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Optical investigation 
and computational modelling 
of BaTiO3 for optoelectronic 
devices applications
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Sameh O. Abdellatif 2*

ABX3 perovskite-based materials have attracted research attention in various electronic and 
optoelectronic applications. The ability to tune the energy band gap through various dopants makes 
perovskites a potential candidate in many implementations. Among various perovskite materials, 
BaTiO3 has shown great applicability as a robust UV absorber with an energy band gap of around 
3.2 eV. Herein, we provide a new sonochemical-assisted solid-phase method for preparing BaTiO3 
thin films that optoelectronic devices can typically be used. BaTiO3 nano-powder and the thin film 
deposited on a glass substrate were characterized using physicochemical and optical techniques. In 
addition, the work demonstrated a computational attempt to optically model the BaTiO3 from the 
atomistic level using density functional theory to the thin film level using finite difference time domain 
Maxwell’s equation solver. Seeking repeatability, the dispersion and the extinction behavior of the 
BaTiO3 thin film have been modeled using Lorentz-Dude (LD) coefficients, where all fitting parameters 
are listed. A numerical model has been experimentally verified using the experimental UV–Vis 
spectrometer measurements, recording an average root-mean-square error of 1.44%.

Relatively high band-gap semiconductors are significantly used in various optoelectronic devices1–3. Although 
the energy band-gap of a wide band-gap semiconductor may exceed the Shockley–Queisser limit, it can still 
be utilized as a front UV filter4–7. A UV filter can be functionalized in optoelectronic devices, specifically solar 
cells and light harvesters, to protect the solar cells from high-energy photons8,9. For example, the new genera-
tion of solar cells, including but not limited to perovskite solar cells10, dye-sensitized solar cells11, and organic 
solar cells12, have shown severe degradation under UV emissions8. Accordingly, UV absorbers are commonly 
used as a protective layer6,13. Broad band-gap UV filters can be integrated into multifunction tandem cells as a 
front layer14,15.

BaTiO3 is considered one of the low-preparation cost alternatives for wide band-gap semiconductors16–21. 
Typically, the energy band gap of BaTiO3 is varied from 3.2 to 3.4 eV22–25. Attempts were introduced in the litera-
ture to modulate the band gap, seeking visible absorption23,24. However, the wide band-gap BaTiO3 is still very 
beneficial as a UV absorber26,27, especially in perovskite solar cells28,29, as reported in20. Another work utilized 
BaTiO3 in perovskite thin films but with Si-doping25 and other dopants30. Moreover, BaTiO3 recorded efficient 
integration in dye-sensitized solar cells, following data presented in16,18,31,32. Over and above, the UV absorption 
capability can be considered a credit in designing indoor light harvesters, where the UV portion in the light 
spectrum dominates33,34. In addition to the interesting optical properties of BaTiO3, it also showed exciting 
features in other applications, such as gas sensing17, water treatment35, and piezo-photoelectronic coupling18.

Recently, the optical and electrical properties of barium titanate (BaTiO3) have attracted a wide range of 
researchers, as demonstrated in the literature36–42. The impact of the synthesizing process on the optical proper-
ties of the BaTiO3 nano-structure is studied in37. Consequently, the optical band gap and the refractive index of 
the nanoparticles are well investigated in work reported in36,39. The influence of the compressive strain on the 
optical properties of BaTiO3 is tackled in43. The recorded data showed a variation in the refractive index from 
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1.55 to 1.6536. Sb–BaTiO3 and Y–BaTiO3 doped ceramics prepared by solid-state reaction were optically inves-
tigated in44. Another doped version of BaTiO3, Ce-Doped BaTiO3, was discussed optically and electronically 
in45 using first-principles calculations. Applying the same approach, the work in46 studied the Cr-doped BaTiO3. 
Alternatively, the utilization of density function theory (DFT) simulations glows up to accurately calculate the 
energy band-gap of the material47. Using hybrid HSE06 functional, the calculated band-gap values were 3.254, 
3.894, 3.694, 3.519, and 3.388 eV, corresponding to the cubic, rhombohedral, and orthorhombic, respectively 
tetragonal, and hexagonal phase of BaTiO3 polymorphs47.

In the current investigation, BaTiO3 nano-powder has been prepared using a novel sonochemical-assisted 
solid-phase method and deposited over a BK7 glass substrate. The sonochemical-assisted solid-phase method 
overcomes the shortcomings of too high temperature in solid-phase separation. The adopted method is a simple, 
direct, and ultrasonic treatment to ensure the homogeneity of the suspension. For material characterization, the 
samples were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and 
atomic force microscopy (AFM). Optically, the diffuse reflectance spectroscopy (DRS) measurement was con-
ducted for band-gap calculation, and UV–Vis-NIR spectrometer measurements were utilized to capture the opti-
cal transmission. The finite difference time domain solver was used to model the UV–Vis spectrum, whereas the 
density function theory model generated the optical permittivity as a complex wavelength-dependent function.

Experimental work
A novel sonochemical-assisted solid-phase method for the preparation of nano BaTiO3 is proposed in this 
manuscript to solve the shortcomings of ultra-high temperature in solid-phase preparation (see Fig. 1). BaCO3 
was dispersed in water with TiO2 (molar ratio: TiO2:BaTiO3 = 1:1, as reported in48). Stirring was done at 35 °C 
for 30 min. More details about the TiO2 recipe can be accessed in our previous work49–53. After that, ultrasonic 
treatment was performed for 30 min, and the power was 160 W. Then, the formed powder was filtered and 
dried by heating at 80 °C for 8 h. After grinding, the BaTiO3 was prepared by sintering at 850 °C for 5 h, during 
which the heating rate was 5 °C per minute. BaTiO3 was formed according to the following chemical reactions 
by Beauger et al.54.

For thin film deposition, about 0.5 gm of the TiO2 white powder in the mortar is mixed with 2–3 drops of the 
viscous colorless liquid carboxy methyl cellulose sodium salt (CMC) polymer slowly. The function of CMC is that 
it binds the BaTiO3 powder to the surface of the glass. Viscous CMC is prepared by dissolving 1 g of CMC powder 
in 250 mL distilled water in a beaker and placing this beaker on the magnetic stirrer for 4 h at 50 °C and 100 rpm. 
Grind and mix them with the pestle until a white paste is formed. On a non-conductive glass (5 cm × 1 cm), the 
substrate is fixed using a thin tape in order to have the thickness of the BaTiO3 paste layer at the same thickness. 
The used substrate is cleaned for 30 min with the water Labosol solution and then with distilled water, Followed 
by another 30 min in a Water–ethanol solution of NaOH, then distilled water again. Finally, dry the samples using 
the N2 stream. The screen printing is done by adding a few drops of BaTiO3 paste to the glass and spreading it 
evenly to the thickness of the tape using an automated glass rod screen printing machine, previously customized 
and reported in51. Finally, the glass substrate is placed on a hot plate for 6–8 min at 130 °C, removed, and left to 
cool down at room temperature. The complete process is illustrated in Fig. 2. Herein; repeatability is ensured as 
the printing process is managed automatically.

Thin film deposition for the prepared BaTiO3 is conducted using our customized screen-printing tool51. In 
such a setup, the layer thickness can be roughly controlled through the motor biasing voltage, which reflects on 
the glass rod speed. The material charismatics of the prepared samples were measured using XRD (Empyrean 
Malver Panalytical), AFM (alpha300 Atomic Force Microscope from WITec GmbH), and Fourier Transform 
Infrared (FTIR) spectroscopy Burker Vertex70. Optically, the optical transmission spectra of the fabricated 
samples are measured through a V-770 UV–Vis.-NIR Spectrophotometer, Cary 5000, with a wavelength range 
from 190 to 2700 nm, and Diffuse reflection spectra (DRS) were used for band-gap calculations.

(1)BaCO3 → BaO + CO2

(2)2BaO+ TiO2 → Ba2TiO4

(3)Ba2TiO4 + TiO2 → 2BaTiO3

Figure 1.   Barium titanate powder preparation setup.
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Computational model
Herein, we utilize the density function theory (DFT) to estimate the energy band gap for the BaTiO3, which can 
be experimentally verified using the DRS measurements. Utilizing the same VASP procedure as in50, four input 
files, INCAR, POTCAR, POSCAR, and K-POINTS, were inserted into the model. As outputs, the HOMO–LUMO 
gap was presented to estimate the material energy band gap. Moreover, the material permittivity as a complex 
wavelength-dependent function was obtained against wavelength using the DFT post-calculation, given by:

where ε(λ) is the material permittivity as a function of wavelength λ, ε′(λ) is the real part of the material per-
mittivity, used in calculating the real material refractive index n , and ε″(λ) is the imaginary part of the material 
permittivity, exploring the optical extinction of the material.

Moving toward the thin film layer, an open-source, Linux-based Maxwell’s equation solver, MEEP, was used 
to model the optical transmission spectrum using the finite difference time domain (FDTD) computational 
technique55. MEEP utilizes a scaled Maxwell’s equations with a scaling factor of a . For an input in the form of 
a gaussian beam of peak wavelength at 550 nm, the field at the end of the layer can be derived from a simple 
matrix operation given by:

where E1 and H1 are the electric and magnetic field intensity in the input medium, E2 , and H2 are the electric and 
magnetic field intensity in the output medium, and M is given by:

and γ1 is given by:

where ko is the propagation coefficient ( ko = 2π/� ), λ is the wavelength, h is the thin film thickness, εo and µo 
are the air permittivity and permeability, n1 is the refractive index of the thin film material and θi is the angle of 
incidence. The material dispersion and extinction spectra are inserted into MEPP using Lorentz–Drude (LD) 
coefficients55. These LD coefficients are the main link between the DFT and MEEP models. LD coefficients are 
extracted using the algorithm demonstrated in Fig. 3.

Experimental results
This section demonstrates the experimental and numerical results for the material and optical properties of 
BaTiO3 thin film. Numerical investigations are integrated into this manuscript to provide a repeatable simula-
tion parameter for BaTiO3 that can be useful for the research community in modeling BaTiO3 in various optical 
and optoelectronic devices. In addition, the proposed simulation model is verified in terms of band-gap for the 
DFT model and transmission spectra for the FDTD optical model concerning experimental measurements.
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Figure 2.   (a) Barium titanate paste, (b) automatic screen printing deposition, and (c) BaTiO3 thin film on a 
glass substrate.
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Material characterization.  Initially, the BaTiO3 nano-powder was investigated using XRD. XRD is a pow-
erful technique commonly utilized to characterize nanomaterials to investigate crystalline properties, including 
the crystalline phases, the corresponding planes, the average crystalline sizes, and many other parameters. XRD 
pattern is represented in Fig. 4. The peaks at 22.14°, 31.5°, 38.8°, 45°, 50.8°, 56.1°, and 66.1° were ascribed to 
(001), (110), (111), (002), (210), (211) and (202) plane respectively which corresponding to BaTiO3 (JCPDS No. 
01-089-1428). The size of BaTiO3 crystallites recorded is estimated by the Debye–Scherrer56,57:

where K is the Scherrer constant of 0.89, � denotes the wavelength of the X-ray source, β denotes the full width 
at half maxima (FWHM), and θ denotes the Bragg’s diffracted angle. The crystallite size was recorded at 59 nm, 
with the aid of the top five peaks in the XRD illustrated in Fig. 4. Herein, we utilize the first five peaks as these 
sharp and resolved peaks showed the best-fitting statistics obtained. The lattice parameters a and c are calculated 
using the equation56,57:

(8)t =
K�

β cos θ

Figure 3.   LD fitting algorithm using FDTD MEEP simulator.

Figure 4.   X-ray diffraction pattern for barium titanate powder JCPDS No. 01-089-1428).
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This material crystallizes in a Tetragonal structure with lattice parameters a = 4.00 Å and c = 4.01 Å. The aver-
age lattice strain ε is determined by56,57:

The average lattice strain showed ε = 0.202. The dislocation density δ is formulated by the equation58–60:

Consequently, the dislocation density was 1.76 × 109 cm-2. The determined dislocation density agrees with 
previously reported data in the literature61–63. The work in62 has reported a variation in the dislocation density of 
the BaTiO3 from 1.7 × 109 to 1.0 × 109 cm−2, while the data produced in63 recorded the same order of magnitude 
of 109 cm−2.

The X-ray diffraction pattern shows that the synthesized product is single-phase, well-crystallized, and tetrag-
onal BaTiO3. Additionally, Fig. 5 shows the FTIR spectra of nano-structure BaTiO3. The low-frequency region 
of the spectrum at 988 cm−1 is attributed to O–H bonded to titanium. The same trend of the 988 cm−1 bands was 
obtained in the strong absorption peak of asymmetric stretching carbonates ion (BaCO3) at 1434 cm−1. Addition-
ally, the powder SEM characterization was carried out in Fig. 6. The SEM results showed that the grains of BaTiO3 
is irregularly polygonal in shape. EDX analysis of particles calcinated at 850 °C is given in Fig. 7 and confirms 
the accuracy of elemental composition. The particles are composed of Ba, Ti, and O elements. The experimental 
values of the BaTiO3 sample obtained from the spectrum of energy dispersive X-ray analysis (EDX) are shown 
in Table 1, and the corresponding element mapping is in Fig. 8. Finally, the thin film roughness was measured 
using an atomic force microscope (AFM), cf. Fig. 9. The experimental data recorded an acceptable roughness, 
with an average root-mean-square variation of around 1.50 nm in a (0.5 μm)2 region. Thin film is deposited 
on a BK7 glass substrate using screen printing, as introduced in “Experimental work” section. The recorded 
surface roughness showed significant improvement to the data in the literature as in64. We attribute this to the 
sonochemical-assisted solid-phase method to prepare nano BaTiO3. Additionally, the deposited samples were 
monitored several weeks after deposition, where no color changes were detected.

For the sake of thickness investigation, the SEM measurements in Fig. 10 (a demonstrated a top surface 
view, while b shows an edge view for thickness estimation) were conducted, showing an average film thickness 
of 178.45 μm, with the aid of the post-image processing technique and the correction factors introduced in our 
previous work in65. SEM measurement in Fig. 10a was also utilized to explore the porosity of the samples using 
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Figure 5.   FTIR of BaTiO3 powder, where the x-axis represents the wavenumber k in cm−1, and the y-axis 
indicates the transmittance in %.
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Figure 6.   SEM measurements for BaTiO3 powder (a)–(d).

Figure 7.   Energy dispersive X-ray analysis (EDX) measurements for BaTiO3 powder. Herein the x-variation 
is for the energy in KeV. At the same time, the y-variation indicates the number of counts, which reflects the 
material weight in the composition, as highlighted in Table 1.
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a MATLAB image processing toolbox, as previously utilized in our work66. Herein, the processing showed a 
porosity of around 44.32%. Moreover, the SEM image in Fig. 10a is used to capture an estimated grain size of the 
BaTiO3 particles, where an adequate size of 23 nm is recognized. The image post-processing calculated grain size 
properly matches the one determined using the XRD in Fig. 4. We can attribute the slight mismatching to the 
aggregation effects associated with the solvent. All the obtained parameters in this section are listed in Table 2, 
where a comparison concerning literature is shown whenever possible.

Optical characterization.  Principally, the diffuse reflection spectra (DRS) were measured to investigate 
the light absorbance profile of the prepared nanomaterial. Figure 11 shows the Tauc plot, where the Tauc relation 
is given by56,57:

Table 1.   Experimental values for the Energy dispersive X-ray analysis (EDX) measurements for BaTiO3 
powder. According to the table, the designation ‘K’ or ‘L’ is coupled to the excitation of the K or the L shell, 
which arises due to the recombination of the K- and L-shell vacancies.

Element Weight (5%) Atomic (%) Error (%)

0 K 20.79 59.93 11.06

Ba L 57.72 19.38 6.15

Ti K 21.49 20.69 4.71

Figure 8.   Mapping measurements for BaTiO3 powder.
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where C is a constant, ε′(hν) is the molar extinction coefficient, Eg is the average band gap of the material, 
and n depends on the type of transition. The band gap of prepared BaTiO3 nanoparticles was estimated to be 
3.2 eV. Alternatively, DFT modeling is conducted, as mentioned in “Consent to participate” section. Perovskites 
are famous for the ABX3 structure, where a three-dimensional corner-sharing BX6 octahedron is formed. For 
simplicity, we consider only the cubic structure to explore the optoelectronic properties of BaTiO3. Firstly, the 
ABX3 structure is relaxed to calculate the lattice constant. Accordingly, the flexible structure is simulated to 

(12)ε
′

(hν) = C
(

hν − Eg
)

n

Figure 9.   Roughness measurement of Barium Titanate Thin Film using atomic force microscope. The x–y axis 
represents the thin film coordinates in μm, while the color bar indicates the morphological surface roughness in 
nm.

Figure 10.   Thickness measurement of barium titanate thin film using SEM.
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demonstrate the energy band diagram and the density of states (DOS) shown in Fig. 12. Knowing that the gen-
eralized gradient approximation (GGA) underestimates the band-gaps in DFT simulations, the hybrid nonlocal 
exchange–correlation functional (HSE) is used to calculate the band-gap of the BaTiO3 accurately. By observing 
the DOS, it can be concluded that BaTiO3 is an indirect band-gap material with a typical band-gap of 3.212 eV. 
This validates our simulation process, as it matches our experimental DRS measurements in Fig. 9 and reported 
data in the literature25,35,69,70.

Next, the imaginary part of the relative permittivity is simulated for BaTiO3 in Fig. 13. This spectrum reflects 
the extinction behavior of the materials in the optical region of interest from 200 to 550 nm. Herein, we can 
assume a dominating absorption effect over other scattering mechanisms. This can be easily proven due to the 
limited surface roughness measured by the AFM in Fig. 9. Thus, the surface scattering can be neglected. The 
real part of the permittivity is also extracted for refractive index estimation. The refractive index showed 1.595, 
which agrees with the reported data in36. Consequently, the data simulated in Fig. 13 can be directly converted 
to LD coefficients to be fed into the MEEP model.

Finally, the thin film of BaTiO3 prepared over a BK7 glass substrate is optically characterized using the Cary 
5 UV–Vis spectrometer, see Fig. 14. Samples are measured against the BK7 substrate as a reference. In parallel, 
The FDTD was used to simulate a thin film of 178.45 μm thickness with two Gaussian beams centered at 550 nm, 
representing the TE and TM waves. As highlighted earlier, the material dispersion and extinction LD coefficients 
were captured from the DFT model. We utilize the same procedure as in50 for lithium titanate. The dispersion and 
extinction LD fitting coefficients were calculated to be: ε∞ = 1.595, σ1 = 1.5645 e + 41, ω1 = 0.1254, Ŵ1 = 0.05656, 
σ2 = 7.5565. ω2 = 0.55128, Ŵ2 = 1.9788, σ3 = 0.78155, ω3 = 2.564578, Ŵ3 = 2.2251, σ4 = 0.17521, ω4 = 1.78215, 
Ŵ4 = 0.95448 σ5 = 0.05551, ω5 = 0.74158, and Ŵ5 = 0.01452.

For experimental validation, the T-λ FDTD simulated spectrum is demonstrated against the UV–Vis-NIR 
spectrometer measurement for our fabricated thin film. For accurate matching, the thin film scattering prefactor 
was considered the main free-fitting parameter with the given material thickness and refractive index (as a func-
tion of the permittivity previously simulated using DFT). A thin film of 178.45 μm thickness was reached. The 
comparison between the simulation data and the experimental measurements in Fig. 14 indicates an acceptable 
argument with an average root-mean-square error of 1.44%.

Conclusion
In conclusion, this paper introduces an experimentally validated FDTD numerical model to describe the optical 
properties of BaTiO3 as a potential layer in optoelectronic devices. Firstly, the DFT VASP model was used to 
estimate the energy band gap, nearly 3.21 eV, with DRS optical measurement agreement. The permittivity’s real 
and imaginary parts of the permittivity were calculated, showing a refractive index of 1.595. Consequently, LD 

Table 2.   Experimentally obtained results for BaTiO3.

Parameter Obtained via Value Comparison with literature

The crystallites size XRD 59 nm From 50 to 100 nm, as reported in67

The average lattice strain (ε) XRD 0.202 Agrees with the data in68

The dislocation density XRD 1.76 × 109 cm−2 From 1.7 × 109 to 1.0 × 109 cm−2 in62, order of 109 cm-2 in63

Thin-film roughness AFM 1.50 nm in 0.5 μm2 region 10–20 nm, as reported in64

The average film thickness SEM 178.45 μm NA

Figure 11.   Tauc plot for barium titanate.
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fitting parameters were used to input the complex permittivity of the BaTiO3 into the MEEP model. Less than 
1.44% error was observed while the simulated MEEP spectrum was compared with the corresponding experi-
mental spectrum. Experimentally, the manuscript provided a novel recipe to prepare and deposit a thin film of 
BaTiO3 with all essential morphological, physiochemical, and optical characteristics. A further investigation of 
other electrical properties, specifically the magnetic and the hall effect properties, can be part of future work.

Figure 12.   DOS and band structure for BaTiO3 outputted from the DFT VASP simulation model.
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Data availability
The data that support the findings of this study are available as follows: https://​www.​mathw​orks.​com/​matla​bcent​
ral/​filee​xchan​ge/​76474-​dssc-​optic​al-​model​ling. Any other data supporting this study’s findings are available from 
the corresponding author upon reasonable request.
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