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Graphene nanoparticles as data 
generating digital materials 
in industry 4.0
Muhammad A. Ali 1,2, Muhammad S. Irfan 1,2, Tayyab Khan 1,2, Muhammad Y. Khalid 1,2 & 
Rehan Umer 1*

One of the potential applications of 2D materials is to enhance multi-functionality of structures and 
components used in aerospace, automotive, civil and defense industries. These multi-functional 
attributes include sensing, energy storage, EMI shielding and property enhancement. In this article, 
we have explored the potential of using graphene and its variants as data generating sensory elements 
in Industry 4.0. We have presented a complete roadmap to cover three emerging technologies i.e. 
advance materials, artificial intelligence and block-chain technology. The utility of 2D materials such 
as graphene nanoparticles is yet to be explored as an interface for digitalization of a modern smart 
factory i.e. “factory-of-the-future”. In this article, we have explored how 2D material enhanced 
composites can act as an interface between physical and cyber spaces. An overview of employing 
graphene-based smart embedded sensors at various stages of composites manufacturing processes 
and their application in real-time structural health monitoring is presented. The technical challenges 
associated with interfacing graphene-based sensing networks with digital space are discussed. 
Additionally, an overview of the integration of associated tools such as artificial intelligence, machine 
learning and block-chain technology with graphene-based devices and structures is also presented.

An industrial revolution is a period of time in which significant changes occur in the way goods are produced to 
the extent that fundamentally transform the society, and is characterized by the introduction of disruptive 
technologies and novel production  methods1–3. This typically leads to increased efficiency, reduced cost, greater 
production, and widespread economic and social  impact3. The first industrial revolution (Industry 1.0) was 
characterized by the introduction of mechanical production methods using water and steam  power3,4. Industry 
2.0 saw the introduction of mass production using electricity and the assembly  line5,6. Industry 3.0 introduced 
the use of information technology, computers and automation in production, leading to increased efficiency and 
 customization6. Industry 4.0 takes this further by incorporating smart and autonomous systems, artificial intel-
ligence, robotics, Internet of Things (IoT), cloud computing, and the integration of physical and virtual systems 
that leads to a further level of automation and data  exchange7–10. Industry 4.0 is expected to gradually evolve 
into Industry 5.0 which will be characterized by further advancements in the above mentioned  technologies10–12.

In Industry 4.0, the interconnection of the physical and virtual space is a crucial step which is necessary for 
realizing smart operations in the material design and manufacturing  processes13–16. The physical space in a smart 
manufacturing setup refers to the manufacturing tools, raw materials and human resources. Whereas, the virtual 
space includes computational resources equipped with data storage and sharing capabilities as well as data ana-
lytics tools. The convergence of these two spaces is currently achieved through an array of embedded sensors or 
via imaging devices. However, these methods are inefficient and involve embedding of foreign objects within the 
material or structure. Replacing such devices with the material itself will revolutionize the paradigm of digital 
manufacturing. Such a material can be “smart” and capable of sensing and relaying the collected information or 
data to the virtual space in real-time.

Graphene and other 2D materials can act as the required interface and make the material directly commu-
nicate with the digital  world17,18. Graphene and related 2D materials have been the focus of intensive research 
and development for over a decade, however products utilizing these materials have not captured the market 
yet.  Graphene, termed as a “wonder material”, was anticipated to have wide range of applications ranging from 
electronics, civil/mechanical structures and water filtration to wearable technology, biosensors and  medicine19. 
However, due to the scale and cost of production, these expectations could not be realized after more than a 
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 decade20. Currently, data generating devices (such as sensors) based on 2D materials are mostly in their initial 
Technology Readiness Levels (TRL). Further research is required in order to increase the technology readiness 
levels and have more sophisticated prototype systems manufactured for commercial deployment. In order to 
accelerate the path towards industrialization of 2D materials and increase their potential for future impact at 
commercial level, associated tools such as artificial intelligence and block-chain technology need to be developed 
and integrated with these devices. One of the potential applications of graphene nanoparticles is to impart multi-
functionality to structures. These multi-functional attributes include sensing, energy storage, EMI shielding and 
property enhancement etc.21–24.

Graphene offers a number of fundamentally superior qualities that makes it a promising material for a wide 
range of applications, particularly in electronic devices. Graphene comes in a myriad of forms, such as nano-
flakes, nanoplatelets, nanosheets, quantum dots, graphene oxide, graphite oxide, reduced graphene oxide, etc.25,  
with different forms provide different  functionalities22,26,27. The form of graphene for a particular application may 
not be useful for other applications. For example, graphene used for EMI shielding cannot be used as a biosen-
sor or as a transistor. Similarly, graphene used for energy storage is different from the one used for mechanical 
deformation sensing. The form of graphene focused here is the reduced Graphene Oxide (rGO) which is mainly 
used for sensing based on mechanical deformations. The versatility of graphene-based devices goes beyond 
conventional transistor circuits and includes flexible and transparent electronics, optoelectronics, piezo-resistive 
sensors, electromechanical systems, and energy storage  devices28. Reduced Graphene Oxide  based sensing has 
gained traction in the field of polymer composites very  recently29. Graphene flakes and rGO can be embedded 
within a structure, such as a composite structure by either mixing it in the resin system or by coating on the fiber 
 reinforcements29. The working principle of rGO based piezo-resistive sensors involves nanomaterials forming 
an electrically conductive network, and electrical tunneling between particles that is altered by external stimuli, 
resulting in changes in electrical resistance of the percolated network of graphene.

The potential role of rGO sensors as an interface between the physical and cyber worlds in a digital manu-
facturing of fiber reinforced polymer composites is illustrated graphically in Fig. 1. Additional sensors such as 
pressure transducers, digital imaging devices, etc. could also be used to augment the information obtained via 
rGO based sensors. On top of the sensing system, a signal processing unit with diagnostic capabilities, and a 

Figure 1.  Flow chart illustrating the digitalization of composite structures using graphene nanoparticles 
as interface for creating a digital factory environment. Reduced Graphene Oxide  based sensors along with 
traditional sensors can be incorporated in the manufacturing setup for digital manufacturing. Using the 
advanced tools such as block-chain technology, artificial intelligence, virtual simulations and digital twins, smart 
manufacturing can be achieved within Industry 4.0 framework.
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data management system are also required for smart  operations30. The block-chain technology is a promising 
tool for data collection and management, whereas artificial intelligence tools can provide the required signal 
processing capabilities. Hence, rGO based sensors, AI-powered tools and block-chain technology can form a 
triad that could enable smart manufacturing. Moreover, the database can be diversified with the help of simula-
tion tools and digital twins.

In this article, we have reconnoitered the prospective utilization of graphene nanoparticles as digital materials 
within the context of Industry 4.0. First, we have explained how to use rGO as an embedded sensor, followed by 
the types of data generated by these sensors during the manufacturing process as well as during the service life 
of a structure. The use of block-chain technology and artificial intelligence tools for collecting and processing the 
data, and the role of digital twins in smart manufacturing is presented. The data generated using traditional and 
rGO based sensors can be collected and stored in an efficient and secure manner using block-chain technology. 
Machine and deep learning tools can be used for creating calibration, detection and predictive models  using 
this database, which can analyze real-time signals captured using graphene-based sensors. In summary, we have 
presented a roadmap to converge three emerging technologies i.e. advanced 2D materials, artificial intelligence 
and block-chain in order to realize smart manufacturing in Industry 4.0.

Creating reduced graphene oxide strain sensors
To make rGO based strain sensors for composites, graphene is used as a precursor, usually synthesized either by 
a top-down method or by a bottom-up  approach31. The top-down approaches, such as mechanical exfoliation, 
oxidation–reduction of GO, liquid phase exfoliation and arc discharge, involve the structural breakdown of 
precursor such as graphite, followed by the interlayer separation to produce graphene  sheets32. Chemical vapor 
deposition (CVD), epitaxial growth and total organic synthesis utilizing carbon source gas to synthesize graphene 
on a substrate, are examples of bottom-up  technique31. Graphene nanoparticles and similar 2D materials can be 
embedded within a fiber reinforced composite structure either by dispersing them in the matrix or by coating 
them directly on the fiber  reinforcements33,34.

Reduced graphene oxide mixed within the matrix. In this approach, the polymeric resin (matrix) is 
modified by dispersing graphene nanoparticles within the resin, resulting in a traditional  nanocomposite35,36. 
Enormous amount of useful data is gathered such as, mixing ratios, mechanical stirring force, centrifugal mixing 
parameters, etc. The data gathered during mixing of graphene nanoparticles in the resin system is useful to pre-
dict physical state of reduced graphene oxide, such as exfoliation and quality of reduction achieved, which can 
directly influence properties such as electrical conductivity, EMI shielding and a number of different mechanical 
 properties29. However, the modified resin may also cause issues such as altering resin viscosity, particle agglom-
eration, premature gelation, filtering effect within the fabric while infusing the resin, and uneven distribution 
of the filler throughout the composite  laminate37,38. These issues have hindered the practical application of rGO 
loaded resins and their composites, especially during the manufacturing of large and thick parts e.g. wind tur-
bine blades, where mold filling can become very challenging.

Reduced graphene oxide coating on reinforcements. Coating rGO directly onto the fibrous rein-
forcements instead of modifying the matrix is an alternative approach to overcome the issues highlighted above. 
In addition to imparting sensing abilities, the coating of reinforcements with rGO also provides the possibility of 
improving the mechanical and physical properties of the composite; hence, endowing multifunctional proper-
ties to the final  structure39. Techniques for the depositing rGO onto fibrous reinforcements include, (i) chemical 
vapor deposition (CVD)40, (ii) electrophoretic  deposition41, (iii) solution and spray  coating42, and (iv) sizing 
containing rGO directly applied to the fibers during the fiber manufacturing  process43. When deposited on the 
reinforcements, the composite part/structure becomes electrically conductive due to the formation of a network 
of meso-scale rGO  nanoparticles30. When subjected to external stimuli, such as fluid pressure or mechanical 
forces, the conductive path is disrupted and the overall electrical resistance/conductivity of the part/structure is 
altered. This change in  resistance/conductivity is measured and correlated with the external stimuli.

The overall resistance of the conductive network formed by rGO can be divided into three types: (i) intrinsic 
resistance of rGO, (ii) contact resistance, and (iii) tunneling/hopping resistance. This can be expressed using 
the following  equation29

where Ri is intrinsic resistance, Rc is the contact resistance and Rt is tunneling resistance. The key requirement 
for these sensors is the ability to detect any small changes in the overall resistance (ΔR). The signal is normally 
manipulated as a relative or Fractional Change in  Resistance (FCR) rather than absolute measurements. The 
measured value is taken relative to a reference value  (R0) and normalized by the same  (R0), given as;

where, R is the measured value and  R0 is a reference value. The coated rGO can make the fabric material “digitally 
responsive” by generating signals which can be measured using any data acquisition (DAQ) system. The physical 
changes happening during manufacturing can easily be monitored, such as compaction response of the reinforce-
ment, mold-clamping forces, resin pressure distribution, flow front tracking and resin cure kinetics, which were 
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traditionally collected using external sensors and actuators that were not part of the material  itself44. For process 
monitoring, the changes in electrical resistance can be expressed in terms of gain factor, which is a measure of 
the percentage change in the initial resistance of the structure. Apart from the signal, different parameters also 
need to be archived such as, sensor calibration, coating parameters, etc.45. There is huge amount of quantifiable 
parameters that can be recorded from the coating stage such as, concentration of the coating solution, sonication 
parameters (time, temperature and frequency), number of coating layers, rGO reduction time and temperature 
etc. These parameters affect the final resistance value, and hence the sensitivity of the rGO-based  sensors29. The 
gathered data can be stored and analyzed for designing molds, selecting optimum injection gates and vents, 
measuring reinforcement permeability and predicting resin  curing46–48.

Data generated by reduced graphene oxide strain sensors
While in operation, the rGO sensors generate signals that corresponds to various physical phenomenon/activi-
ties depending on the environment the smart material is exposed to. In a typical composites manufacturing 
process such as, Liquid Composite Molding (LCM) process, there are three main stages, i.e. compaction of the 
dry reinforcement, resin injection and resin curing, as shown in Fig. 2. All three stages are prone to process vari-
abilities and need to be monitored using strain and pressure sensors. In the reported literature, rGO embedded 
fabric sensors have been employed for monitoring LCM  processes44,45, which are some of the commonly used 
out-of-autoclave composite manufacturing processes. The rGO coated fabric based sensors are now being used 
in a variety of geometric forms (point sensors, line sensors, or area sensors) and configurations for monitoring 
 applications45. It is also desirable that the concept of embedded sensors is applied to other composites manufac-
turing processes, such as filament winding and pultrusion for civil and construction industry. The embedded 
rGO-based sensors provide useful data at each stage throughout the manufacturing cycle, with vital information 
extracted  related to the void content and structural health of the manufactured structure.

Data generation during manufacturing. The first step in manufacturing of composites via Liquid 
Composite Molding (LCM) is the preforming step, in which the dry reinforcements are subjected to transverse 
compaction, so that they can conform to the mold shape and achieve the target part-thickness and fiber volume 
content. The compaction stage varies depending on the type of LCM technique used. The Resin Transfer Mold-
ing (RTM) is a closed-mold process where rigid mold platens apply high compaction forces on the reinforce-

Figure 2.  Data generated during the life cycle of a smart composite component, during and after 
manufacturing. Fabric compressibility is quantified by the applied stress required to achieve the target fiber 
volume fraction. The evolution of reinforcement permeability and flow characteristics are the important 
characteristics during the resin infusion followed by the cure kinetics of the resin. The distribution of stress 
within a structure is crucial for monitoring its health and for adopting prognostic measures. All aspects being 
monitored using in-situ coated fabrics.
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ments using a press, whereas, in Vacuum Assisted RTM (VARTM), the vacuum force is applied to compress 
the vacuum bag against the reinforcement laid on a single sided mold. During the compaction phase, uneven 
compression within a mold may result in thickness variations, particularly in the case of VARTM. In both cases, 
the applied compaction forces determine the fiber volume fraction of the composite, which in turn, determines 
the quality of the final part and mechanical properties of the composite. The rGO-based embedded sensors have 
been used to monitor compaction forces acting on the reinforcements in both VARTM and RTM processes. The 
rGO-based sensors are able to detect compaction forces of dry and resin impregnated reinforcements in the 
form of resistance change. During this stage, the mold clamping forces and stress relaxation data are required, 
which are usually proactively determined through characterization  experiments49. These information are now 
being obtained in-situ via sensors based on 2D  materials50. Recently Ali et al.50 have demonstrated that even a 
very complex time dependent phenomenon such as stress relaxation of the reinforcements in a closed mold can 
also be monitored using rGO and MXenes based embedded sensors.

During resin injection, the pressure distribution within the mold changes rapidly. This phenomenon is gen-
erally monitored using point sensors drilled within the  mold51–55. rGO coated fabrics can act as an attractive 
alternative to these sensor  arrays44. The resistance change data generated from the coated fabrics depends on 
resin conductivity and dielectric properties of the resin system  used44. The conductivity/resistivity of graphene 
nanoparticles plays an important role when resin impregnates through the coated fibers. The gradual change 
in pressure inside the mold is also an indicator of resin impregnation captured via change in resistance of the 
embedded sensors. Moreover, race tracking and dry spot formation within the part can be detected by compar-
ing signals from sensors placed at different spatial positions within the  preform45. The interaction of resin with 
the sensors can provide information about the distribution of resin within the mold. It is also possible to make 
2D plots of resin infusion process by spatial mapping  during impregnation  process56,57. This requires a virtual 
array of sensors, multiplexing system in combination with a Source Measure Unit (SMU) or similar resistance 
measuring unit.

The resistance of the embedded sensors is sensitive to gelation and crosslinking, as the resin observes shrink-
age during these stages and apply compaction forces on graphene nanoparticles, thus resulting in a change in 
the overall electrical  resistance56. Various stages of curing including, initial gelation, hardening (where resin 
shrinkage takes place) and post-cure are detected by monitoring relative changes in electrical resistance of the 
sensors such as described by Khan et al45.

Data generation during post-manufacturing. Composite structures are frequently subjected to a 
number of loading scenarios in multiple applications throughout their service life. Depending on the type of  
application, these loads can range from high-velocity to low-velocity impact  producing large   deflections58,59. 
Any structural health monitoring system consists of sensing elements, preferably embedded within the structure 
and connected to a signal processing unit with diagnostic algorithms, and a data management  resource30. Car-
bon based nanomaterials coated sensors have shown great potential in recent years for sensing applications in 
composite structures. Compared to carbon nanotubes, rGO and graphene flake sensors standout in their sensing 
applications due to higher aspect ratio and cost-effectiveness60. rGO embedded composite structures can be used 
to sense strain and damage during their lifetime. The mechanism of piezo-resistive sensing in FRPCs depends on 
whether rGO is coated on fabrics or mixed within the resin. When rGO is present in the matrix, an irreversible 
increase of the electrical  resistance61 can be detected due to the initiation of cracks in the matrix and delamina-
tion of fabric layers. Alternatively, in the cases where rGO is coated directly on reinforcements, the conductive 
networks are confined to fiber surface, hence, detecting matrix cracks becomes relatively difficult. Nonetheless, 
enormous amount of data that is generated can be used for preventive arrangements of composite structures 
before any catastrophic failure  happens62.

A lot of work has been reported on Structural Health Monitoring (SHM) where, composites were tested in 
different modes including tensile, compression, bending, impact, creep and stress  relaxation63. A comprehensive 
literature review on the subject shows that a number of studies have reported successful implication of rGO-
coated fabric sensors for monitoring the flexural response of composite structures. It is quite interesting to note 
that apart from precise strain sensing capability under flexural loading, these smart sensors can also exhibit a 
distinct response for tensile and compressive loads, if placed above and below the neutral surfaces in flexural 
 loading41,64. A number of researchers have pushed these rGO coated sensors one step further to investigate their 
feasibility for sensing the repetitive long-term loading in composite structures. Remarkable repeatability in the 
piezoresistive response has been reported in both flexural and tensile cyclic loading for as high as 3000 loading 
 cycles65,66. It is also worth mentioning that graphene nanoparticles based fiber sensors have also been adopted 
in complex composite structures for successful in-situ SHM. In fact, these smart sensors were yet again capable 
of reporting distinctive response to compression and tension loading based on their placement above and below 
the neutral  surface67. Interestingly, a couple of studies recently further extended the use of rGO-coated sensors 
in the form of smart composite face sheets in honeycomb sandwich structures for in-situ SHM. Smart aerospace 
sandwich structures were not only sensitive to span length and core  thickness68, but also exhibited distinctive 
responses to multiple loading rates in beams of any arbitrary width of  interest69. Considering that sandwich 
composites based on Nomex™ honeycomb cores are an integral part of the modern aerostructures, these recent 
findings show remarkable potential in terms of sensing capabilities of active rGO-coated piezoresistive sensors 
in the aerospace industry.

Significant progress has been made thus far in terms of sensing the conventional mechanical response in 
composite structures. However, it is critically important to note that the inherited viscoelastic nature of the 
polymer resin and fiber reinforcements makes their mechanical response time-dependent, hence, the piezoresis-
tive response of these smart sensors also becomes a function of  time70. Therefore, it is very crucial to investigate 
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the long-term creep and viscoelastic stress relaxation response using rGO-based smart sensors. Despite the 
importance of such response in long-term application of composite structures, this area of research has not been 
exploited properly yet. Irfan et al.65 conducted first of this kind of study based on rGO-based smart sensors, to 
investigate the effect of temperature on the mechanical performance of composites using dynamic mechanical 
analysis. The results were also compared with the response of MXene-coated fabric sensors under similar dynamic 
mechanical analysis using temperature sweep experiments. The results were quite promising as the sensors were 
not only capable to detect the thermomechanical response, but also detected the glass transition phenomenon 
and transition from glassy to rubbery region. In fact, rGO-based sensors exhibited smoother response compared 
to MXene-based sensors.

Therefore, rGO-based sensors have shown great potential for self-sensing applications in multiple industrial 
applications of composite structures. Nonetheless, self-sensing smart composite structures can be regarded as an 
emerging field, despite a number of limitations and challenges for researchers working in this field. Before their 
implication on an industrial scale, a number of areas need rigorous research. Some of these areas may include: 
(i) the scalability of these sensors; (ii) calibration; (iii) effect of other external stimuli, such as environmental 
factors; (iv) comparison with well-established conventional sensors for these applications, such as Piezoelectric 
Sensors (PZT) and Fiber Bragg Grating (FBG) sensors and (v) making these sensors smart enough to convey 
signal directly on portable devices such as mobile phones.

The meta-verse of composites manufacturing
Given the fact that rGO-based sensors have great potential to be used in an industrial environment, their inte-
gration with cyber world is still a challenge and not much work has been done. In this section, we present a 
roadmap of Industry 4.0 technologies and how these technologies can use data generated through these sen-
sors (as described in above mentioned sections) to create smart factories. A smart factory is self-adapting, and 
highly automated manufacturing environment capable of autonomously running entire production processes 
and making data-driven  decisions71,72. Such a manufacturing setup has the ability to self-optimize performance 
and improve efficiency, flexibility, and quality control by self-adapting to new conditions through learning in real- 
or near-real  time73. It integrates digital and physical systems through an interconnected network of machines, 
communication mechanisms, and computing power, and uses advanced technologies such as block-chain, arti-
ficial intelligence, machine learning etc., to gather and analyze  data74,75. This integration is achieved through 
network of sensors and actuators enabling a physical system to access the capabilities of the virtual space or the 
“meta-verse”75,76.

Data gathered by rGO-based sensors, can be used for conducting virtual experiments and decision making 
in a smart factory. The rGO-coated sensors can feed digital information from the physical space to the digital 
space such as rGO mixing ratios, mold clamping forces, pressure distribution in the mold etc. This digital infor-
mation comes in various formats (numeric data, images, time-dependent data, etc.). The role of digital space 
or the “meta-verse” is to collect this data securely, interpret the data and generate actionable commands. These 
actionable commands could be a decision tree that can enable/disable resin feeding lines based on the informa-
tion gathered from the mold using rGO-based sensors.

Creating digital material twins using data from rGO sensors. The concept of “meta-verse” is very 
broad and its key components are virtual/augmented reality using digital twins, artificial intelligence, block-
chain, IoT etc. Digital Twin (DT) is one of the core components of Industry 4.0, which is termed as virtual 
replica or digital prototype of the physical process, fully integrated with the physical system and capable of per-
forming virtual simulations in real  time77–79. The virtual simulation is a key aspect of DT that requires continu-
ous iterations between physical and virtual  entities80,81. These simulations include physics based computational 
approaches (FEM/CFD)82–87 as well as data driven stochastics  simulations88–90. The advantages of digital simula-
tions over experimental procedures is evident in material consumption, labor hours and overall cost reduction. 
Apart from these advantages, these simulations can be used to generate datasets to be used in training and creat-
ing machine learning models. Although, such simulations cannot be performed in real-time, machine learning 
models based on the synthetic data can be  useful91. The capabilities of digital twin are sometimes enhanced with 
the Virtual and Augmented Reality  technologies92 that enable human–machine  interactions93,94. For example, 
Perez et al.95 presented and validated a VR-enhanced DT for designing the automated process of a multi-robot 
manufacturing setup as well as its enhanced implementation and in-operando monitoring.

Digital twins are implemented at different yet interlinked  levels13. In the context of composite structures, these 
levels include the design, manufacturing/assembly and in-services/operation  phases80. At the design level, it is 
also known as “digital material twin” (DMT) which refers to the realistic computational models of the composite 
material that can be used for design verification and predicting the mechanical properties of the final composite, 
as well as estimating the process parameters such as the compaction response and resin flow properties within 
the reinforcing  fibers96–98. These parameters are well captured by rGO coated fabrics (as described in previous 
sections) and this information can be stored and used to create “near to reality” DMTs. Moreover, rGO coated 
fabric sensors can also be used for the experimental validation of DT simulations.

Digital material twins for virtual manufacturing can be generated from different 3D scanning techniques, 
such as X-ray computed tomography (XCT)99–103. During production, DT is implemented at the shop-floor level 
for effective process monitoring, control and  optimization16,104,105. Seon et al. created a DT for optimizing the 
de-bulking process of autoclave composites for mitigating void  formation106. Zambal et al.107 generated DT for 
the detection of defects during carbon fiber layup using data collected from various sensors along with analyti-
cal modeling and finite element simulations. Finally, in the operational phase, DT is used for prognostics and 
diagnostics  activities108. Milanoski et al.109,110 developed an FEM based DT for the structural health monitoring 
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of stiffened composite panels by estimating the load acting on the structure using strain data acquired from Fiber 
Bragg Grating (FBG) sensors. Sisson et al.111 pursued a digital twin approach to optimize rotorcraft flight param-
eters by minimizing stress on critical mechanical components and through probabilistic diagnosis, prognosis, 
and optimization. Using the data collected from strain sensors, it is not only possible to detect the presence of 
the damage but also the evolution of the damage, hence remaining useful life of the part can also be  predicted109. 
The knowledge about the health of the structures and parts helps in taking pre-emptive measures such as part 
replacement, repairing the damage, arresting cracks, etc.

AI assisted digital manufacturing using data from rGO sensors. Artificial Intelligence (AI) gener-
ally refers machines that are designed to perform tasks that typically require human-like intelligence, such as 
perception, reasoning, and decision  making112–114. Inherently, AI systems consist of data-driven mathematical 
models for inference and solving problems  autonomously114. AI encompasses sub-fields of machine and deep 
learning, computer vision, natural language processing and cognitive computing, each of which focuses on dif-
ferent aspects of AI technology. Artificial intelligence and 2D materials are two of the disruptive technologies 
that are  intertwined115–117. On one hand, the 2D materials could be an enabler for constructing devices for AI, 
such as memristors, photodetectors, etc.118–122. On the other hand, AI tools such as machine and deep learning 
can not only accelerate the discovery, design and optimization of 2D  materials123–126, but also can interpret the 
signals generated by sensors based on 2D materials. Here, since we are discussing graphene as potential sensor, 
we will restrict our discussions to AI tools for signal processing.

The role of AI techniques in digital manufacturing using rGO sensors can be primarily viewed as a signal 
processing tool. Monitoring the manufacturing process usually involves detecting anomalies and measuring 
physical quantities such as pressure, temperature etc., which can be easily captured using rGO sensors. The 
real-time processing of signals with very low computational power makes these tools very  attractive127,128. The 
signals measured by rGO-based sensors would normally be in the form of resistance/voltage/current measure-
ments. These signals need to be converted to physical parameters such as pressure, stress, strain, temperature 
etc. through different calibration and correlation  models61,129–132. Such calibration models can be easily devel-
oped using machine learning  tools17,50,133. Zhu et al.17 employed a machine learning tool (principle component 
analysis) to predict the concentration of hydrogen gas from the measured response of rGO based gas sensor. Ali 
et al.50 calibrated MXene coated glass fabric sensors using supervised machine learning algorithms to correlate 
the compressive stress with the measured signal. Hajizadegan et al.133 extracted the concentration levels of the 
bio-chemical dopants from the harmonic spectrum of graphene-based harmonic sensors using artificial neural 
networks (ANN).

Other than the calibration models, AI tools can be easily employed for detection, inspection and monitoring 
 tasks134. These tasks may include detection of resin race-tracking in  molds135, flow  disturbances136, and unfilled 
zones  formation137 during the filling stage of an LCM process as well as inspection of broken-filaments during 
fiber  production138. Novel AI-based methods for the inspection of the Automated Fiber Placement (AFP) process 
have also been presented by several  researchers139–143. As part of health monitoring of structures, machine/deep 
learning models have been used for defect/damage  detection144–150, characterization of cracks/delamination151–153 
and classification of impact  levels154. Yu et al.154 demonstrated that probabilistic Bayesian and traditional arti-
ficial neural networks can successfully classify the energy levels of different impact events based on the signals 
obtained from a network of piezoelectric sensors. Deep learning tools are particularly capable of such tasks when 
the signal is in the form of 2D/3D fields and  maps56,57. In such cases, these models are not only able to detect 
these defects, but also locate  them152.

Finally, the machine/deep learning-based surrogate/predictive models can be used for process 
 simulations155–157 as well as for failure predictions in diagnostic and prognostic  maintenance158–160. Using the 
data provided by a set of pressure sensors, Zhu et al.161 implemented a neural network model for the prediction 
of flow-front patterns at any impregnation time. Similar predictive models were also presented for forecasting 
resin  cure162 and flow front  progression163. Stieber et al. presented neural network based models  FlowFrontNet164 
and  PermeabilityNets165 for the prediction of dry spot formation and permeability maps from a sequence of flow 
front images respectively. Pratim et al.166 presented an ANN framework to predict the life (durability) and residual 
strength (damage tolerance) of fiber-reinforced polymer (FRP) composites from real-time acquired dielectric 
permittivity of the material. Hassan et al.167 used genetic algorithms for failure prediction in self-sensing nano-
composites based on conductivity changes observed via electrical impedance tomography.

In summary, these tools can be integrated within the digital manufacturing setup as calibration, detection and 
predictive models as summarized in Fig. 3. Moreover, these models can be periodically re-trained as availability 
of new data without losing the old weights, hence, truly updating the whole manufacturing process. Some of the 
models discussed here used data generated from traditional sensors or synthetic data rather than data collected 
by piezoresistive rGO sensors. However, the methods discussed here can easily be adapted for analyzing data 
obtained via rGO sensors.

Block-chain technology based on rGO sensor data. As AI tools can analyze the data collected 
through rGO-based sensors efficiently, the block-chain technology can collect and manage data in a secure, 
trustworthy and traceable  manner168,169. By definition, a block-chain is an evolutionary list of immutable records, 
called blocks, which are linked together using cryptography and stored on a decentralized network of comput-
ers or nodes in chronological  order170. Block-chain technology employs a self-executing piece-of-code, known 
as smart contracts, to automate the process in a much reliable and trustful  way171. Currently, this technology 
is being exploited extensively by the financial and banking sectors, healthcare and supply chain  sectors172. For 
example, the block-chain technology can be employed in the supply chain of fiber reinforced composite mate-
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rials, in particular, in handling temperature-controlled transportation, handling and storage of prepregs on a 
tamper proof distributed  ledger173.

While using rGO as a sensing element for the manufacturing of fiber reinforced polymer composites, the 
data is generated at various stages, which includes physical properties as well as process parameters. These 
stages form the multi-echelon supply chain that comprises raw materials, manufacturing process and the fin-
ished components/structures173,174. The nature and format of data varies depending on the processing step, and 
includes numeric values, time/temperature dependent curves, or even two/three dimensional fields, as well 
as subjective descriptions. All the data generated at each step can be collected and stored in an efficient and 
secured manner using block-chain. A conceptual illustration of the use of block-chain in collecting and stor-
ing the generated data is illustrated in Fig. 4. Apart from the data directly collected from rGO sensors, the data 
related to physical characteristics of the reinforcement and matrix, as well as data generated from physical and 
virtual experiments is also crucial for efficient processing. The physical characteristics of the reinforcement and 
matrix are usually provided by the supplier (first block in Fig. 4). These properties are then validated as well as 
new characteristics are determined via characterization experiments and virtual simulations using digital twins 
(second block in Fig. 4). The shape of the part to be produced, which will be in the form of a 3D geometry, is 
another important piece of data. Mold designs and other process parameters depends on the type of manufac-
turing method used. In case of LCM, the process parameters include the number and location of inlet/outlet 
ports, injection pressure, etc. For processing prepregs, the cure cycle and temperature are the main parameters. 
The rGO coated materials can play a vital role in in-situ data acquisition during the process. The inspection of 
finished parts will produce more data related to the quality of the part, such as porosity maps and void content 
and tolerance  levels175. Finally, while in service, the smart structure based on rGO sensors will generate signals 
related to its structural health, which can be managed in the maintenance log-book on the block-chain  ledger176. 
Apart from direct involvement, block-chain can also help in creating DT’s169,177 and work in conjunction with 
artificial intelligence to have an overall  impact178. Nevertheless, block-chain technology is a secure, large-scale 
and reliable data collection and management tool for implementing smart operations using networks of sensory 
 elements179, including rGO based sensors.

Figure 3.  The use of machine and deep learning models for various tasks in composites manufacturing in 
Industry 4.0. The common application of such models include calibration of the sensors, anomaly detection by 
analyzing the signals and perform predictive tasks in real-time.
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Concluding remarks and outlook
There are numerous challenges and opportunities for the technological applications and market penetration 
of graphene nanoparticles as a digital materials in various real-world applications. It is vital to consider these 
challenges prior to the largescale commercialization of graphene as a sensing element in fiber reinforced poly-
mer composites, and to make them compatible with the standards of Industry 4.0. The material selection process 
is of paramount importance as there are several 2D materials now available, and the chosen 2D material will affect 
not only the processing steps but also the final sensing properties of the product. The economy of scale is also 
a factor when choosing a 2D material. Atomistic modeling can be a tool to narrow down the material selection 
for a particular application. This becomes  very important when multifunctional composites are involved. The 
engineered 2D materials such as MXenes can be designed to obtain optimized properties. Atomistic modeling 
can also help in making hybrids of two or more materials. Synthesis of good quality materials is also a challenge, 
especially if the processes are not well defined in literature and practice. It must be decided if in-house synthesis 
is required or off-the-shelf options may work for an application.

Adding graphene and other 2D materials into the process chain is the next challenge. There are numerous 
ways in which graphene can be incorporated into composites, for example, mixing in the resin system, coating 
on the reinforcements, weaving a coated tow into the reinforcement fabric, or coating the final composite with 
the graphene solution. There is no single solution, the user needs to decide which method is optimum for the 
target application.

Sensor manufacturing is another closely related challenge. It is also important to decide about the size, num-
ber and spatial location of sensors in a structure. Embedding a sensor in a complex 3D shape while maintaining 
its sensing properties can be a difficult task. It is also important to keep in mind the manufacturing process, 
where it would require different approaches to embed a sensor. Whichever technique is used to embed graphene 
nanoparticles into the composite, it is important to quantify the sensing capability of the composite to sense  
any physical changes.

Sensor calibration is a major challenge in this field, especially when inter-lab sensors are involved. There 
is no standardization of these sensors yet, however for a commercial application, a standardization protocol 
is desirable. The property retention of sensors over time is also a critical factor. Environmental factors such as 
temperature and humidity might affect the sensing capability over time. This is also important in commercial 
sensors such as FBG sensors, and a routine inspection is performed to ensure the working of these sensors in 
real-world applications such as bridges. In the same way, graphene nanoparticles based sensors should have 
a provision for inspection over time. Meanwhile, in lab environments, accelerated tests can be performed to 
quantify the property retention.

A large-scale production system is essential for the commercialization of graphene nanoparticles as a viable 
digital material. As mentioned earlier, various commercial vendors are available for provision of graphene mate-
rials however, the application of graphene in different fields poses unique challenges. Graphene and other 2D 
materials are viable nanomaterials to be used as smart sensors in fiber reinforced composites. They can provide 
process and structural health monitoring at every stage of composites manufacturing and application. In addition, 

Figure 4.  Data collection at various stages of composites manufacturing using block-chain technology. The data 
generated at various manufacturing stages including the data sheets of the raw materials and in-service signals 
can be gathered in an efficient and secure manner by using block-chain technology.
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these materials can also enhance other base properties of the neat composite, including mechanical properties 
and EMI shielding.

The entities in meta-verse are far more mature than 2D materials. The digital space has seen tremendous 
advancements in computational capabilities that include cloud computing, big data analytics, IoT and artificial 
intelligence (AI). However, their integration with sensors based on 2D materials have not been achieved yet. Even, 
compatibility of various digital tools is also not clear. One of the key characteristic of the block-chain technol-
ogy is publically available information. However, most of the information in a manufacturing environment are 
of propriety nature. In this regard, consortium or federated block-chains can be used where the information is 
restricted to a target audience only. The AI tools are data driven, and require carefully curated data sets for train-
ing. Such type of data is scarce at the moment but is expected to grow with time. Lastly, the concept of digital 
twin based on graphene nanoparticles sensors is also in its conceptual phase. The growth of all these technologies 
together can bring in the true essence of Industry 4.0. There is no doubt that there are rich opportunities for 
the application of graphene and other 2D materials in this area. It is a high time that academics and composites 
industries including aerospace and automotive sectors should work together to solve challenges in the field and 
aim for the wide-scale adaptation of graphene as a digital material to reap the benefits of this wondrous material.
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