discriminant models 
were more successful in correctly classifying participants into two groups than three groups. Model 1 achieved 
92% overall RCC with RCCs of 91%, 71%, and 100% for healthy controls, the moderately ill, and the severely 
ill groups, respectively. Model 2 achieved an overall RCC of 97%, 91% for the control group, and 100% for the 
COVID-19 group. Model 3 achieved 100% RCC for both moderate and severe groups. Model 2′ showed 100% 
RCC for both the control and COVID-19 groups, which was achieved even with one variable (MAIT) in the 
model. Model 3′ showed an overall RCC of 93%, 86% for the moderate group, and 95% for the severe groups 
(Fig. 2).

We also used the AUC method to compare the predictive ability of the two-group models (Models 2, 3, 2′, 
and 3′) to each other and to the use of individual predictor variables. In distinguishing between healthy partici-
pants and COVID-19 patients regardless of disease severity status, the largest AUC of any individual variable 
was that of the frequency of MAIT cells (0.993). Plasmablasts, three populations of CD38+ HLA-DR+ CD8+ T 
cells (central memory, effector memory, and total memory), and NK cells had the second through sixth largest 
AUCs (0.966, 0.946, 0.943, 0.939, and 0.931, respectively) among all individual analytes. Combining biomarkers 
using DA scores or binary logistic regression probabilities resulted in maximum AUCs of 1.000, indicating an 
improved predictive power with the use of multivariate biomarkers (Fig. 3, Table 4).

For predicting severe COVID-19 disease in a pool of hospitalized SARS-CoV-2-positive patients with moder-
ate or severe disease, the largest AUCs of individual biomarkers were obtained using monocyte HLA-DR MFI, 
frequency of T cells, NK cells, CD4+ T cells, dendritic cells, and CD56dim CD16+ NK cells with AUCs of 0.993, 
0.957, 0.957, 0.936, 0.932, and 0.929, respectively. Combining biomarkers using either DA resulted in a perfect 
sensitivity and specificity with an AUC of 1.000, while using binary logistic regression was equivalent to monocyte 
HLA-DR MFI with an AUC of 0.993 (Fig. 4, Table 5).

Next, we wanted to investigate the fidelity of prediction of severe COVID-19 in a population composed of 
healthy individuals and COVID-19 patients with either severe or moderate disease. The largest AUCs of indi-
vidual biomarkers were obtained using T cells, NK cells, CD4+ T cells, CD56dim CD16+ NK cells, B cells, and 
neutrophils with AUCs of 0.981, 0.969, 0.947, 0.942, 0.922, and 0.917, respectively. A multivariate biomarker 
based on the discriminant scores of function 1 had a perfect AUC (Fig. 5, Table 6). The separation of groups 
illustrated in Fig. 1d is compatible with the results obtained, since the severe group is well-separated from the 
moderate disease group and controls on the first discriminant function, but not the second.

Finally, we tested the predictive ability of our models by employing them to classify eight participants by 
a blinded investigator. These participants included two with mild, four with moderate, and two with severe 
disease. There were no uninfected controls. Please note that there was no mild group in any of the models we 
constructed, but we had data for these two patients with mild disease and thought to include them to see how 
they would be classified. Using the discriminant scores of Model 1, one of the mild patients was classified as 
uninfected control, while the other was classified as moderate disease. Only one of the moderate patients was 
correctly classified, while the other three as well as the two severe patients were classified as severe. Counting the 
classification of mild patient as moderate correct (due to the absence of a mild category in the model), the overall 

Table 3.   Optimized multivariate immune profiles for predicting COVID-19 disease severity using binary 
logistic regression. R2 Nagelkerke’s pseudo-R2, HL Hosmer–Lemeshow test.

Chi-square p-value HL test R2 Variables entered (regression weights/p-value) Odds ratio

Model 2′

 Step 1 4.4486 × 10−10 1.000 0.916 MAIT (12.859/0.060) 3.843 × 105

 Step 2 9.00 × 10−3 1.000 1.000 CD56dimCD16+ NK cells (0.964/0.994)
MAIT (102.525/0.993)

2.623
3.358 × 1044

 Model 1.1759 × 10−10 N/A N/A N/A N/A

Model 3′

 Step 1 2.2555 × 10−7 1.000 0.923 Monocyte HLA-DR MFI (0.007/0.225) 1.007

 Model 2.2555 × 10−7 N/A N/A N/A N/A
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RCC was 50% (Table 7). Models 2 and 2′ correctly classified seven participants, while a moderate participant and 
a mild participant were misclassified as control by models 2 and 2′, respectively. Both models showed an RCC 
of 87.5% (Table 7). The two participants with mild disease were classified as moderate by both models 3 and 3′. 
Both patients with severe disease were correctly classified by model 3, while model 3′ misclassified one of them 
as moderate. For participants with moderate disease, only one of them was classified as such by model 3—the 
remaining three were misclassified as severe—and model 3′ correctly classified all four participants (Table 7).

Discussion
The current study uses immune profiles to distinguish between severe and moderate COVID-19 patients, and 
between COVID-19 patients and uninfected control participants. The RCCs, a measure of the fidelity of predic-
tion, ranged from a modest 70 to 100%. Fidelity of prediction differed by the number (i.e., two or three groups) 
and identities (i.e., moderate and severe COVID-19 and uninfected controls) of the groups being distinguished 
from each other, as well as whether DA or BLR was used. Our RCCs are comparable to those obtained in previ-
ous studies. Mueller and coworkers used BLR to predict immunophenotypes that correlated with COVID-19 
disease severity with RCCs of 80–83%14.

The original analysis of our data published by Kuri-Cervantes in 2020 identified COVID-19-specifc and severe 
disease-specific changes consistent with other groups’ findings8. The reader is encouraged to review said publica-
tion for detailed description of the findings. From Kuri-Cervantes work and the work of others, we learned that 
compared to uninfected persons, severe COVID-19 is characterized by lower frequencies of lymphocytes8,15, total 
B cells8, total T cells8, CD4+ T cells8, CD8+ T cells8, CD8+ MAIT cells8, ILCs8, and NK cells8, as well as increased 
frequencies of neutrophils15,19 and monocytes8,15, and higher neutrophil-to-lymphocyte ratio. Neutrophil activa-
tion has also been implicated in severe COVID-1919. Also, dendritic cell depletion and dysfunction have previ-
ously been linked to severe COVID-19 disease36.

From all models of the current study, we conclude that severe COVID-19 is best characterized by depletion 
of NK cells and T cells. Model 3/3′ of the current study showed that the most characteristic features of severe 
COVID-19 that set it apart from moderate disease were low frequencies of NK cells and actSMB, down-regulation 
of monocyte HLA-DR, and increased frequency of neutrophils. From model 1/1′, we learned that increased 
frequencies of actSMB and actNeut were the most prominent features of moderate disease, setting it apart from 
both severe disease and healthy controls. This pattern is consistent with a prominent role of NK cells, actSMB, 
and actNeut in steering the course of COVID-19 toward milder disease and better prognosis. We also show that 
the most prominent feature of COVID-19, including moderate and severe disease, that sets it apart from healthy 
controls was MAIT, highlighting the function of this population of immune cells and its relevance to COVID-19.

Figure 2.   Rate of correct classification (RCC) based on the discriminant models (models 1, 2, and 3) and binary 
logistic regression models (models 2′ and 3′). (a) RCC for Model 1, distinguishing between healthy volunteers 
(n = 11), the moderately ill (n = 7), and the severely ill (n = 20) COVID-19 patients. (b) RCC for Model 2, 
distinguishing between healthy volunteers (n = 11) and COVID-19 patients including moderately and severely 
ill patients combined in one group (n = 27). (c) RCC for Model 3, distinguishing between moderately (n = 7) 
and severely ill (n = 20) patients. (d) RCC for Model 2′, distinguishing between healthy volunteers (n = 11) and 
COVID-19 patients (n = 27). (e) RCC for Model 3′, distinguishing between moderately (n = 7) and severely ill 
(n = 20) patients. RCC1 and RCC2 in Model 2′ are the RCCs for steps 1 and 2 of the logistic regression models, 
respectively.
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BLR was generally superior to DA in achieving higher RCCs. DA functions optimally with the least amount 
of error when all relevant assumptions are satisfied37. These assumptions were not fully satisfied in our dataset, 
with most Vis deviating from normal Gaussian distribution and some level of multicollinearity, heteroscedasticity, 
and putative outliers present. It is not clear how these issues affect our results and the conclusions we derive from 
them. Early research from the 1960s and 1970s indicated that DA can function satisfactorily with non-normal 
data under certain conditions and with some, but not all, forms of non-normality38. Some of these early studies 
concluded that DA performs poorly when analyzing non-normally-distributed data, but these studies derived 
their conclusions from experiments that dealt with drastic levels of skewness and kurtosis38. In a recent study by 
Zuber and Tata, a high level of error was observed while using DA to analyze non-normal data39; the dataset used 
by these authors was also an extreme case of non-normality (data not shown). Lantz showed that error decreased 
as sample size increased, and that error increased with increasing deviation from normal distribution, the degree 
of heteroscedasticity, and the number of variables40. The Lantz work is important because it demonstrated 
gradients of negative impacts exerted by a number of isolated “anomalies” on the performance of DA. Non-
normal distribution of empirical data is not uncommon in health sciences as well as other fields of knowledge41. 
In practice, this problem has been historically and broadly ignored37. Some investigators suggested resolving 
the problem of non-normality by applying a transformation (e.g., log transformation), but doing so may itself 
lead to erroneous conclusions by altering the interrelationships among observations and variables37. Although 
eliminating non-normality in biomedical research is mostly unpractical, there are indicators that doing so may 
not always be necessary. In our previous studies, DA performed well despite a lack of normal distribution42.

A limitation of the current study is the relatively small sample size. Sample size requirement in DA and similar 
techniques is not well defined. Based on currently available data, it has been suggested that the size of the small-
est group in a dataset should outnumber the independent variables by at least three fold43. Another issue is the 
proportional size of groups. When the training dataset is severely unbalanced (i.e., group sizes are very different), 
higher RCCs tend to occur in larger groups, while the converse is true for smaller groups44. This phenomenon 
was observed in our data, for example, in model 1, the RCC of the largest group (severe) was higher than the RCC 

Figure 3.   Evaluation of individual predictors, discriminant scores, and binary logistic regression probabilities 
as biomarkers of COVID-19 among a group of patients and normal controls. ROC curves were generated 
using data from healthy control participants (n = 12) and patients with moderate or severe disease (n = 34). 
ROC curves of (a) individual analytes elevated in COVID-19, (b) individual analytes decreased in COVID-19, 
(c) discriminant function scores, and (d) probabilities of having COVID-19 computed using binary logistic 
regression are shown.
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Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

Combined profiles

 Discriminant scores 1.000 2 × 10−6 1.000 1.000

 BLR probabilities 1.000 2 × 10−6 1.000 1.000

AUC (analytes elevated in COVID-19)

 Plasmablast 0.966 8.28 × 10−6 0.917 1.000

 CD38+ HLA-DR+ CD8+ central memory 
T cells 0.946 2.00 × 10−5 0.881 1.000

 CD38+ HLA-DR+ CD8+ effector memory 0.943 2.31 × 10−5 0.850 1.000

 CD38+ HLA-DR+ CD8+ memory 0.939 2.66 × 10−5 0.866 1.000

 CD38+ HLA-DR+ CD8+ CD45RA+ effector 
memory 0.918 6.57 × 10−5 0.812 1.000

 CD38+ CD8+ transitional memory 0.916 7.04 × 10−5 0.825 1.000

 CD38+ CD8+ memory 0.912 8.05 × 10−5 0.819 1.000

 CD38+ HLA-DR+ CD8+ transitional 
memory 0.904 1.12 × 10−4 0.808 1.000

 CD38+ HLA-DR+ circulating T-follicular 
helper 0.894 1.66 × 10−4 0.796 0.992

 CD38+ HLA-DR+ CD4+ memory 0.889 2.01 × 10−4 0.786 0.992

 CD38+ CD8+ effector memory 0.887 2.14 × 10−4 0.780 0.995

 CD38+ HLA-DR+ CD4+ central memory 0.879 2.93 × 10−4 0.772 0.985

 CD27+ CD38+ HLA-DR+ CD8+ CD45RA+ 
effector memory 0.872 3.76 × 10−4 0.751 0.993

 CD38+ CD4 + transitional memory 0.855 6.84 × 10−4 0.700 1.000

 CD38+ HLA-DR+ CD4+ effector memory 0.855 6.84 × 10−4 0.722 0.988

 CD38+ HLA-DR+ CD4+ transitional 
memory 0.854 7.26 × 10−4 0.732 0.975

 CD38+ CD8+ CD45RA+ effector memory 0.845 9.70 × 10−4 0.717 0.973

 CD21− CD27− CD38lo B cells 0.838 1.22 × 10−3 0.696 0.981

 CD38+ CD8+ MAIT 0.830 1.61 × 10−3 0.701 0.959

 CD27− CD38+ HLA-DR+ CD8+ CD45RA+ 
effector memory 0.825 1.90 × 10−3 0.692 0.957

 CD38+ CD4+ effector memory 0.825 1.90 × 10−3 0.677 0.973

 Neutrophils 0.825 1.90 × 10−3 0.692 0.958

 CD27+ CD38+ CD8+ CD45RA+ effector 
memory 0.822 2.11 × 10−3 0.684 0.959

 Eosinophils 0.813 2.76 × 10−3 0.679 0.947

 CD38+ CD8+ central memory 0.808 3.23 × 10−3 0.638 0.978

 PD1+ CD8+ transitional memory 0.808 3.23 × 10−3 0.673 0.943

 HLA-DR+ CD8+ memory 0.801 3.97 × 10−3 0.662 0.940

 HLA-DR+ circulating T-follicular helper 0.801 3.97 × 10−3 0.660 0.943

 CD38+ HLA-DR+ CD8+ MAIT 0.800 4.17 × 10−3 0.660 0.939

 HLA-DR+ CD8+ effector memory 0.795 4.86 × 10−3 0.655 0.934

 CD38+ CD4 + memory 0.793 5.11 × 10−3 0.616 0.970

 HLA-DR+ CD8+ MAIT 0.791 5.37 × 10−3 0.651 0.931

 CD27− CD38+ CD8+ CD45RA+ effector 
memory 0.774 8.71 × 10−3 0.626 0.923

 CD27−HLA-DR+ CD8+ CD45RA+ effector 
memory 0.771 9.57 × 10−3 0.624 0.918

 CD27− HLA-DR+ CD8+ CD45RA+ effector 
memory 0.768 1.05 × 10−2 0.617 0.918

 PD1+ CD4+ effector memory 0.758 1.38 × 10−2 0.606 0.909

 CD25+ CD8+ memory 0.756 1.44 × 10−2 0.600 0.912

 HLA-DR+ CD8+ transitional memory 0.747 1.80 × 10−2 0.594 0.901

 PD1+ CD4+ transitional memory 0.747 1.80 × 10−2 0.595 0.900

 PD1+ CD4+ memory 0.746 1.88 × 10−2 0.591 0.900

 CD25+ CD8+ central memory 0.744 1.96 × 10−2 0.582 0.906

 HLA-DR+ CD8+ central memory 0.734 2.53 × 10−2 0.570 0.898

 CD25+ CD8+ effector memory 0.734 2.53 × 10−2 0.569 0.899

 CD25+ CD8+ transitional memory 0.734 2.53 × 10−2 0.566 0.902

Continued
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Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

 CD27+ HLA-DR+ CD8+ CD45RA+ effector 
memory 0.729 2.86 × 10−2 0.567 0.891

 HLA-DR+ CD4+ memory 0.714 4.10 × 10−2 0.548 0.880

 CD38+ CD4+ central memory 0.704 5.15 × 10−2 0.502 0.906

 HLA-DR+ CD4+ central memory 0.704 5.15 × 10−2 0.536 0.872

 CD27− CD8+ T cells 0.700 5.55 × 10−2 0.528 0.873

 Immature granulocyte 0.699 5.76 × 10−2 0.532 0.865

 CD69+ CD8+ MAIT 0.697 5.97 × 10−2 0.528 0.865

 PD1+ CD8+ MAIT 0.690 6.90 × 10−2 0.504 0.876

 PD1+ CD4 + central memory 0.684 7.94 × 10−2 0.514 0.853

 CD21− CD27+ CD38lo B cells 0.675 9.42 × 10−2 0.494 0.856

 HLA-DR+ CD4 + effector memory 0.668 1.08 × 10−1 0.478 0.859

 CD27− CD8+ CD45RA effector memory 0.667 1.11 × 10−1 0.495 0.839

 Monocytes 0.657 1.34 × 10−1 0.427 0.886

 CD25+ CD27+ CD8+ CD45RA+ effector 
memory 0.646 1.61 × 10−1 0.453 0.840

 Classical monocytes 0.645 1.66 × 10−1 0.426 0.864

 Intermediate monocytes 0.645 1.66 × 10−1 0.439 0.850

 CD8+ CD45RA+ effector memory 0.643 1.71 × 10−1 0.453 0.833

 PD1+ CD8+ central memory 0.641 1.76 × 10−1 0.451 0.832

 PD1+ CD8+ memory 0.636 1.92 × 10−1 0.455 0.818

 Ki67+ CD8+ memory 0.633 2.04 × 10−1 0.446 0.820

 CXCR5+ CD4+ transitional memory 0.626 2.27 × 10−1 0.429 0.824

 HLA-DR+ CD4+ transitional memory 0.626 2.27 × 10−1 0.442 0.810

 CD25+ NK cells 0.625 2.34 × 10−1 0.438 0.811

 Plasmacytoid dendritic cells DC HLA-DR 
MFI 0.618 2.60 × 10−1 0.386 0.850

 Ki67+ CD8+ central memory 0.616 2.67 × 10−1 0.434 0.798

 Intermediate monocytes/monocytes 0.606 3.11 × 10−1 0.412 0.800

 Ki67+ CD8+ effector memory 0.604 3.18 × 10−1 0.417 0.791

 CD4+ central memory 0.593 3.76 × 10−1 0.403 0.782

 CXCR5+ CD8+ effector memory 0.588 4.03 × 10−1 0.409 0.766

 CD69+ CD4+ memory 0.584 4.21 × 10−1 0.390 0.778

 CD25+CD27− CD8+ CD45RA+ effector 
memory 0.572 4.89 × 10−1 0.383 0.762

 CD4+ Tregs 0.569 5.09 × 10−1 0.390 0.748

 CD27+ CD8+ T cells 0.559 5.73 × 10−1 0.369 0.749

 CD69+ CD4+ effector memory 0.556 5.95 × 10−1 0.369 0.743

 Ki67+ CD4+ memory 0.551 6.29 × 10−1 0.364 0.737

 Ki67+ CD21− CD27− B cells 0.547 6.52 × 10−1 0.325 0.769

 CD27−CXCR5+ CD8+ CD45RA+ effector 
memory 0.542 6.87 × 10−1 0.340 0.744

 PD1+ CD8+ effector memory 0.542 6.87 × 10−1 0.342 0.742

 CD4+ transitional memory 0.539 7.11 × 10−1 0.339 0.739

 Non-classical monocytes 0.539 7.11 × 10−1 0.310 0.768

 CXCR5+ CD4+ effector memory 0.537 7.23 × 10−1 0.340 0.734

 CD25+ CD8+ CD45RA+ effector memory 0.537 7.23 × 10−1 0.341 0.733

 PD1+ CD8+ CD45RA+ effector memory 0.535 7.35 × 10−1 0.340 0.730

 Ki67+ CD4+ effector memory 0.525 8.09 × 10−1 0.330 0.720

 CD4+ CD45RA+ effector memory 0.525 8.09 × 10−1 0.333 0.717

 Circulating T-follicular helper 0.525 8.09 × 10−1 0.328 0.722

 CD27+ NK cells 0.522 8.34 × 10−1 0.331 0.712

 Ki67+ CD8+ transitional memory 0.520 8.47 × 10−1 0.335 0.705

 CD69+ CD4+ transitional memory 0.515 8.85 × 10−1 0.324 0.706

 CD27+ Ki67+ CD8+ CD45RA+ effector 
memory 0.515 8.85 × 10−1 0.323 0.707

 CD25+ CD8+ MAIT 0.515 8.85 × 10−1 0.334 0.697

Continued
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Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

 CD27+CD69+ CD8+ CD45RA+ effector 
memory 0.508 9.36 × 10−1 0.330 0.686

 CD27+ CD8+ CD45RA+ effector memory 0.508 9.36 × 10−1 0.305 0.712

 Ki67+ CD8+ MAIT 0.505 9.61 × 10−1 0.325 0.685

 CXCR5+ CD8+ transitional memory 0.503 9.74 × 10−1 0.309 0.697

 CD27−Ki67+ CD8+ CD45RA+ effector 
memory 0.503 9.74 × 10−1 0.309 0.698

 Eosinophils CD15 MFI 0.502 9.87 × 10−1 0.296 0.707

 CD4+ effector memory 0.502 9.87 × 10−1 0.307 0.697

 Classical monocytes/monocytes 0.502 9.87 × 10−1 0.283 0.720

 CD8+ central memory 0.500 1.00 0.290 0.710

AUC (analytes decreased in COVID-19)

 MAIT 0.993 2.41 × 10−6 0.976 1.000

 NK cells 0.931 3.79 × 10−5 0.854 1.000

 CD56dim CD16+ NK cells 0.926 4.67 × 10−5 0.839 1.000

 CD8+ T cells 0.909 9.20 × 10−5 0.818 1.000

 Neutrophil CD16 MFI 0.902 1.20 × 10−4 0.797 1.000

 T cells 0.902 1.20 × 10−4 0.803 1.000

 Innate lymphoid cells 0.879 2.93 × 10−4 0.771 0.987

 NK cells CD16 MFI 0.845 9.70 × 10−4 0.718 0.972

 CD4+ T cells 0.842 1.09 × 10−3 0.714 0.969

 B cells 0.842 1.09 × 10−3 0.709 0.974

 CD21+ CD27+ CD38lo B cells 0.842 1.09 × 10−3 0.717 0.966

 CD56hi CD16− NK cells 0.816 2.48 × 10−3 0.682 0.951

 CD38+ NK cells 0.778 7.92 × 10−3 0.617 0.939

 CD8+ transitional memory 0.729 2.86 × 10−2 0.561 0.897

 Neutrophils CD15 MFI 0.727 2.98 × 10−2 0.555 0.899

 CD21+ CD27− CD38lo B cells 0.721 3.50 × 10−2 0.552 0.889

 CD69+ CD8 + transitional memory 0.717 3.79 × 10−2 0.556 0.879

 Plasmacytoid dendritic cells 0.712 4.26 × 10−2 0.528 0.896

 Conventional dendritic cells 0.710 4.43 × 10−2 0.518 0.903

 PD1+ NK cells 0.704 5.15 × 10−2 0.533 0.874

 Ki67+ NK cells 0.684 7.94 × 10−2 0.484 0.883

 Monocyte CD16 MFI 0.684 7.94 × 10−2 0.476 0.891

 Monocyte CD14 MFI 0.684 7.94 × 10−2 0.476 0.891

 Monocyte HLA-DR MFI 0.673 9.74 × 10−2 0.446 0.901

 CD16+ NK cells 0.665 1.15 × 10−1 0.486 0.844

 CD21− CD27+ Ki67+ B cells 0.662 1.22 × 10−1 0.463 0.860

 CD69+ CD8+ central memory 0.660 1.26 × 10−1 0.488 0.832

 Non-classical monocytes/monocytes 0.658 1.30 × 10−1 0.479 0.837

 CD38+ HLA-DR+ NK cells 0.652 1.48 × 10−1 0.436 0.867

 CXCR5+ CD8+ central memory 0.646 1.61 × 10−1 0.452 0.841

 Naïve CD4+ T cells 0.618 2.60 × 10−1 0.423 0.813

 CD69+ CD8+ effector memory 0.616 2.67 × 10−1 0.437 0.795

 Dendritic cells 0.614 2.74 × 10−1 0.413 0.816

 CD21+ CD27+ Ki67+ B cells 0.606 3.11 × 10−1 0.400 0.812

 CD16+ monocytes 0.603 3.26 × 10−1 0.387 0.818

 CD38+ NK cells 0.599 3.42 × 10−1 0.361 0.838

 CD16+ immature granulocyte 0.599 3.42 × 10−1 0.416 0.783

 HLA-DR+ NK cells 0.599 3.42 × 10−1 0.398 0.801

 Dendritic cell HLA-DR MFI 0.596 3.59 × 10−1 0.339 0.853

 CD21+ CD27− Ki67+ B cells 0.586 4.12 × 10−1 0.365 0.806

 CD11c+ immature granulocyte 0.586 4.12 × 10−1 0.394 0.778

 Naïve CD8+ T cells 0.582 4.30 × 10−1 0.387 0.778

 CD69+ CD8+ memory 0.579 4.49 × 10−1 0.401 0.757

 CXCR5+ CD8+ MAIT 0.579 4.49 × 10−1 0.400 0.758
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of the intermediate size group (control), and the RCCs of both groups were higher than the RCC of the small-
est group (moderate). The same was observed in model 2 and the BLR model 3′. It might be worth noting that 
these were all the models in which this trend could be identified since both remaining models had 100% RCCs. 
Therefore, all available data agree that sample size is likely an important criterion. Although reaching a sample 
size that satisfies the three-fold role mentioned above is frequently not achievable—due to cost and technical 
limitations—in biomedical research, one should at least repeat experiments multiple times with different sample 
sizes and confirm the consistency of obtained results.

Furthermore, both non-normal distribution and sample size affect the reliability of Box’s M test, which tests 
homoscedasticity of the data. One of the disadvantages of this test is that it was originally designed for use with 
normally distributed data25 and it, therefore, lacks robustness even with mild deviations from normality26. It is 
also problematic when the sample size is either too large or too small. Box’s M test tends to suggest a significant 
lack of homoscedasticity (i.e., p-value below the threshold of significance) when the sample size is too large, 
even in the presence of acceptable levels of variance homogeneity. This issue could be overcome by using a 
more stringent threshold than the usual alpha of 0.05 (e.g., 0.001)45. Box’s M test lacks statistical power with 
small sample sizes46,47, and tends to falsely suggest data homoscedasticity (i.e., p-value above the threshold of 
significance) even when the level of heteroscedasticity is problematic43. In our case, Box’s M suggested significant 
heteroscedasticity, which is not unexpected given the profound deviation from Gaussian distribution in our data. 
Therefore, we relied on the non-parametric Levene’s test, which asserted the homogeneity of variance–covari-
ance matrices between groups.

Due to the difficulty in fully satisfying the assumptions required for optimal performance of the linear discri-
minant function, further research precisely defining the exact limitations of DA in the presence of non-normality 
in real-life data and the practical implications for health and other sciences is needed. In the absence of such 
guidelines that definitively delineate when or when not to use DA and similar techniques, the investigator is 
forced to choose between abandoning these techniques all together or cautiously using them hoping to reach 
useful conclusions in an admittedly suboptimal scenario. Another interesting possibility is running two or more 
techniques (e.g., DA and BLR) in parallel, hoping to have matching results. This latter approach is only valid, 

Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

 Ki67+ immature granulocyte 0.574 4.79 × 10−1 0.392 0.757

 CD8+ effector memory 0.572 4.89 × 10−1 0.374 0.771

 CXCR5+ CD4+ central memory 0.571 4.99 × 10−1 0.369 0.773

 CXCR5+ CD8+ CD45RA+ effector memory 0.567 5.20 × 10−1 0.358 0.777

 Conventional dendritic cell HLA-DR MFI 0.564 5.41 × 10−1 0.327 0.801

 CD123+ immature granulocyte 0.559 5.73 × 10−1 0.371 0.747

 CXCR5+ CD4+ memory 0.554 6.07 × 10−1 0.358 0.750

 CD161+ monocytes 0.551 6.29 × 10−1 0.329 0.772

 CD69+ CD8+ CD45RA+ effector memory 0.544 6.76 × 10−1 0.363 0.724

 CD27+CXCR5+ CD8+ CD45RA+ effector 
memory 0.542 6.87 × 10−1 0.342 0.742

 Ki67+ CD8+ CD45RA+ effector memory 0.532 7.60 × 10−1 0.345 0.719

 CD27− CD69+ CD8+ CD45RA+ effector 
memory 0.530 7.72 × 10−1 0.339 0.722

 Ki67+ neutrophils 0.529 7.84 × 10−1 0.331 0.727

 CXCR5+ CD8+ T cells 0.525 8.09 × 10−1 0.323 0.727

 CXCR5+ CD8+ memory 0.525 8.09 × 10−1 0.329 0.722

 Immature granulocyte CD16 MFI 0.515 8.85 × 10−1 0.313 0.717

 Ki67+ CD4+ transitional memory 0.515 8.85 × 10−1 0.328 0.702

 CD27− PD1+ CD8+ CD45RA+ effector 
memory 0.512 9.10 × 10−1 0.311 0.712

 CD38+ CD161+ NK cells 0.512 9.10 × 10−1 0.287 0.737

 HLA-DR+ neutrophils 0.510 9.23 × 10−1 0.324 0.696

 CD69+ CD4+ central memory 0.510 9.23 × 10−1 0.321 0.699

 Ki67+ CD4+ central memory 0.510 9.23 × 10−1 0.320 0.700

 B cells HLA-DR MFI 0.502 9.87 × 10−1 0.249 0.755

Table 4.   Estimating the predictive ability of various analytes in identifying COVID-19 patients, regardless 
of disease severity status using the area under a receiver operating characteristic curve (AUC) method. BLR 
binary logistic regression probabilities. Shown p-values are corrected for multiple testing using Holm method. 
Cell populations are expressed as percentages of their respective parent populations except for where mean 
fluorescence intensity (MFI) is indicated.
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however, when the mathematical basis of the techniques used are dissimilar enough that the methods could be 
considered independent.

For future development of this project, we hope to be able to test on models in patients to establish whether 
they are effective at classifying patients as severe or moderate disease. By testing a wide range of biomarkers in 
a group of COVID-19 patients, as was done in Kuri-Cervantes’ work, and stratifying those patients into groups 
of potential disease severity, we hope to demonstrate the clinical usefulness of our model as a predictor of dis-
ease course. Further, we hope to update these models with more data to establish more effective distinguishing 
parameters between the different groups of disease severity. Using updated models with more patient data, we 
hope to gain additional insights into the pathogenesis of COVID-19 and what determines disease course. Finally, 
we are interested in updating these models with data involving the cytokine response to COVID-19 infection, to 
see if levels of specific cytokines can help to distinguish severity of COVID-19 infection.

Overall, we conclude that DA remains an invaluable dimension reduction and classification technique in 
health sciences, but we encourage careful interpretation of results and thorough consideration of the level of 
deviation from the assumptions of DA and the level of congruence of conclusion derived from DA with other 
methods, such as logistic regression. We show that the most prominent immunological hallmarks of COVID-
19 disease include depletion of NK cells and T cells and hyperactivation of neutrophils and class-switched 
memory B cells. We also show that the most characteristic early immunological markers of severe COVID-19 
when compared to moderate disease include a more severe depletion of NK cells, depletion of actSMB cells, an 
impaired activation of monocytes, and relative expansion of neutrophils. The pathophysiology of COVID-19, 
including severe or moderate disease, involves depletion of CD8+ MAIT cells, a fact that could be exploited in 
future studies to develop a better understanding of disease pathogenesis or develop interventional novel strate-
gies. Further analyses are needed to define the most important biomarkers out of all measurable, relevant analytes 
(cell populations, expression of surface proteins, cytokines, and more) and the optimum modeling methods that 
maximizes the fidelity of disease severity prediction.

Figure 4.   Evaluation of individual biomarkers, discriminant scores, and binary logistic regression probabilities 
as biomarkers of severe disease among admitted COVID-19 patients. ROC curves were generated using 
data from patients with moderate disease (n = 7) and patients with severe disease (n = 27). ROC curves of (a) 
individual analytes elevated in severe COVID-19, (b) individual analytes decreased in severe COVID-19, (c) 
discriminant function scores, and (d) probabilities of having severe disease computed using binary logistic 
regression are shown.
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Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

Combined profiles

 Discriminant scores 1.000 1.08 × 10−4 1.000 1.000

 BLR probabilities 0.993 1.35 × 10−4 0.970 1.000

AUC (analytes elevated in severe COVID-19)

 Neutrophils 0.900 1.95 × 10−3 0.766 1.000

 CD27+ Ki67+ CD8+ CD45RA+ effector 
memory 0.871 4.01 × 10−3 0.735 1.000

 PD1+ CD4+ transitional memory 0.857 5.67 × 10−3 0.717 0.997

 CD38+ CD4+ transitional memory 0.836 9.31 × 10−3 0.661 1.000

 Ki67+ CD8+ MAIT 0.836 9.31 × 10−3 0.683 0.988

 PD1+ NK cells 0.829 1.09 × 10−2 0.666 0.991

 Ki67+ CD8+ memory 0.821 1.28 × 10−2 0.628 1.000

 PD1+ CD4+ memory 0.814 1.49 × 10−2 0.652 0.976

 PD1+ CD8+ central memory 0.814 1.49 × 10−2 0.649 0.980

 CD27− Ki67+ CD8+ CD45RA+ effector 
memory 0.811 1.61 × 10−2 0.646 0.975

 Ki67+ CD8+ CD45RA+ effector memory 0.807 1.74 × 10−2 0.641 0.973

 PD1+ CD8+ MAIT 0.807 1.74 × 10−2 0.613 1.000

 Ki67+ CD4+ central memory 0.796 2.17 × 10−2 0.582 1.000

 Ki67+ CD8+ central memory 0.796 2.17 × 10−2 0.605 0.988

 PD1+ CD8+ transitional memory 0.793 2.33 × 10−2 0.609 0.977

 PD1+ CD8+ memory 0.793 2.33 × 10−2 0.603 0.983

 CD38+ CD4+ central memory 0.793 2.33 × 10−2 0.619 0.966

 PD1+ CD8+ CD45RA+ effector memory 0.779 3.09 × 10−2 0.568 0.989

 Ki67+ CD8+ effector memory 0.775 3.32 × 10−2 0.595 0.955

 PD1+ CD4+ central memory 0.771 3.55 × 10−2 0.592 0.950

 Ki67+ CD4+ memory 0.768 3.80 × 10−2 0.551 0.985

 CD27+ CD38+ CD8+ CD45RA+ effector 
memory 0.764 4.06 × 10−2 0.571 0.957

 CD27− PD1+ CD8+ CD45RA+ effector 
memory 0.757 4.64 × 10−2 0.528 0.986

 PD1+ CD8+ effector memory 0.754 4.95 × 10−2 0.563 0.944

 CD69+ CD4+ transitional memory 0.746 5.63 × 10−2 0.553 0.940

 Ki67+ NK cells 0.743 5.99 × 10−2 0.562 0.924

 Ki67+ CD8+ transitional memory 0.743 5.99 × 10−2 0.532 0.954

 CD38+ CD4+ memory 0.736 6.79 × 10−2 0.540 0.931

 Plasmablasts 0.736 6.79 × 10−2 0.486 0.986

 CD69+ CD4+ effector memory 0.725 8.14 × 10−2 0.540 0.910

 Ki67+ CD4+ effector memory 0.721 8.63 × 10−2 0.514 0.929

 CD38+ CD8+ central memory 0.721 8.63 × 10−2 0.512 0.931

 CD27+ CD69+ CD8+ CD45RA+ effector 
memory 0.718 9.15 × 10−2 0.527 0.909

 CD21+ CD27− CD38lo B cells 0.714 9.69 × 10−2 0.450 0.978

 PD1+ CD4+ effector memory 0.711 1.03 × 10−1 0.500 0.921

 Classical monocytes/monocytes 0.707 1.09 × 10−1 0.517 0.898

 CD38+ HLA-DR+ CD4+ central memory 0.704 1.15 × 10−1 0.512 0.895

 CD38+ CD8+ transitional memory 0.700 1.21 × 10−1 0.476 0.924

 HLA-DR+ CD4+ central memory 0.686 1.50 × 10−1 0.491 0.880

 Ki67+ CD4+ transitional memory 0.682 1.58 × 10−1 0.463 0.901

 CD38+ CD4+ effector memory 0.664 2.03 × 10−1 0.439 0.889

 CD38+ HLA-DR+ CD4+ transitional 
memory 0.664 2.03 × 10−1 0.456 0.873

 CD4+ CD45RA+ effector memory 0.661 2.13 × 10−1 0.444 0.878

 CD38+ CD8+ memory 0.650 2.45 × 10−1 0.425 0.875

 Immature granulocyte CD16 MFI 0.650 2.45 × 10−1 0.384 0.916

 CD27− CD69+ CD8+ CD45RA+ effector 
memory 0.650 2.45 × 10−1 0.447 0.853

 CD38+ HLA-DR+ CD4+ memory 0.643 2.68 × 10−1 0.442 0.844
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Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

 CD8+ transitional memory 0.639 2.81 × 10−1 0.387 0.892

 Immature granulocyte CD123+ 0.636 2.93 × 10−1 0.379 0.893

 CD4+ effector memory 0.636 2.93 × 10−1 0.432 0.840

 HLA-DR+ CD4+ memory 0.636 2.93 × 10−1 0.429 0.842

 HLA-DR+ CD4+ effector memory 0.636 2.93 × 10−1 0.426 0.846

 CD69+ CD8+ CD45RA+ effector memory 0.632 3.06 × 10−1 0.430 0.835

 CD27+ CD38+ HLA-DR+ CD8+ CD45RA+ 
effector memory 0.618 3.61 × 10−1 0.408 0.828

 HLA-DR+ NK cells 0.614 3.76 × 10−1 0.384 0.844

 CD38+ HLA-DR+ CD4+ effector memory 0.614 3.76 × 10−1 0.381 0.848

 CXCR5+ CD8+ effector memory 0.607 4.07 × 10−1 0.386 0.828

 CD69+ CD8+ MAIT 0.607 4.07 × 10−1 0.380 0.834

 CD69+ CD4+ memory 0.604 4.22 × 10−1 0.396 0.812

 Immature granulocyte CD16+ 0.600 4.39 × 10−1 0.363 0.837

 HLA-DR+ CD8+ central memory 0.600 4.39 × 10−1 0.389 0.811

 CD27+ NK cells 0.600 4.39 × 10−1 0.368 0.832

 CD38+ CD8+ effector memory 0.593 4.72 × 10−1 0.342 0.844

 CD38+ CD8+ CD45RA+ effector memory 0.593 4.72 × 10−1 0.324 0.861

 HLA-DR+ CD4+ transitional memory 0.586 5.07 × 10−1 0.374 0.797

 CD38+ HLA-DR+ CD8+ central memory 0.586 5.07 × 10−1 0.374 0.798

 CD38+ CD8+ MAIT 0.579 5.43 × 10−1 0.318 0.839

 CD38+ HLA-DR+ T-follicular helper 0.557 6.58 × 10−1 0.333 0.781

 CD38+ HLA-DR+ CD8+ transitional 
memory 0.557 6.58 × 10−1 0.335 0.780

 CD27+ HLA-DR+ CD8+ CD45RA+ effector 
memory 0.557 6.58 × 10−1 0.347 0.767

 CD27− CD8+ CD45RA+ effector memory 0.557 6.58 × 10−1 0.334 0.780

 HLA-DR+ T-follicular helper 0.550 6.99 × 10−1 0.320 0.780

 CD161+ monocytes 0.550 6.99 × 10−1 0.255 0.845

 Ki67+ neutrophils 0.543 7.40 × 10−1 0.297 0.789

 CD27− CD38+ CD8+ CD45RA+ effector 
memory 0.543 7.40 × 10−1 0.270 0.815

 Plasmacytoid dendritic cell HLA-DR MFI 0.529 8.25 × 10−1 0.291 0.766

 HLA-DR+ CD8+ transitional memory 0.529 8.25 × 10−1 0.318 0.739

 HLA-DR+ CD8+ memory 0.525 8.46 × 10−1 0.315 0.735

 CXCR5+ CD4+ effector memory 0.521 8.68 × 10−1 0.304 0.739

 CD69+ CD8+ memory 0.521 8.68 × 10−1 0.310 0.733

 CD27− CD8+ T cells 0.514 9.12 × 10−1 0.302 0.727

 CD25+ NK cells 0.514 9.12 × 10−1 0.255 0.773

 Eosinophils CD15 MFI 0.507 9.56 × 10−1 0.263 0.751

 HLA-DR+ CD8+ effector memory 0.507 9.56 × 10−1 0.286 0.728

 CD38+ HLA-DR+ CD8+ effector memory 0.507 9.56 × 10−1 0.264 0.751

 CD38+HLA-DR+ NK cells 0.507 9.56 × 10−1 0.239 0.775

 CD21+CD27+CD38lo B cells 0.504 9.78 × 10−1 0.252 0.756

 CD27+ CXCR5+ CD8+ CD45RA+ effector 
memory 0.500 1.00E+00 0.262 0.738

 B cells HLA-DR MFI 0.500 1.00E+00 0.256 0.744

AUC (analytes decreased in severe COVID-19)

 Monocyte HLA-DR MFI 0.993 1.35 × 10−4 0.970 1.000

 T cells 0.957 3.99 × 10−4 0.879 1.000

 NK cells 0.957 3.99 × 10−4 0.873 1.000

 CD4+ T cells 0.936 7.38 × 10−4 0.844 1.000

 Dendritic cells 0.932 8.16 × 10−4 0.835 1.000

 CD56dim CD16+ NK cells 0.929 9.01 × 10−4 0.825 1.000

 B cells 0.907 1.61 × 10−3 0.786 1.000

 CD25+ CD8+ MAIT 0.879 3.36 × 10−3 0.746 1.000

 CD25+ CD8+ transitional memory 0.857 5.67 × 10−3 0.706 1.000
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Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

 CD25+ CD8+ CD45RA+ effector memory 0.843 7.91 × 10−3 0.620 1.000

 Innate lymphoid cells 0.829 1.09 × 10−2 0.658 0.999

 CD8+ T cells 0.829 1.09 × 10−2 0.673 0.984

 CD56hi CD16− NK cells 0.821 1.28 × 10−2 0.666 0.977

 NK cell CD16 MFI 0.814 1.49 × 10−2 0.645 0.984

 CD16+ NK cells 0.800 2.01 × 10−2 0.602 0.998

 Plasmacytoid dendritic cells 0.796 2.17 × 10−2 0.631 0.962

 CD25+ CD27+ CD8+ CD45RA+ effector 
memory 0.782 2.89 × 10−2 0.553 1.000

 MAIT 0.771 3.55 × 10−2 0.535 1.000

 CD25+ CD27− CD8+ CD45RA+ effector 
memory 0.764 4.06 × 10−2 0.545 0.983

 Neutrophil CD16 MFI 0.757 4.64 × 10−2 0.528 0.986

 CD25+ CD8+ memory 0.736 6.79 × 10−2 0.553 0.919

 Conventional dendritic cells 0.736 6.79 × 10−2 0.537 0.935

 CD21+ CD27+ Ki67+ B cells 0.732 7.21 × 10−2 0.478 0.986

 CD16+ monocytes 0.729 7.66 × 10−2 0.539 0.919

 Non-classical monocytes/monocytes 0.700 1.21 × 10−1 0.465 0.935

 CD25+ CD8+ central memory 0.693 1.35 × 10−1 0.466 0.920

 CD4+ central memory 0.679 1.67 × 10−1 0.418 0.939

 Neutrophils CD15 MFI 0.675 1.75 × 10−1 0.471 0.879

 CD8+ central memory 0.664 2.03 × 10−1 0.453 0.876

 CD21− CD27+ CD38lo B cells 0.661 2.13 × 10−1 0.359 0.963

 Intermediate monocytes/monocytes 0.657 2.24 × 10−1 0.452 0.862

 CXCR5+ CD8+ transitional memory 0.657 2.24 × 10−1 0.448 0.866

 CD38+ NK cells 0.654 2.34 × 10−1 0.406 0.902

 CD21−CD27−CD38lo B cells 0.643 2.68 × 10−1 0.395 0.891

 CD21− CD27+ Ki67+ B cells 0.643 2.68 × 10−1 0.412 0.874

 Monocyte CD16 MFI 0.643 2.68 × 10−1 0.398 0.888

 Conventional dendritic cells HLA-DR MFI 0.636 2.93 × 10−1 0.393 0.878

 CXCR5+ CD4+ memory 0.636 2.93 × 10−1 0.425 0.847

 Monocyte CD14 MFI 0.636 2.93 × 10−1 0.380 0.891

 HLA-DR+ neutrophils 0.629 3.19 × 10−1 0.360 0.897

 Non-classical monocytes 0.621 3.47 × 10−1 0.371 0.872

 Naïve CD8+ T cells 0.621 3.47 × 10−1 0.407 0.836

 CD38+ NK cells 0.621 3.47 × 10−1 0.406 0.837

 CD11c+ immature granulocyte 0.614 3.76 × 10−1 0.375 0.854

 CD38+ CD161+ NK cells 0.614 3.76 × 10−1 0.362 0.867

 Intermediate monocytes 0.614 3.76 × 10−1 0.392 0.837

 CXCR5+ CD8+ CD45RA+ effector memory 0.611 3.91 × 10−1 0.404 0.818

 CXCR5+ CD8+ central memory 0.607 4.07 × 10−1 0.402 0.812

 CD27− HLA-DR+ CD8+ CD45RA+ effector 
memory 0.607 4.07 × 10−1 0.385 0.830

 Dendritic cell HLA-DR MFI 0.607 4.07 × 10−1 0.340 0.874

 CD27+ CD8+ CD45RA+ effector memory 0.604 4.22 × 10−1 0.378 0.829

 CXCR5+ CD8+ memory 0.600 4.39 × 10−1 0.386 0.814

 HLA-DR+ CD8+ CD45RA+ effector memory 0.600 4.39 × 10−1 0.383 0.817

 CD25+ CD8+ effector memory 0.600 4.39 × 10−1 0.388 0.812

 CXCR5+ CD4+ central memory 0.596 4.55 × 10−1 0.385 0.808

 CD27+ CD8+ T cells 0.596 4.55 × 10−1 0.389 0.804

 CD21+ CD27− Ki67+ B cells 0.596 4.55 × 10−1 0.360 0.833

 CD21− CD27− Ki67+ B cells 0.593 4.72 × 10−1 0.338 0.848

 Classical monocytes 0.586 5.07 × 10−1 0.348 0.823

 CXCR5+ CD8+ T cells 0.579 5.43 × 10−1 0.336 0.821

 CD69+ CD8+ central memory 0.579 5.43 × 10−1 0.369 0.788

 CD27− CD38+ HLA-DR+ CD8+ CD45RA+ 
effector memory 0.571 5.80 × 10−1 0.289 0.854
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Methods
Source of data.  The current study is a reanalysis of previously published data8. We analyzed 27 COVID-19 
patients (7 moderate disease and 20 severe disease) and 11 healthy control subjects. Data were downloaded from 
the website of the Human Pancreas Analysis Program (HPAP; https://​hpap.​pmacs.​upenn.​edu), Perelman School 
of Medicine, University of Pennsylvania, Philadelphia, PA. Blood specimens were collected and analyzed from 
8 additional participants of unknown disease status at the Perelman School of Medicine and blinded data were 
shared with the University of Missouri Kansas City team for analysis. Informed consent was obtained from all 
participants or their surrogates, and the project was approved by University of Pennsylvania ethical research 
board. The study was conducted in Declaration of Helsinki. Flow cytometry data analysis was performed using 
FlowJo™ Software48. One hundred and seventy-one flow cytometry variables (Supplemental Table  S1) were 
selected for inclusion in this study.

Initial screening of data.  DA functions optimally when certain assumptions are satisfied. The data are 
assumed to be multivariate normal38, which requires univariate normality of each of the variables49. Further-
more, it has been shown that linear combinations of two or more normally distributed continuous variables are 
also normally distributed50. Therefore, we tested the normality of each of the variables individually using the 
Shapiro–Wilk’s test. The null hypothesis tested by the Shapiro–Wilk’s test is that a dataset does not significantly 
differ from a normal distribution. A p-value is computed to reject or retain the null hypothesis. A statistic (W) 
is computed that equals “1” for datasets that perfectly conform to normality, while smaller values imply propor-
tionate deviations from normal distribution. Therefore, a dataset is considered normally distributed when W 
approaches “1” and the null hypothesis is retained by a p-value greater than 0.0551. We also computed skewness 
(i.e., asymmetric distribution around the mean) and kurtosis (i.e., the sharpness of the frequency-distribution 
curve) for each predictor variable. The range of skewness and kurtosis values within which data are considered 
normal is not definitively identified in the literature. Multiple investigators accept skewness and kurtosis val-
ues between − 1 and + 152, while others accept a wider range from − 2 to + 253. Another assumption of DA is the 
absence of multicollinearity or highly correlated predictor variables38. Pearson moment correlation coefficient 
was used to calculate a correlation matrix including all predictor variables to verify the absence of highly corre-
lated variables with correlation coefficients approaching 1 or − 1. DA also assumes homoscedasticity or equality 
of variance–covariance matrices across all levels of the dependent variable54. This can be tested in SPSS using 
Box’s M test, which tests the null hypothesis stipulating that the variance–covariance matrices are equal across all 
groups25. However, given that most of our variables were not normally distributed (Supplemental Table S1), the 
nonparametric Levene’s test—a more robust test when the assumption of multivariate normality is violated55—

Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

 CD38+ HLA-DR+ CD8+ CD45RA+ effector 
memory 0.564 6.19 × 10−1 0.326 0.802

 CXCR5+ CD4+ transitional memory 0.564 6.19 × 10−1 0.335 0.794

 CD27− CXCR5+ CD8+ CD45RA+ effector 
memory 0.554 6.78 × 10−1 0.315 0.792

 CD4+ transitional memory 0.550 6.99 × 10−1 0.310 0.790

 CD8+ CD45RA+ effector memory 0.550 6.99 × 10−1 0.338 0.762

 CXCR5+ CD8+ MAIT 0.550 6.99 × 10−1 0.301 0.799

Monocytes 0.543 7.40 × 10−1 0.293 0.793

 CD8+ effector memory 0.543 7.40 × 10−1 0.316 0.770

 CD69+ CD8+ transitional memory 0.543 7.40 × 10−1 0.331 0.755

 CD4+ Tregs 0.536 7.82 × 10−1 0.303 0.768

 CD38+ HLA-DR+ CD8+ MAIT 0.536 7.82 × 10−1 0.311 0.761

 Ki67+ immature granulocyte 0.536 7.82 × 10−1 0.266 0.806

 Immature granulocyte 0.529 8.25 × 10−1 0.253 0.804

 HLA-DR+ CD8+ MAIT 0.521 8.68 × 10−1 0.285 0.758

 Circulating T-follicular helper 0.521 8.68 × 10−1 0.283 0.760

 CD69+ CD8+ effector memory 0.518 8.90 × 10−1 0.307 0.729

 CD38+ HLA-DR+ CD8+ memory 0.514 9.12 × 10−1 0.293 0.736

 Naïve CD4+ T cells 0.514 9.12 × 10−1 0.264 0.764

 CD69+ CD4+ central memory 0.511 9.34 × 10−1 0.293 0.729

 Eosinophils 0.504 9.78 × 10−1 0.233 0.774

Table 5.   Estimating the predictive ability of various analytes in identifying severe COVID-19 patients 
in a patient population with either moderate or severe disease using the area under a receiver operating 
characteristic curve (AUC) method. BLR binary logistic regression probabilities. Shown p-values are corrected 
for multiple testing using Holm method. Cell populations are expressed as percentages of their respective 
parent populations except for where mean fluorescence intensity (MFI) is indicated.

https://hpap.pmacs.upenn.edu
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was more appropriate. Both tests were performed to compare the results and determine whether conclusions 
made based on one test were consistent with those made based on the other. Shapiro–Wilk’s test, Pearson corre-
lations, Box’s M test, and nonparametric Levene’s test were performed using IBM SPSS version 26 (IBM Corpo-
ration, Armonk, NY). We also screened the data for the presence of potential outliers, which is another assump-
tion of DA56. We used a modification of the method described by Hoaglin et al.57. Briefly, scores outside a range 
defined by lower and upper limits were considered potential outliers. The lower and upper limits were calculated 
using Eqs. (1) and (2), respectively. Quartiles were determined using Excel function “QUARTILE.EXC”.

where Q1 and Q3 are the first and third quartiles, IQR is the interquartile range obtained by subtracting Q1 from 
Q3, and k is a constant equal to 2.257.

Discriminant analysis.  DA is a data reduction method that combines correlated predictor variables into 
fewer new variables called canonical discriminant functions. The goal of DA is to simplify visualization and 
interpretation of the data, while maximizing discrimination between groups of interest. DA can be performed by 
sequentially incorporating predictor variables that significantly improve the discriminant model, while ignoring 
variables that offer no significant improvement to the model; this method is called stepwise DA. DA can also be 
done by incorporating all variables at once. In this study, we used the stepwise method to limit the discriminant 
model to the most effective predictor variables. The overall predictive ability and significance of the discriminant 
model were evaluated by the Wilks’ λ statistic, which reflects the proportion of variance in the discriminant 
model that is not predictive of group membership. Wilks’ λ ranges from zero to one, with zero corresponding to 
perfect prediction of group membership and one corresponding to a complete lack of group predictive power. 
A Chi-square test was performed to test the null hypothesis that the discriminant model’s predictive power is 
no different from random prediction with a p-values < 0.05 indicating that the model is significantly different 
from random prediction43. Discriminant models were also evaluated by classifying subjects into groups based 
on the model and computing the rate of correct classification (RCC). Each subject was removed from the model 
prior to classification into a group. We have also evaluated the effectiveness of individual discriminant functions 

(1)Lower limit = Q1−k(IQR),

(2)Upper limit = Q3+k(IQR),

Figure 5.   Evaluation of the ability of individual biomarkers and discriminant analysis-based multivariate 
biomarkers to predict severe COVID-19 disease in a population of healthy donors and COVID-19 patients. 
ROC curves were generated using data from healthy control participants (n = 12), patients with moderate 
disease (n = 7), and patients with severe disease (n = 27). ROC curves of (a) individual analytes elevated in severe 
COVID-19, (b) individual analytes decreased in severe COVID-19, (c) discriminant scores from functions 1 
and 2.
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Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

Combined profiles

 Discriminant function 1 scores 1.000 1.42 × 10−7 1.000 1.000

 Discriminant function 2 scores 0.503 0.977 0.295 0.710

AUC (analytes elevated in severe COVID-19)

 Neutrophils 0.917 1.16 × 10−5 0.812 1.000

 Plasmablasts 0.883 5.47 × 10−5 0.763 1.000

 CD38+ CD4+ transitional memory 0.875 7.92 × 10−5 0.759 0.991

 PD1+ CD4+ transitional memory 0.856 1.82 × 10−4 0.724 0.987

 PD1+ CD8+ transitional memory 0.842 3.23 × 10−4 0.701 0.982

 CD38+ CD8+ transitional memory 0.839 3.62 × 10−4 0.704 0.974

 CD27+ CD38+ CD8+ CD45RA+ effector 
memory 0.828 5.61 × 10−4 0.692 0.963

 PD1+ CD4+ memory 0.821 7.34 × 10−4 0.684 0.957

 CD38+ CD8+ memory 0.819 7.74 × 10−4 0.686 0.953

 CD38+ HLA-DR+ CD4+ central memory 0.801 1.51 × 10−3 0.655 0.947

 CD38+ HLA-DR+ CD8+ central memory 0.794 1.94 × 10−3 0.654 0.935

 CD38+ CD4+ memory 0.793 2.04 × 10−3 0.651 0.935

 CD38+ CD8+ central memory 0.789 2.36 × 10−3 0.646 0.932

 CD38+ HLA-DR+ CD4+ memory 0.786 2.60 × 10−3 0.641 0.932

 CD38+ HLA-DR+ CD4+ transitional 
memory 0.783 2.86 × 10−3 0.635 0.931

 CD38+ CD8+ effector memory 0.782 3.00 × 10−3 0.634 0.930

 PD1+ CD8+ MAIT 0.781 3.15 × 10−3 0.630 0.931

 CD38+ CD4+ effector memory 0.781 3.15 × 10−3 0.635 0.926

 CD38+ HLA-DR+ CD8+ effector memory 0.772 4.17 × 10−3 0.617 0.927

 CD38+ CD4+ central memory 0.769 4.57 × 10−3 0.618 0.921

 CD38+ HLA-DR+ CD4+ effector memory 0.769 4.57 × 10−3 0.617 0.922

 PD1+ CD8+ central memory 0.765 5.24 × 10−3 0.613 0.917

 PD1+ CD4+ central memory 0.764 5.48 × 10−3 0.611 0.917

 CD38+ HLA-DR+ circulating T-follicular 
helper 0.760 6.27 × 10−3 0.609 0.911

 CD38+ HLA-DR+ CD8+ transitional 
memory 0.760 6.27 × 10−3 0.605 0.914

 Ki67+ CD8+ memory 0.758 6.55 × 10−3 0.607 0.910

 CD38+CD8+ CD45RA+ effector memory 0.758 6.55 × 10−3 0.603 0.914

 CD27+ CD38+ HLA-DR+ CD8+ CD45RA+ 
effector memory 0.757 6.85 × 10−3 0.598 0.916

 CD38+ HLA-DR+ CD8+ memory 0.756 7.15 × 10−3 0.602 0.909

 PD1+ CD4+ effector memory 0.751 8.15 × 10−3 0.590 0.913

 PD1+ CD8+ memory 0.744 1.01 × 10−2 0.588 0.901

 Ki67+ CD8+ central memory 0.736 1.30 × 10−2 0.579 0.894

 CD38+ CD8+ MAIT 0.729 1.59 × 10−2 0.556 0.902

 Ki67+ CD8+ effector memory 0.725 1.79 × 10−2 0.564 0.886

 CD27+ Ki67+ CD8+ CD45RA+ effector 
memory 0.725 1.79 × 10−2 0.562 0.888

 CD38+ HLA-DR+ CD8+ CD45RA+ effector 
memory 0.725 1.79 × 10−2 0.558 0.892

 HLA-DR+ CD4+ central memory 0.725 1.79 × 10−2 0.555 0.895

 Ki67+ CD8+ MAIT 0.708 2.83 × 10−2 0.540 0.877

 HLA-DR+ CD4+ memory 0.706 3.05 × 10−2 0.528 0.883

 HLA-DR+ circulating T-follicular helper 0.703 3.28 × 10−2 0.535 0.870

 CD27− CD38+ CD8+ CD45RA+ effector 
memory 0.703 3.28 × 10−2 0.534 0.872

 Eosinophils 0.697 3.79 × 10−2 0.524 0.870

 Ki67+ CD4+ memory 0.690 4.52 × 10−2 0.518 0.862

 HLA-DR+ CD8+ central memory 0.683 5.37 × 10−2 0.502 0.864

 CD27− CD38+ HLA-DR+ CD8+ CD45RA+ 
effector memory 0.683 5.37 × 10−2 0.506 0.860
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Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

 CD27− Ki67+ CD8+ CD45RA+ effector 
memory 0.678 6.13 × 10−2 0.506 0.849

 HLA-DR+ CD8+ memory 0.676 6.34 × 10−2 0.500 0.852

 PD1+ CD8+ CD45RA+ effector memory 0.675 6.55 × 10−2 0.503 0.847

 Ki67+ CD8+ CD45RA+ effector memory 0.669 7.45 × 10−2 0.496 0.843

 Ki67+ CD4+ central memory 0.669 7.45 × 10−2 0.493 0.845

 CD69+ CD8+ MAIT 0.667 7.94 × 10−2 0.490 0.843

 HLA-DR+ CD8+ effector memory 0.667 7.94 × 10−2 0.489 0.844

 CD69+ CD4+ effector memory 0.664 8.45 × 10−2 0.485 0.843

 PD1+ CD8+ effector memory 0.663 8.72 × 10−2 0.488 0.837

 HLA-DR+ CD4+ effector memory 0.660 9.28 × 10−2 0.481 0.838

 Ki67+ CD8+ transitional memory 0.658 9.56 × 10−2 0.484 0.833

 HLA-DR+ CD8+ MAIT 0.658 9.56 × 10−2 0.480 0.837

 CD27+ HLA-DR+ CD8+ CD45RA+ effector 
memory 0.657 9.86 × 10−2 0.476 0.838

 CD69+ CD4+ transitional memory 0.651 1.11 × 10−1 0.476 0.827

 Ki67+ CD4+ effector memory 0.643 1.32 × 10−1 0.466 0.820

 HLA-DR+ CD8+ transitional memory 0.642 1.36 × 10−1 0.458 0.825

 CD27+ CD69+ CD8+ CD45RA+ effector 
memory 0.640 1.40 × 10−1 0.455 0.826

 CD21− CD27− CD38lo B cells 0.639 1.44 × 10−1 0.456 0.821

 CD38+ HLA-DR+ CD8+ MAIT 0.635 1.56 × 10−1 0.450 0.820

 CD27− PD1+ CD8+ CD45RA+ effector 
memory 0.633 1.61 × 10−1 0.452 0.814

 HLA-DR+ CD4+ transitional memory 0.622 1.98 × 10−1 0.438 0.807

 CXCR5+ CD8+ effector memory 0.618 2.14 × 10−1 0.430 0.806

 CD27− CD8+ CD45RA+ effector memory 0.617 2.19 × 10−1 0.426 0.807

 CD27− CD8+ T cells 0.614 2.31 × 10−1 0.428 0.799

 CD69+ CD4+ memory 0.611 2.42 × 10−1 0.427 0.795

 Classical monocytes/monocytes 0.608 2.54 × 10−1 0.424 0.792

 Immature granulocyte 0.607 2.60 × 10−1 0.423 0.791

 CD4+ CD45RA+ effector memory 0.607 2.60 × 10−1 0.425 0.789

 Ki67+ CD4+ transitional memory 0.604 2.73 × 10−1 0.420 0.788

 HLA-DR+ CD8+ CD45RA+ effector memory 0.603 2.79 × 10−1 0.418 0.787

 CD27− HLA-DR+ CD8+ CD45RA+ effector 
memory 0.597 3.06 × 10−1 0.413 0.781

 CD25+ NK cells 0.588 3.57 × 10−1 0.402 0.773

 Plasmacytoid dendritic cell HLA-DR MFI 0.582 3.88 × 10−1 0.395 0.769

 CD25+ CD8+ effector memory 0.581 3.97 × 10−1 0.393 0.768

 CD4+ effector memory 0.581 3.97 × 10−1 0.395 0.766

 Monocytes 0.578 4.13 × 10−1 0.387 0.768

 CD27− CD69+ CD8+ CD45RA+ effector 
memory 0.576 4.21 × 10−1 0.389 0.764

 CD27+ NK cells 0.572 4.47 × 10−1 0.381 0.763

 Immature granulocyte CD16 MFI 0.569 4.65 × 10−1 0.384 0.755

 CD69+ CD8+ CD45RA+ effector memory 0.563 5.11 × 10−1 0.369 0.756

 PD1+ NK cells 0.556 5.59 × 10−1 0.368 0.743

 Classical monocytes 0.551 5.89 × 10−1 0.364 0.739

 CD25+ CD8+ central memory 0.544 6.40 × 10−1 0.357 0.732

 CD123+ immature granulocyte 0.542 6.61 × 10−1 0.355 0.728

 CD8+ CD45RA+ effector memory 0.542 6.61 × 10−1 0.354 0.730

 CXCR5+ CD4+ transitional memory 0.539 6.82 × 10−1 0.351 0.726

 CD21− CD27+ CD38lo B cells 0.536 7.04 × 10−1 0.342 0.730

 Intermediate monocytes 0.526 7.81 × 10−1 0.338 0.714

 CXCR5+ CD4+ effector memory 0.525 7.92 × 10−1 0.334 0.716

 CD25+ CD8+ memory 0.524 8.04 × 10−1 0.337 0.710

 CD4+ Tregs 0.519 8.38 × 10−1 0.330 0.709
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Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

 Ki67+ NK cells 0.517 8.61 × 10−1 0.328 0.706

 Eosinophil CD15 MFI 0.514 8.84 × 10−1 0.326 0.702

 Ki67+ neutrophils 0.506 9.53 × 10−1 0.318 0.693

 CD161+ monocytes 0.504 9.65 × 10−1 0.308 0.700

 CD16+ immature granulocyte 0.503 9.77 × 10−1 0.316 0.690

 HLA-DR+ NK cells 0.503 9.77 × 10−1 0.316 0.689

 Circulating T-follicular helper 0.500 1.00 0.312 0.688

 B cells HLA-DR MFI 0.500 1.00 0.306 0.694

AUC (analytes decreased in severe COVID-19)

 T cells 0.981 4.24 × 10−7 0.946 1.000

 NK cells 0.969 7.78 × 10−7 0.909 1.000

 CD4+ T cells 0.947 2.52 × 10−6 0.871 1.000

 CD56dim CD16+ NK cells 0.942 3.35 × 10−6 0.849 1.000

 B cells 0.922 8.84 × 10−6 0.829 1.000

 MAIT 0.911 1.51 × 10−5 0.805 1.000

 CD8+ T cells 0.903 2.24 × 10−5 0.804 1.000

 Innate lymphoid cells 0.896 3.10 × 10−5 0.798 0.994

 NK cells CD16 MFI 0.864 1.28 × 10−4 0.749 0.978

 CD56hi CD16− NK cells 0.858 1.62 × 10−4 0.735 0.982

 Neutrophil CD16 MFI 0.850 2.30 × 10−4 0.715 0.985

 Monocyte HLA-DR MFI 0.833 4.51 × 10−4 0.686 0.981

 Dendritic cells 0.808 1.17 × 10−3 0.664 0.952

 Plasmacytoid dendritic cells 0.781 3.15 × 10−3 0.627 0.934

 CD16+ NK cells 0.767 5.01 × 10−3 0.611 0.923

 Conventional dendritic cells 0.753 7.80 × 10−3 0.595 0.911

 CD38+ NK cells 0.749 8.88 × 10−3 0.593 0.904

 Neutrophil CD15 MFI 0.724 1.86 × 10−2 0.563 0.885

 CD25+ CD8+ MAIT 0.722 1.93 × 10−2 0.559 0.886

 Non-classical monocytes/Monocytes 0.708 2.83 × 10−2 0.540 0.877

 CD21+ CD27+ CD38lo B cells 0.701 3.40 × 10−2 0.528 0.875

 CD21+ CD27+ Ki67+ B cells 0.682 5.55 × 10−2 0.507 0.857

 Monocyte CD16 MFI 0.681 5.74 × 10−2 0.509 0.853

 Monocyte CD14 MFI 0.678 6.13 × 10−2 0.502 0.854

 CD16+ monocytes 0.678 6.13 × 10−2 0.504 0.851

 CD21− CD27+ Ki67+ B cells 0.671 7.22 × 10−2 0.495 0.846

 CD25+ CD8+ CD45RA+ effector memory 0.669 7.45 × 10−2 0.491 0.848

 CXCR5+ CD8+ central memory 0.631 1.69 × 10−1 0.445 0.816

 CD69+ CD8+ central memory 0.622 1.98 × 10−1 0.429 0.815

 Naïve CD8+ T cells 0.614 2.31 × 10−1 0.427 0.801

 CD11c+ immature granulocyte 0.614 2.31 × 10−1 0.432 0.796

 Dendritic cells HLA-DR MFI 0.611 2.42 × 10−1 0.414 0.808

 CD69+ CD8+ transitional memory 0.611 2.42 × 10−1 0.414 0.809

 CD38+ NK cells 0.608 2.54 × 10−1 0.420 0.796

 CD25+ CD27− CD8+ CD45RA+ effector 
memory 0.608 2.54 × 10−1 0.425 0.791

 CXCR5+ CD4+ T cells 0.604 2.73 × 10−1 0.415 0.793

 CD21+ CD27− Ki67+ B cells 0.604 2.73 × 10−1 0.422 0.787

 Conventional dendritic cell HLA-DR MFI 0.604 2.73 × 10−1 0.416 0.793

 CXCR5+ CD8+ transitional memory 0.601 2.86 × 10−1 0.412 0.791

 CXCR5+ CD8+ CD45RA+ effector memory_ 0.597 3.06 × 10−1 0.411 0.784

 CXCR5+ CD4+ central memory_ 0.588 3.57 × 10−1 0.400 0.775

 CD38+ HLA-DR+ NK cells 0.586 3.65 × 10−1 0.399 0.774

 CD8+ central memory 0.582 3.88 × 10−1 0.396 0.768

 Naïve CD4+ T cells 0.579 4.05 × 10−1 0.393 0.766

 HLA-DR+ neutrophils 0.579 4.05 × 10−1 0.396 0.762

 CD38+ CD161+ NK cells 0.572 4.47 × 10−1 0.380 0.764
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and the relative importance of each variable included in the model. Discriminant functions were evaluated 
based on the corresponding eigenvalue and canonical correlation. The eigenvalue reflects the amount of variance 
explained by the discriminant function, thus, the greater this value, the better the quality of the discriminant 
function58. Canonical correlations measure the discriminant function’s correlation with the groups, which is 
higher for higher quality functions59. One way we evaluated the potential of individual variables for being ben-
eficial for the model was by performing one-way ANOVA to test differences between group means among all 
variables, regardless of whether they were incorporated into the model, with an adjusted p-value threshold of 
0.05. The p-values were adjusted for multiple testing using the method described by Holm60, which was executed 
in SPSS using a modified version of the syntax written by Raynald Levesque and improved by Marta Garcia-
Granero61. We also performed pairwise comparisons on the variables incorporated into a model using a t-test 
p-value cutoff of 0.05 with a Holm–Sidak correction for multiple testing. This was done using GraphPad Prism 
version 6 for Windows (GraphPad Software, San Diego, California USA, www.​graph​pad.​com). Individual vari-

Variable Area p-value

Asymptotic 95% confidence interval

Lower bound Upper bound

 CD8+ effector memory 0.567 4.83 × 10−1 0.380 0.753

 CD8+ transitional memory 0.567 4.83 × 10−1 0.381 0.753

 CXCR5+ CD8+ memory T cells 0.565 4.92 × 10−1 0.372 0.758

 CD27+ CD8+ CD45RA+ effector memory 0.565 4.92 × 10−1 0.375 0.755

 CXCR5+ CD8+ T cells 0.564 5.01 × 10−1 0.371 0.756

 CD69+ CD8+ effector memory 0.560 5.30 × 10−1 0.362 0.758

 Ki67+ immature granulocyte 0.560 5.30 × 10−1 0.373 0.746

 CXCR5+ CD8+ MAIT 0.557 5.49 × 10−1 0.361 0.753

 CD25+ CD27+ CD8+ CD45RA+ effector 
memory_ 0.550 5.99 × 10−1 0.361 0.739

 CD4+ central memory 0.544 6.40 × 10−1 0.353 0.736

 CD25+ CD8+ transitional memory 0.539 6.82 × 10−1 0.348 0.729

 Non-classical monocytes 0.539 6.82 × 10−1 0.348 0.730

 Intermediate monocytes/monocytes 0.536 7.04 × 10−1 0.349 0.723

 CD21+ CD27− CD38lo B cells 0.531 7.48 × 10−1 0.339 0.722

 CD27+ CD8+ T cells 0.526 7.81 × 10−1 0.336 0.717

 CD27+ CXCR5+ CD8+ CD45RA+ effector 
memory 0.521 8.26 × 10−1 0.328 0.714

 CD69+ CD8+ memory 0.517 8.61 × 10−1 0.319 0.714

 CD21− CD27− Ki67+ B cells 0.515 8.72 × 10−1 0.324 0.706

 CD4+ transitional memory 0.508 9.30 × 10−1 0.321 0.696

 CD69+ CD4+ central memory 0.507 9.42 × 10−1 0.315 0.698

 CD27− CXCR5+ CD8+ CD45RA+ effector 
memory 0.504 9.65 × 10−1 0.318 0.690

Table 6.   Estimating the predictive ability of individual biomarkers in identifying severe COVID-19 patients 
in a population composed of uninfected participants as well as COVID-19 patients with either moderate or 
severe disease using the area under a receiver operating characteristic curve (AUC) method. Shown p-values 
are corrected for multiple testing using Holm method. Cell populations are expressed as percentages of their 
respective parent populations except for where mean fluorescence intensity (MFI) is indicated.

Table 7.   Blinded classification of unknown participants. RCC​ rate of correct classification.

Participant ID Actual classification Model 1 Model 2 Model 3 Model 2′ Model 3′

U1 Moderate Severe Covid Severe Covid Moderate

U2 Moderate Moderate Control Severe Covid Moderate

U3 Severe Severe Covid Severe Covid Severe

U5 Severe Severe Covid Severe Covid Moderate

U6 Moderate Severe Covid Moderate Covid Moderate

U7 Moderate Severe Covid Severe Covid Moderate

U8 Mild Moderate Covid Moderate Covid Moderate

U9 Mild Control Covid Moderate Control Moderate

Overall RCC​ – 50% 87.5% 62.5% 87.5% 87.5%

http://www.graphpad.com
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ables were also evaluated using the Wilks’ λ statistic, which reflects the proportion of the biomarker variance 
that was not explained by differences between groups. Wilks’ λ of the most useful variables to the discriminant 
model tend approach zero, implying that almost all variance of that variable can be explained by differences 
between groups43. The third criterion looked at to evaluate individual variables was the direct contribution of 
the variable to the discriminant model expressed as a scaler or the standardized canonical discriminant function 
coefficient62. DA was performed using IBM SPSS version 26 (IBM Corporation, Armonk, NY).

Binary logistic regression.  Binary logistic regression was performed using IBM SPSS version 26 (IBM 
Corporation, Armonk, NY). This statistical technique uses a participant’s scores on one or more predictor vari-
ables to predict the odds of that participant falling in one of the two outcomes of a binary dependent variable43. 
For example, using binary logistic regression, we can calculate the odds of survival of a patient based on the 
patient’s clinical and demographic data. Since the odds and predictor variables rarely form linear relationships, 
the natural logarithm of odds—also known as Logit or Li—is computed from the scores of predictor variables 
(Xi) multiplied times weights or coefficients (Bi) (Eq. 3). These coefficients are selected to maximize the goodness 
of fit of the model. The coefficients selected are the ones that lead to the highest success rate in correctly clas-
sifying participants into their corresponding groups. These weights represent the predicted change in Li for each 
unit increase in the corresponding predictor variable, therefore, they can be used to evaluate the importance of 
individual predictor variables to the model.

where Li is the Logit statistic, Bi is the ith logistic regression coefficient, and Xi is the ith predictor variable.
Since Li is the natural log of odds, it can be used to calculate the odds of belonging to a target group or the 

probability of belonging to that group. The odds can be calculated by simply raising e to the power of Li (Eq. 4), 
and the probability (Yi) can be calculating by substituting into Eq. (5).

where Yi is the probability of belonging to a target group, Li is the Logit statistic, and e is the base of the natural 
log and is approximately equal to 2.71828.

Here, we developed models based on participants with known groups, hoping to ultimately enable the use 
of these models in clinical practice to predict patient outcomes. The quality of logistic regression models was 
evaluated based on multiple criteria. One criterion is how different the predictive model is from a “null” model 
that contains no predictor variables. A null model is based on the number of participants in each of the two 
groups with no predictors in the equation. By substitution in Eq. (5), Li of a null model is equal to B0, which is also 
equal to ln [Odds]. In the absence of predictors, the odds of having one outcome in a null model is obtained by 
dividing the number of times that outcome occurs by the number of times the alternate outcome occurs (Eq. 6)43.

A null model assigns the same odds to all participants and predicts them all to belong to one group, the one 
with larger number of participants. Naturally, many participants will be misclassified using the null model. Pre-
dictive models must be significantly better at correctly classifying participants compared to the null model. Since 
we built our models stepwise, the first step had to significantly improve the fidelity of prediction over the null 
model and each subsequent step had to introduce a significant improvement over its predecessor. The model is 
complete when no more significant improvements can be made by incorporating additional predictors or when 
all predictors have been incorporated. The significance of the difference between a predictive model and the null 
model is tested by a Chi-square test with p-values below 0.05 considered significance. Once a predictive model 
is determined to be a significant improvement over the null model, additional testing is needed to evaluate the 
quality of this improvement. For this this purpose, we used the Hosmer–Lemeshow test and the Nagelkerke’s 
pseudo-R2. The Hosmer–Lemeshow test tests the null hypothesis that the model predicts group membership 
with perfect accuracy. This null hypothesis is retained with p-values greater than 0.05 when group membership 
predicted by the logistic regression model match observed group membership63. Nagelkerke’s pseudo-R2 can take 
values between zero and one, with higher values obtained with better models64. Finally, we empirically evaluated 
binary logistic regression models by calculating the RCC associated with each model. For high quality models, 
it may also be informative to evaluate the relative contribution of predictor variables to the model. This was 
evaluated by testing the significance of each variable’s contribution and the regression coefficients assigned to 
each predictor variable. The regression coefficients reflect the predicted change in log odds with unit change in 
the predictor variable, with odds here referring to the odds of falling into a target group43. The limitation of this 
approach is that it fails to compute regression coefficients or a meaningful p-value in datasets with complete or 
quasi-complete (i.e. near complete) group separation65.

Receiver operating characteristic curve (ROC) and area under the curve (AUC).  ROC/AUC 
analyses were performed using IBM SPSS version 26 (IBM Corporation, Armonk, NY). The ROC curve is gen-
erated by plotting the rate of true positives (sensitivity) against the rate of false positives (1 − specificity) for all 

(3)Li = B0 + B1X1 + B2X2 + · · · + BnXn,

(4)Odds = e
Li = e

B0+B1X1+B2X2+···+BnXn ,

(5)Yi =
e
Li

1+ eLi
,

(6)Odds =
Number of participants in the target group

Number of participants in the alternate group
.
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possible threshold values. For a test with 100% sensitivity and specificity, the AUC is equal to 1, while a useless 
test has an AUC of 0.5. Asymptotic significance of the AUC is evaluated by testing the null hypothesis stating that 
the test has an AUC of 0.5. The null hypothesis is rejected when the adjusted p-value is lower than 0.5. Adjusting 
for multiple testing was performed using Holm method.

Data availability
Compensated flow cytometry data are publicly available at https://​hpap.​pmacs.​upenn.​edu. Please contact WMH 
for instructions on how to download the data.
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